999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A SCHUR’S LEMMA FOR BAKRY-EMERY RICCI CURVATURE ON K?HLER MANIFOLDS

2018-04-02 06:52:26HUANGGuangyue
數(shù)學雜志 2018年2期

HUANG Guang-yue

(Department of Mathematics,Henan Normal University,Xinxiang 453007,China)

1 Introduction

The Ricci soliton is a natural generalization of Einstein metrics,which is a self-similar solution to Hamiltion’s Ricci flow.In[1],Pigola,Rigoli,Rimoldi and Setti introduced the gradient Ricci almost soliton.That is,if there exist two smooth functions f,λ such that

then(Mn,g)is called a gradient Ricci almost soliton,where Rij+fijis called the∞-dimensional Bakry-Emery Ricci tensor.Clearly,a gradient Ricci soliton is a special case of the gradient Ricci almost soliton when λ is a constant.In particular,if λ = ρR+ μ,where R is the scalar curvature and ρ,μ are two constants,then(1.1)is called the gradient ρ-Einstein soliton defined in[2]which is a self-similar solution to the following geometric flow first considered by Bourguignon in[3]

For some study with respect to the gradient Ricci almost soliton,the interested reader can refer to[1,4–7]for more details.

Note that if f given in(1.1)satisfies fij=0,then(1.1)becomes

and the classical Schur’s lemma states that the scalar curvature R=nλ must be a constant when n≥3.However,there exist gradient Ricci almost solitons with nontrivial function f such that λ is not a constant.A natural question is to consider whether can one find manifolds satisfying(1.1)with nontrivial function f on which λ is constant.In this paper,we consider this problem on K?hler manifolds and prove the following results.

Theorem 1.1Let(Mn,g)be an n-dimensional K?hler manifold with n ≥ 2.If there exist two smooth real-valued functions f,λ satisfying the equation

then λ must be a constant.

Therefore,by virtue of Theorem 1.4 of Chen and Zhu in[8],we obtain the following.

Corollary 1.2Let(Mn,g)be an n-dimensional(n ≥ 2)complete K?hler manifold with harmonic Bochner tensor.If there exist two smooth real-valued functions f,λ satisfying(1.4)with fij=0(that is,▽f is a holomorphic vector field),then we have

1)if the function λ > 0,then(Mn,g)is isometric to the quotient of Nk×Cn?k,where Nkis a k-dimensional K?hler-Einstein manifold with positive scalar curvature;

2)if the function λ < 0,then(Mn,g)is isometric to the quotient of Nk×Cn?k,where Nkis a k-dimensional K?hler-Einstein manifold with negative scalar curvature.

RemarkIf λ defined in(1.4)is a constant,then it is called a K?hler-Ricci soliton.For the classification of the K?hler-Ricci soliton,we refer to[8,9].

2 Proof of Results

Using the concepts as in[8],under the K?hler metric g=(g),the Ricci curvature and the scalar curvature defined by

respectively.By the first Bianchi identity,we have

By virtue of(1.4),we obtain

Therefore,from(2.3),we obtain

where in the third equality we used

and in the last equality we used(2.1).Therefore,from(2.4),it is easy to see that

which shows that λ is a constant.

We complete the proof of Theorem 1.1.

[1]Pigola S,Rigoli M,Rimoldi M,Setti A.Ricci almost solitons[J].Ann.Sc.Norm.Super.Pisa Cl.Sci.,2011,10(4):757–799.

[2]Catino G,Mazzieri L.Gradient Einstein solitons[J].Nonl.Anal.,2016,132:66–94.

[3]Bourguignon J P.Ricci curvature and Einstein metrics[M].Notes Math.,Vol.838,Berlin:Springer,1981,42–63.

[4]Barros A,Ribeiro JR E.Some characterizations for compact almost Ricci solitons[J].Proc.Amer.Math.Soc.,2012,140(3):1033–1040.

[5]Barros A,Ribeiro JR E.Characterizations and integral formulae for generalized m-quasi-Einstein metrics[J].Bull.Braz.Math.Soc.(N.S.),2014,45(2):325–341.

[6]Huang G Y,Wei Y.The classification of(m,ρ)-quasi-Einstein manifolds[J].Ann.Glob.Anal.Geom.,2013,44(3):269–282.

[7]Zeng F,Ma B.The classification of gradient Ricci almost solitons[J].J.Math.,2014,34(2):251–258.

[8]Chen Q,Zhu M.On rigidity of gradient K?hler-Ricci solitons with harmonic Bochner tensor[J].Proc.Amer.Math.Soc.,2012,140(11):4017–4025.

[9]Su Y,Zhang K.On the K?hler-Ricci solitons with vanishing Bochner-Weyl tensor[J].Acta Math.Sci.Ser.B Engl.Ed.,2012,32(3):1239–1244.

主站蜘蛛池模板: 国产精品久久自在自2021| 黄色a一级视频| 久久精品丝袜| 亚洲全网成人资源在线观看| 免费人成视网站在线不卡| 国产免费久久精品99re不卡| 暴力调教一区二区三区| 91在线中文| 成年人福利视频| 亚洲精品成人片在线播放| 精品无码日韩国产不卡av| 青青草原国产一区二区| 黄色网站不卡无码| 人妻中文久热无码丝袜| 97国产在线视频| 亚洲成人播放| 国产人妖视频一区在线观看| 欧美日韩va| 国产黄网站在线观看| a毛片免费在线观看| 国产日韩精品一区在线不卡| 色哟哟国产精品一区二区| 色婷婷电影网| 四虎永久在线精品国产免费| 日韩123欧美字幕| jizz国产在线| 色综合天天视频在线观看| 丰满的少妇人妻无码区| 国产啪在线91| www.精品视频| 亚洲精品第一在线观看视频| 欧美日韩国产一级| 国产精品精品视频| 久久精品人人做人人爽| 久久特级毛片| 亚洲天堂视频网| 亚洲伊人电影| 亚洲av无码久久无遮挡| 精品国产美女福到在线不卡f| 欧美视频在线第一页| 日本91在线| 国产人成午夜免费看| 日韩欧美中文字幕在线精品| 亚洲天堂高清| 亚洲综合经典在线一区二区| 人人91人人澡人人妻人人爽| 色丁丁毛片在线观看| 成人韩免费网站| 香蕉eeww99国产在线观看| 99re视频在线| 国内99精品激情视频精品| 亚洲视屏在线观看| 精品乱码久久久久久久| 亚洲国产成人麻豆精品| 欧美性精品不卡在线观看| 国产乱人伦偷精品视频AAA| 亚洲三级成人| 欧美特级AAAAAA视频免费观看| 在线a网站| 亚洲永久视频| 色噜噜中文网| 手机精品福利在线观看| 国产在线拍偷自揄观看视频网站| 欧美成人一级| 亚洲综合狠狠| 亚洲中久无码永久在线观看软件| 欧美一级高清免费a| 狠狠做深爱婷婷久久一区| 欧美日韩高清| 国产97视频在线观看| 欧美精品一二三区| 日韩在线播放中文字幕| 女人18毛片久久| 亚洲欧洲日韩久久狠狠爱| 成人精品免费视频| 久久99精品久久久久久不卡| 欧洲欧美人成免费全部视频 | 黄色三级网站免费| 国产精品七七在线播放| 亚洲视频四区| 国产精品免费露脸视频| 精品视频一区二区观看|