999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于數據挖掘的移動客戶離網預警分析

2018-05-21 08:46:30王志楠
科學與財富 2018年7期
關鍵詞:用戶模型

摘要:及時識別具有離網傾向的客戶對于寬帶運營商具有十分重要的意義。本文以某市移動公司為例,針對不平衡移動數據,采用人工合成少數類過采樣算法(SMOTE)進行重抽樣,而后采用決策樹、Adaboost兩種分類算法構建離網預警模型,最終選取分類精度最高的SMOTE樣本與Adaboost算法組合模型作為移動寬帶客戶離網預警模型,并據此為運營商提出相應建議。

關鍵字:不平衡樣本;重抽樣;Adaboost;離網預警模型

一、引言

隨著“寬帶中國”戰略的實施,寬帶建設已上升為國家戰略性公共基礎設施建設工程。寬帶業務市場蒸蒸日上的同時,想要保持并擴大市場占有率和利潤,寬帶運營商必須在爭取新客戶的同時,也致力于保留既有用戶。因此,建立寬帶離網預警模型來準確有效地識別出“預離網”用戶,根據特定用戶的需求制定出個性化的營銷方案,有效挽回客戶顯得尤為重要。然而,移動寬帶客戶行為數據存在在網客戶和離網客戶比例嚴重失衡,對不平衡的寬帶離網用戶數據進行重抽樣則尤為必要。本文將運用人工合成少數類過抽樣方法進行重抽樣,以平衡移動寬帶離網用戶和在網用戶數,在此基礎上,通過決策樹、Adaboost兩種分類算法,構建移動寬帶用戶離網預警模型,發掘引致用戶離網的重要因素。

二、移動寬帶用戶離網數據預處理

1、指標選取及數據預處理

移動寬帶離網數據量較大,數據復雜程度較高,因此對移動寬帶離網數據進行數據預處理是極為必要的。本文所用數據來自2017年1-3月某省移動公司寬帶用戶數據庫,包括1-3月內某市的部分寬帶在網及離網用戶信息,共計306100條,提取的變量主要涵蓋客戶基本信息、寬帶消費情況、與寬帶關聯的手機號碼消費特征,涉及的變量有42個,主要為三大類:客戶基本信息、寬帶消費情況、手機消費特征。經過指標變換、異常值處理及缺失值處理后,共保留22個變量,305905條用戶數據,其中在網客戶30萬條,離網客戶5905條,

2、不平衡樣本抽樣

由于移動寬帶離網離網用戶中,在網用戶數據約30萬,而離網用戶數據僅有5000左右,存在比例的嚴重失衡,為了提高模型估計精度,需對不平衡樣本進行重抽樣使離網與在網客戶數達到平衡。本文采用SMOTE合成少數類過采樣算法,最終抽得154711條。

三、移動寬帶用戶離網預警模型構建

在構建分類預測模型之前,本文對重抽樣樣本與初始樣本進行了測試集與訓練集的劃分,將各樣本按照3:1的比例隨機劃分成訓練樣本和測試樣本,其中訓練樣本用于模型的建立,測試樣本用于測試所建立模型的性能。

1、決策樹模型

使用原始樣本與重抽樣樣本的訓練樣本構造決策樹模型,通過計算,最終得到原始數據+決策樹模型的誤判率為0.118,,AUC值為0.789,可知,對于決策樹模型來說,SMOTE人工合成少數類過采樣算法提高了決策樹模型對少數類的分類性能,人工合成樣本(SMOTE)的決策樹模型估計效果優于原始數據。

根據所建的決策樹模型,可得到變量的重要性排序,從各變量重要性對比來看,原始數據與人工合成樣本(SMOTE)所構建決策樹模型篩選出的重要變量大致相似,在變量重要性位次上有稍許不同,可總結為影響客戶離網行為的重要變量分別有:包年/包月、寬帶主資費、輔資費、寬帶是否辦理融合業務、寬帶月均ARPU、寬帶ARPU波動率、寬帶網齡、停機次數等與寬帶消費息息相關的變量。

2、Adaboost分類算法

運用Adaboost算法對兩類樣本進行建模,得到了模型評估結果,SMOTE樣本的Adaboost模型誤判率為0.0510,低于原始數據0.1454,AUC值為0.935,高于原始數據0.855。可見,重抽樣樣本均顯著提高了模型的分類性能。將Adaboost算法所得的前十位變量重要性排序對比發現,兩種樣本所構建的Adaboost模型選取的重要變量大致相似,只是在變量位次上有所不同。

3、移動離網寬帶預警模型的選擇

本文將誤判率與AUC值作為模型分類性能的評判標準。基于上節對各類模型誤判率和AUC值的比較發現,人工合成樣本的Adaboost算法的組合模型估計效果最佳,因此最終選定SMOTE抽樣所構建的Adaboost模型為移動寬帶離網預警模型。利用當月客戶行為信息,通過該模型即可判斷客戶是否將有離網行為,將有預離網行為客戶名單提取出來,通過電話回訪等措施,制定相應的挽回措施。

四、結論與建議

構建效果最優的預警模型對于移動寬帶運營商做好維系挽留工作具有重要的意義。通過對比分析兩類樣本與兩種分類算法的組合預警模型,最終發現分類效果最優的是使用SMOTE抽樣方法結合Adaboost算法的預警模型。分析得到離網客戶的重要變量特征表現:寬帶主輔資費較高、寬帶月均消費較低、 近三月消費波動較小、手機主叫時長較短、未辦理寬帶融合業務、寬帶網齡較長、停機次數較多的城市用戶。據此為移動運營商制定相應的營銷策略提供建議如下,首先,大力推廣包年套餐,逐步延長包月時長。其次,制定多種優惠措施,吸引用戶辦理寬帶融合業務。同時,關注經常停機用戶和低消費客戶,通過客戶回訪等方式,詢問客戶停機原因,切實了解客戶需求,幫助客戶選擇合適的套餐組合。最后,針對寬帶網齡較長,即將到期的寬帶用戶,通過電話回訪和續費催繳等方式,并配合優惠活動,鼓勵寬帶用戶續繳。

參考文獻

[1]謝邦昌,朱世武,崔嵬.移動電話客戶流失數據挖掘[J].數理統計與管理,2005,24(1):62-68.

[2]張維國.移動用戶流失預警及挽留對策研究[D].電子科技大學,2013.

[3]隆曼.基于數據挖掘的電信行業客戶流失管理研究[D].西南財經大學,2013.

[4]李毅,姜天英,劉亞茹.基于不平衡樣本的互聯網個人信用評估研究[J].統計與信息論壇,2017,(02):84-90.

作者簡介:王志楠(1993—),女,山西朔州人,山西財經大學2015(統計學)學術碩士研究生,研究方向:數據挖掘.

猜你喜歡
用戶模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
關注用戶
商用汽車(2016年11期)2016-12-19 01:20:16
3D打印中的模型分割與打包
關注用戶
商用汽車(2016年6期)2016-06-29 09:18:54
關注用戶
商用汽車(2016年4期)2016-05-09 01:23:12
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
Camera360:拍出5億用戶
創業家(2015年10期)2015-02-27 07:55:08
100萬用戶
創業家(2015年10期)2015-02-27 07:54:39
主站蜘蛛池模板: 真人高潮娇喘嗯啊在线观看 | 91美女在线| 欧美午夜精品| 老熟妇喷水一区二区三区| 亚洲女同一区二区| 久久影院一区二区h| 亚洲中久无码永久在线观看软件| 91麻豆精品视频| 免费在线看黄网址| 亚洲水蜜桃久久综合网站| 久久久亚洲国产美女国产盗摄| 久久婷婷五月综合97色| 亚洲乱码在线视频| 国产区成人精品视频| 97在线免费| 国产黄色片在线看| 国产粉嫩粉嫩的18在线播放91 | www亚洲天堂| 无码日韩精品91超碰| 欧洲精品视频在线观看| 99爱视频精品免视看| 天天操精品| 亚洲精品在线观看91| 亚洲制服丝袜第一页| 国产精品污污在线观看网站| 国产第二十一页| 久久性妇女精品免费| 久久精品只有这里有| 东京热av无码电影一区二区| 亚洲熟女中文字幕男人总站| 国产午夜在线观看视频| 国产大片喷水在线在线视频| 黄色网站不卡无码| 色吊丝av中文字幕| 91丨九色丨首页在线播放| 国产十八禁在线观看免费| 国产亚洲第一页| 成人午夜亚洲影视在线观看| 99激情网| 国产无遮挡猛进猛出免费软件| 成年午夜精品久久精品| 国产精品视频导航| 国产成人精品亚洲77美色| 99视频在线看| 国产一区二区三区免费| 国产成人AV大片大片在线播放 | 91成人试看福利体验区| 一本久道久久综合多人| 欧美成人午夜影院| 国产内射在线观看| 精品国产aⅴ一区二区三区| 国产成在线观看免费视频| a在线亚洲男人的天堂试看| 国产精品免费露脸视频| 成人福利在线看| 米奇精品一区二区三区| 性欧美久久| 亚洲成人一区二区三区| 青青热久麻豆精品视频在线观看| 免费无码AV片在线观看中文| 午夜无码一区二区三区| 亚洲成A人V欧美综合| 亚洲国产av无码综合原创国产| 99成人在线观看| 国产拍揄自揄精品视频网站| 亚洲电影天堂在线国语对白| 成人午夜福利视频| 亚洲精品国产成人7777| 亚洲丝袜第一页| 国产95在线 | 色综合天天综合中文网| 国产美女91视频| 日本久久久久久免费网络| 久久大香伊蕉在人线观看热2 | 国产精品亚洲专区一区| 91黄视频在线观看| 国产91透明丝袜美腿在线| 成年人国产网站| 国产精品视频导航| 国产网站免费看| 97视频精品全国免费观看| 国产区人妖精品人妖精品视频|