999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Fractional Integral Operators with Variable Kernels Associate to Variable Exponents

2019-03-30 08:19:48ZHANGZhiming張志明ZHAOKai趙凱
應(yīng)用數(shù)學(xué) 2019年2期

ZHANG Zhiming(張志明),ZHAO Kai(趙凱)

(School of Mathematics and Statistics,Qingdao University,Qingdao 266071,China)

Abstract: In this paper,by the atomic decomposition of the Hardy spaces with variable exponents,using the estimates of classical inequality and the properties of the variable exponents,we proved that the fractional integral operators with variable kernels associated to variable exponents are bounded from the Hardy spaces to Lebesgue spaces with variable exponents.

Key words: Fractional integral operator;Variable kernel;Variable exponent;Hardy space

1.Introduction

The fractional integral operators should trace back to the middle of the last century.In 1955,Caldern and Zygmund[1]investigated theL2boundedness of singular integral operators with variable kernels.

LetSn?1denote the unit sphere in Rn.Suppose that? ∈Lr(Sn?1) withis homogeneous of degree zero on Rn.The homogeneous fractional integral operatorT?,α,1<α

In 1971,Muckenhoupt and Wheeden[2]studied the weighted (Lp,Lq) boundedness ofT?,αfor power weight when 1

On the other hand,as we all know,Hardy spaces have been playing a central role in harmonic analysis.Here,we study the Hardy spaces with variable exponents which introduced by Nakai and Sawano[6].They established the atomic decomposition of Hardy spaces with variable exponents.Since then the Hardy spaces with variable exponents were discussed by many authors[7?8].In 2015,TAN and LIU[9]established some boundedness of homogeneous fractional integrals on some variable exponent function spaces.

In this paper,by using the atomic decomposition of the Hardy spaces with variable exponents,we discuss the boundedness of the fractional integral operators with variable kernels associated with variable exponents on the Hardy spaces.For convenience,in Section 2,we recall the definitions and some properties of the variable exponent and the Hardy spaces.We show some useful lemmas of variable exponents and prove the main result in Section 3.

2.Preliminaries

In this section,we introduce the fractional integral operators with variable kernels,the Hardy spaces with variable exponents associated to variable exponents,and some properties of the variable exponent.

Definition 2.1Suppose thatSn?1is the unit sphere in Rn,anddσis the normalized Lebesgue measure inSn?1.A function?(x,z) defined on Rn ×Rnis said to belong toL∞(Rn)×Lr(Sn?1),if it satisfies the following conditions:

TheLr-Dini condition for?is as follows.

Definition 2.2Suppose thatWe say that?satisfies theLr-Dini condition if the conditions 1)-3) of Definition 2.1 hold and

whereωr(δ) is defined by

whereρis a rotation in Rnand

We say that?satisfies the strongerLr-Dini condition if (2.1) is replaced by

whereβis a positive constant.

The functionp(·) : Rn →(0,∞) is called the variable exponent and we adopt the standard notations in variable exponents.For a measurable subsetG ?Rn,we write

We abbreviatep?(Rn) andp+(Rn) top?andp+,respectively.P0(Rn) denotes the set of measurable functionp(·):Rn →(0,∞) that satisfies

LetP(Rn) denote the set of measurable functionp(·):Rn →(1,∞) such that

Definition 2.3Letp(·)∈P0(Rn).f ∈Lp(·)(Rn) if and only iffis a measurable function and?λ ∈(0,∞) such that

Moreover,for any

B(Rn)denotes the set of measurable functionp(·)∈P(Rn)such that the Hardy-Littlewood maximal functionMis bounded onLp(·)(Rn).

Lemma 2.1[10]Suppose thatp(·)∈P(Rn).Set a measurable functionf:G×G →R,satisfying for almost everywherey ∈G,f(·,y)∈Lp(·)(G).Then

Lemma 2.2[6]x ∈Rn.Then for all measurable functionsfandg,there is

Because the variable spaces don’t have the translation invariance,we introduce the log-Hlder continuity condition.

Lemma 2.3[6]Ifp(·) satisfies the conditions

we say thatp(·) satisfies the log-Hlder continuity condition,denoted byp(·)∈LH(Rn).

Lemma 2.4[11]Letp(·)∈P(Rn)∩LH(Rn).Thenp(·)∈B(Rn).

We useQ=Q(x,r) to denote the cube which centered atx= (x1,x2,...,xn) with sidelengthr,and we also denoteχQas the characteristic functionQ.

Lemma 2.5[12]Letp(·)∈LH(Rn)∩P0(Rn),then

1) For every cubeQ,all

2) For every cubeQand

Lemma 2.6[13]Forp(·)∈B(Rn),define the adjointp′(x) withThen there exist positive constantsδ1,δ2satisfying 0<δ1,δ2<1,such that

for all ballsBin Rnand all measurable subsetsS ?B.

Definition 2.4Letf ∈S′(Rn) andψt(x) =t?nψ(t?1x),x ∈Rn.The grand maximal function is defined by

whereandNis a sufficient large integer.

The Hardy space with variable exponentp(·) is defined by

with

Definition 2.5[6]Letp(·) :Fix an integer= min{d ∈N∪{0}:p?(n+d+1)>n}.A functionaon Rnis called a(p(·),q)-atom if there exists a cubeQ,such that

The set of all such pairs (a,Q) will be denoted byA(p(·),q).

Definition 2.6[6]For sequences of nonnegative numbersand cubesdefine

wherep=min(p?,1).

The function spaceis the set of all functionsfsuch that it can be written in the form

whereis finite.One defines

Define

and

Moreover,

and

Lemma 2.7[6]A trivial fact that can be deduced from the embeddingl∞is that

Lemma 2.8[6]LetFor sequences of nonnegative numbers∈A(p(·),q),there is

Lemma 2.9[6,9]Letp(·)∈P0(Rn)∩LH(Rn).ThenHp(·)(Rn)∩Lp++1(Rn) is dense inHp(·)(Rn).

Lemma 2.10[6]Letp(·)∈P0(Rn)∩LH(Rn).Then for allf ∈S′(Rn),

Let?(x,z)∈L∞(Rn)×Lr(Sn?1).The fractional integral operators with variable kernels associated to variable exponents is defined by

whereα(·) is a variable exponent satisfyingα(·)∈P(Rn) andα(·)∈LH(Rn).

3.Main Result

Before stating our main result,we should give some lemmas.

Lemma 3.1[8,14]Letα(·)∈P(Rn).Ifα(·) is log-Hlder continuous at the origin,then

Ifα(·) is log-Hlder continuous at the infinity,then

where

Lemma 3.2Letα(·)∈P(Rn),1<α(·)1,satisfies theLr-Dini condition.Suppose that a constantγ ∈(0,) and|y|<γR,whereRis a positive constant.Then,there exists a constantC >0 independent ofRandy,such that if

and if

ProofThe proof follows the idea of [3].We just prove the case forAnd the others are similar but easier.SinceandR<|x|<2R,we can easily get that|x ?y|~|x|.Thus,

Therefore,

Following Lemma 3.1,using Polar transformation and Jensen’s inequality,we obtain that

Using Polar transformation and the homogeneity of?,we see that

whereJust as in [3],the inner integral is bounded by

whereandThen,similar to [3],we can have

Therefore,Lemma 3.2 is proved.

Lemma 3.3[15?16]Letα(·)∈P(Rn),α(·)∈LH(Rn).Suppose? ∈L∞(Rn)×Lr(Sn?1),satisfies theLr-Dini condition.Ifthen there exists a constantC >0 independent off,such that

Our main result is as follows.

Theorem 3.1Letα(·)∈P(Rn),α(·)∈LH(Rn).Supposeβ >0,andIfsatisfies the strongerLr-Dini condition,then there exists a constantC >0,such that

ProofSuppose thatq ?1,which satisfies (2.3).For anyf ∈Hp(·)(Rn)∩Lp++1(Rn),applying Lemma 2.9 and (2.2),we obtain that there exist sequences of nonnegative numbersand cubessuch that

and

where everyajis a (p(·),q)-atom.

Thus,we only need to prove that

In fact,if (3.1) holds,then Lemma 2.8 and Lemma 2.7 tell us

Ass√ume thatais a (p(·),q)-atom,supported in the cubeQ(cQ,d).We denoteThus,

To estimate J1,since 1<α(·)

Ifsimilarly,one can obtain

To estimate J2,by the vanishing of atom and Lemma 2.1,we have

where

We will consider three cases forRj:and∞.It means thatand1

We just consider J22and the others are similar.SincesupposeandsatisfyApplying Lemma 2.2 and Lemma 3.2,we obtain that

We denoteAccording to the definition of Luxemburg norm in Lebesgue space with variable exponents,it is easy to see thatFollowing Lemma 2.5,if|Bj|<1,then

wherexcjis the center ofBj.

And ifthen

where

Thus,

Choosing suitableθ,such thatthenθp?>1 andθp(·)∈B(R).Therefore,by Lemma 2.6 ,the following estimate holds.

Hence,noting thatnθ ?n ?1<0 andnθ ?n ?β <0,together with three cases,we can obtain

Thus,(3.1) is proved.And then,the proof of Theorem 3.1 is completed.


登錄APP查看全文

主站蜘蛛池模板: 色噜噜狠狠色综合网图区| 欧美性色综合网| 波多野结衣一二三| 中文字幕在线视频免费| 国产在线视频二区| 国产精品人成在线播放| 97在线免费视频| 日韩欧美国产中文| 日韩精品亚洲精品第一页| 色九九视频| 欧美日韩福利| 国产人妖视频一区在线观看| 亚洲大尺码专区影院| 91精品伊人久久大香线蕉| 亚洲欧洲国产成人综合不卡| 亚洲精品va| 亚洲人成日本在线观看| 国产性猛交XXXX免费看| 久热中文字幕在线| 好吊色国产欧美日韩免费观看| 全部毛片免费看| 日本欧美视频在线观看| 91啦中文字幕| 色成人亚洲| 成年女人a毛片免费视频| 永久免费精品视频| 狠狠综合久久| 久久国产精品77777| a级毛片在线免费观看| 99视频只有精品| 国内精品91| 国产亚洲精品97AA片在线播放| 国产成人高清精品免费软件| 99久久精品久久久久久婷婷| 日本免费精品| 国产在线视频福利资源站| 潮喷在线无码白浆| 欧美三级视频在线播放| 亚洲免费毛片| 99国产在线视频| 亚洲免费毛片| 白浆视频在线观看| 欧美97色| 91亚瑟视频| 亚洲男人的天堂网| 亚洲黄色高清| 亚洲综合精品香蕉久久网| 4虎影视国产在线观看精品| 天天爽免费视频| 欧美午夜视频在线| 国产传媒一区二区三区四区五区| 人人澡人人爽欧美一区| 九九九九热精品视频| 亚洲午夜福利在线| 一级毛片免费观看不卡视频| 狠狠色噜噜狠狠狠狠奇米777| 亚洲欧洲免费视频| 亚洲一区网站| 亚洲成人黄色在线| 亚洲区视频在线观看| 日韩a级毛片| 久久人妻xunleige无码| 欧美精品xx| 97成人在线视频| 久久亚洲国产一区二区| 666精品国产精品亚洲| 日本三区视频| 免费在线不卡视频| 国产又粗又猛又爽| 亚洲中文字幕无码mv| 亚洲人成在线精品| 亚洲欧美在线精品一区二区| 毛片免费试看| 午夜影院a级片| 国产一区在线观看无码| 日本AⅤ精品一区二区三区日| 亚洲av日韩综合一区尤物| 日韩无码黄色网站| 国产精女同一区二区三区久| 亚洲日本韩在线观看| 久爱午夜精品免费视频| 少妇精品网站|