余少澄
數學思維的培養是數學教學的靈魂,學生思維的發展是數學教學的核心。可以說,沒有數學思維,就沒有真正意義上的數學學習。因此,小學數學新課程標準提出了“數學思考”學段目標,把小學數學教學活動直接指向學生參與數學相關的思維水平方面的發展,明確要求教師在指導學生學習數學知識的同時要注重啟迪和發展學生思維,使學生形成數學思維能力并得到發展。培養中高年級小學生的數學拓展性思維能力,在課堂教學中可以運用以下策略。
正確表達解題過程固然很重要,但解題表述之前的分析思維更為重要。可以說,沒有正確的解題思維,很難得到正確的解題過程。通俗地講,定性分析就是認真審題、弄清題意、找準信息,并從中總結規律的過程。教師在教學中應該有意識地培養學生分析問題的能力,告訴學生想要正確地解題就必須認真讀題,邊讀邊思考,并能用自己的語言復述題意:已知信息是什么?要解決什么問題?單位名稱有沒有統一?這樣的思考能使學生對題目的內容、結構有一個正確的整體認知。對于題目中的關鍵性語句,要提醒學生反復讀、反復比較。
設計題目:一個長方體的廣告燈箱,長8dm,寬4dm,高15dm,框架由不銹鋼條制作,制作10個這樣的燈箱,至少需要不銹鋼多少米?
存在問題:在問題中沒有明確給出“求棱長和”的關鍵字,所以有許多學生沒有理解透徹題目,以至錯誤地認為題目的要求是求表面積。
解決方案:引導學生思考:明白已知條件是什么→明確所求的是不銹鋼條的總和(也就是求長方體的棱長之和)→注意到題目中長、寬、高的單位是“分米”,而最后求的結果是“米”作單位,要記得進行單位轉換。
培養學生解題的技能和技巧,要讓學生養成認真分析題目、弄清題意的良好習慣,并把各種感官調動起來,把讀、劃、想、記等結合起來,深入理解題目的結構,理清思路,形成正確的解題思維。
現在小學課本的數學練習基本上都是和生活實際息息相關的數學問題。讓學生感受到“數學是處處存在的”,利用學生的生活感受引入新知,這符合小學生的認知特點,能讓他們感受到數學問題的新鮮感,激發他們積極參與體驗學以致用的真實活動。
設計題目:小明缺鈣了,醫生給他開了一瓶鈣片,一共有80片,每天吃2次,每次吃2片,那么這瓶鈣片小明可以吃幾天呢?
教學方式:這道題用“吃鈣片”的生活場景,將題目和小學生生活緊密聯系。教師可在課堂上對這一題目進行拓展,使學生深入探究,并自然地引出所要學的知識:多步運算。
通過借助這些有實際生活背景的問題引入新知,可以激發小學生的學習興趣以及他們探索解決問題的欲望。
數學家H·Freudenthal曾說過:“數學是現實的,學生從現實生活中學習數學,再把學到數學應用到現實中去。”對一些數學問題,最好是從學生熟悉的生活情境和生產實際這些角度去創設問題情境,這樣才能保證學生有相關的經驗來理解問題。
設計題目:有關粉刷墻壁面積的問題。
存在問題:空間觀念比較弱、缺乏空間想象力或者對一些實體概念不清晰,在解題時對具體粉刷的面積比較模糊,尤其對粉刷哪幾個面不是很清晰。
教學方式:教師應該充分利用教室的實體讓學生們觀察并理解。

通過觀察,學生知道粉刷教室的面積需要算五面墻的表面積,再減去門和窗的面積。
四、運用逆向思維,培養學生思維的敏捷性
在數學解題中,往往是從已知一步步推理得到結論。然而有些數學題,若總是按照這種思維方式則會比較困難,比如常常伴隨有較大的運算量,有時甚至無法解答。在這種情況下,只要我們多注意定義、定理、公式的逆向運用,往往可以使問題簡化。
設計題目:男孩和女孩各喝一盒同樣容積的牛奶,男孩喝了一盒的3/5,女孩喝了一盒的2/3,他們誰喝剩的多?
一般的解題思路:把一盒看成單位“1”:1-3/5=2/5,1-2/3=1/3。通分:2/5=6/15,1/3=5/15。因為6/15 > 5/15,所以2/5 > 1/3。答:男孩喝剩的多。
逆向思維:喝剩的多即喝得少:
3/5=9/15,2/3=10/15。因為9/15 < 10/15,所以3/5 < 2/3。答:男孩喝得少,即喝剩的多。
總結:逆向思維有時會使解題更加簡便,而經常性地注意這方面的訓練可以培養學生思維的敏捷性。
五、通過巧設參數,讓學生領會化繁從簡的思維方式
有些數學問題的數量關系比較復雜抽象, 采用一般的解題方法解答思維難度較大,如果引進參數充當題中的已知條件參與運算, 而最終在運算中消去這個參數, 便能使問題很快地得到解決。
設計題目:王師傅騎自行車往返甲、乙兩地, 去時用了6小時,返回時速度加快了1/11,比去時少用了多少小時?
分析與解答:設甲、乙兩地距離為S, 則:

因此返回時比去時少用的時間應是:6-S÷[S/6×(1+1/11)]=6-S÷2S/11=6-5.5=0.5(小時)。
在一些數學問題中,還可以通過設中間參數的方法,然后分別與之比較,可以省略演算過程,簡化解題過程。
總而言之,要讓學生真正學好數學,培養他們的拓展性思維能力是必不可少的。教師可以通過上述的教學方法,讓學生體會生活中的數學,激發學生探索問題的欲望,培養學生思維的敏捷性,讓學生形成正確的解題思維。此外,教師要在日常教學中多積累運用一些典型例題,鼓勵學生多思考、多實踐,確保審題認真,思路清晰,步驟清楚,提高解題能力,從而使學生數學思維能力得到形成和發展。