馮燕海 綜述,王鳳君 審校
(陸軍軍醫大學西南醫院全軍燒傷研究所/創傷、燒傷與復合傷國家重點實驗室,重慶 400038)
緊密連接蛋白Claudin-2是構成細胞間緊密連接的重要蛋白分子,在維持細胞極性和緊密連接的屏障功能方面具有重要作用。Claudin-2在細胞旁路孔通道形成、陽離子通透、離子大小選擇性及水分轉運方面均有重要作用,并參與多種疾病如腫瘤、炎癥、細菌或病毒感染等的發生與發展。本文對Claudin-2的相關研究進展進行綜述,以便對Claudin-2有一較全面的了解。
緊密連接是細胞間連接的一種常見形式,廣泛存在于上皮、內皮和間皮細胞,在維持上皮細胞極性及屏障功能中具有重要作用。在眾多的緊密連接相關蛋白中,最重要的跨膜蛋白是Claudin蛋白家族。人類Claudin蛋白家族至少有24個成員,均包含4個跨膜區域和2條細胞外鏈,2條細胞外鏈中均包含有帶不同電荷的氨基酸殘基和2個細胞內尾巴[1]。第1條細胞外鏈由大約50個氨基酸組成,是細胞旁路孔道形成的主要結構基礎,對跨細胞電阻和細胞旁路的電荷選擇性均具有重要作用[2];第2條細胞外鏈有大約25個氨基酸,主要具有支持功能,有助于緊密連接束的形成,使細胞旁路的裂縫更加緊密[3]。不同的Claudin家族成員在細胞旁路通透性的調控中有著不同的功能,如Claudin-2、-7、-10、-15、-16被稱作是孔道形成蛋白,而Claudin-1、-4、-5、-8、-11、-14、-19則在腸黏膜屏障中表現出封閉作用,可降低細胞旁路通透性[4]。因此,Claudin-2在孔道形成等方面發揮重要作用,進而調節腸屏障功能。
2.1Claudin-2與細胞旁路孔通道陽離子選擇性的關系 Claudin家族蛋白細胞外鏈的帶電殘基決定了孔道的電荷選擇性[5],并且2條細胞外鏈間的相互作用是離子通透性和跨上皮電阻(TER)形成的分子基礎[4];在不同細胞中,孔道密度隨著Claudin-2的高表達而增加[6]。因此,Claudin-2是孔道形成的必要蛋白。在犬腎傳代細胞(madin darby canine kidney,MDCK)Ⅱ細胞中,Claudin-2缺失可導致其對Na+通透性降低[7],且在無內源性Claudin-2表達的MDCK Ⅰ細胞敲入外源性Claudin-2可使其對Na+和K+通透性增加,但不改變其對Cl-和大分子物質如甘露醇及4×103葡聚糖的通透性[8]。有研究表明,Claudin-2蛋白細胞外鏈第65位天冬氨酸所帶負電荷及第67位的絡氨酸殘基可通過陽離子-π相互作用(Cation-π interaction)或腸腔空間效應(Luminal steric effect)賦予其陽離子通透性的特點[9-10]。因此,Claudin-2以其特殊的氨基酸組成為基礎,成為了細胞旁路孔道對Na+等陽離子通透的主要決定因素。除Na+外,Claudin-2形成的孔道對其他單價陽離子如K+、Rb+、Li+和Cs+等也存在通透性,其通透性大小依次為K+>Rb+>Na+>Li+>Cs+[9]。
2.2Claudin-2與水轉運 用環孢霉素A處理人腎小管上皮細胞后,Claudin-2 mRNA表達及細胞旁路水轉運均明顯降低[11];敲除Claudin-2基因后,小鼠表現出喝水行為增加、近端腎小管液體重吸收量降低、尿量增加及尿液滲透壓降低[12]。這些研究提示,Claudin-2確實可增加上皮細胞對水的通透性,該效應可能與Claudin-2對Na+通透所引起的細胞內外滲透壓梯度有關。
2.3Claudin-2與TER 有學者發現,小鼠CMT93-Ⅰ與CMT93-Ⅱ均可表達Claudin-4、-6、-7、-12,但CMT93-Ⅱ細胞株的TER僅為CMT93-Ⅰ細胞株的1/7[13],究其原因可能是Claudin-2蛋白只表達于CMT93-Ⅱ細胞,而不表達于CMT93-Ⅰ細胞。同樣,高TER的MDCKⅠ細胞與低TER的MDCKⅡ細胞間的區別在于MDCKⅡ細胞有Claudin-2表達,而MDCKⅠ細胞不表達Claudin-2[8]。因此,Claudin-2被認為可降低細胞TER。此外,多種因子可通過影響Claudin-2的表達來調控細胞TER,如饑餓誘導的Caco-2腸上皮細胞自噬可通過降解Claudin-2而引起TER明顯增加,從而保護腸上皮屏障功能[14]。但是,Claudin-2降低細胞TER的分子機制仍有待闡明。
3.1Claduin-2與腫瘤 目前的研究發現,在胃癌、結直腸癌和乳腺癌等均有Claudins蛋白的異常表達,且Claudin-2在不同癌細胞的表達量也不同,在肝細胞癌、結直腸腺癌的肝轉移及胰腺癌,Claudin-2表達降低[15];而在纖維板樣肝細胞癌、結直腸癌、胃癌、乳腺癌肝轉移等,Claudin-2表達則明顯增加[16]。(1)Claudin-2與消化道腫瘤:有研究表明,在胃癌中可檢測到Claudin-2的高表達[17],而幽門螺桿菌的CagA可通過Cdx2,在轉錄和翻譯水平均增加Claudin-2表達,進而破壞緊密連接和誘導胃上皮細胞的去分化,導致幽門螺桿菌相關胃癌的發生[18]。與正常組織相比,Claudin-2 mRNA水平在結直腸癌組織中明顯上調并與腫瘤進展有關,這可能是結直腸癌微環境通過激活表皮生長因子受體(EGFR)或者偶對蛋白(Symplekin)通過與ZO-1相關核酸結合蛋白的相互作用,增加Claudin-2的蛋白表達,從而促進腫瘤細胞生長[19-20]。因此,Claudin-2在消化道腫瘤的發生、發展中具有重要作用,可能是新的治療靶點。(2) Claudin-2與乳腺癌:與正常組織相比,原發性乳腺癌的Claudin-2表達降低,但在乳腺癌肝轉移中,Claudin-2表達卻明顯增加[21-23];肝轉移時Claudin-2表達增加,一方面通過增強α2β1-和 α5β1-整合素復合物表達,利于乳腺癌細胞與細胞外基質如纖連蛋白或Ⅳ型膠原黏附,進而促進乳腺癌肝轉移[24];另一方面,通過其第一條細胞外鏈形成Claudin-2-Claudin-2同源復合物,介導乳腺癌細胞與肝細胞間黏附進而促進乳腺癌細胞的肝轉移[25]。由此可見,Claudin-2是乳腺癌肝轉移的重要調節子,在乳腺癌肝轉移的發生中具有重要作用。因此,有學者認為可將Claudin-2作為乳腺癌肝轉移的生物標記物[23]。(3)Claudin-2與肺癌:據報道,Claudin-2在不同類型肺癌的表達不盡相同,如在鱗癌、腺癌和良性腫瘤有Claudin-2表達[26],但有學者在小細胞肺癌中卻未檢測到Claudin-2表達。對A549細胞的研究發現,Claudin-2表達呈時間依賴性增加,其可能機制是基質金屬蛋白酶分泌EGF后,激活EGFR/MEK/ERK/c-Fos信號通路,引起c-Fos入核與Claudin-2 基因啟動子的AP-1位點結合,增強其轉錄活性[27]。
3.2Claduin-2與腸道炎癥 有研究發現,在腸道炎癥發生時Claudin-2表達明顯增加[28]。炎癥性腸病(IBD)時Claudin-2表達增加可能與炎癥局部組織細胞因子增加有關,如潰瘍性結腸炎時,腸黏膜Th2淋巴細胞釋放白細胞介素(IL)-13增加,由IL-13誘導Claudin-2表達增加[29]。IBD時Claudin-2表達增加可能是機體自身的一種保護性反應,研究表明,在腫瘤壞死因子α(TNF-α)或硫酸葡聚糖鈉鹽誘發的腸道炎癥中,Claudin-2(-/-)小鼠的炎癥程度均較Claudin-2(+/+)小鼠明顯嚴重,其機制可能與Claudin-2抑制肌球蛋白輕鏈激酶依賴性的信號通路活化有關,也可能與Claudin-2通過PI-3K/Bcl-2通路阻止腸細胞死亡有關[30-31]。
3.3Claudin-2與感染 發生細菌或病毒感染時,受侵組織Claudin-2表達也會發生相應變化,但不同細菌或病毒對Claudin-2表達的影響截然不同。有學者在對HT29C19A進行的研究發現,幽門螺桿菌由其編碼的CagA通過Cdx2連接于Claudin-2基因的3′側翼區,在轉錄和翻譯水平均增加Claudin-2表達[18]。相反,鼠疫桿菌卻抑制HT29/B6腸上皮細胞Claudin-2表達[32]。病毒如人類免疫缺陷病毒1型(HIV-1)則可能是通過增加炎癥因子如TNF-α等的產生,來破壞包括Claudin-2在內的緊密連接蛋白,導致黏膜上皮緊密連接結構破壞,從而有利于病毒自身或其他細菌的入侵[33]。
緊密連接蛋白Claudin-2是緊密連接的重要組成成分,在機體發育、屏障的離子選擇性、水轉運及跨細胞電阻的調控等方面都具有重要作用,并與多種疾病如腫瘤、炎癥、細菌或病毒感染等密切相關。然而,Claudin-2與這些疾病的發生、發展及轉歸的復雜關系,以及這些疾病狀態下Claudin-2表達的調控機制仍需更深入的研究。
[1]GUNZEL D,FROMM M.Claudins and other tight junction proteins[J].Compr Physiol,2012,2(3):1819-1852.
[2]WEN H J,WATRY D D,MARCONDES M C,et al.Selective decrease in paracellular conductance of tight junctions:role of the first extracellular domain of claudin-5[J].Mol Cell Biol,2004,24(19):8408-8417.
[3]PIONTEK J,WINKLER L,WOLBURG H,et al.Formation of tight junction:determinants of homophilic interaction between classic claudins[J].FASEB J,2008,22(1):146-158.
[4]KRAUSE G,WINKLER L,MUELLER S L,et al.Structure and function of claudins[J].Biochim Biophys Acta Biomembr,2008,1778(3):631-645.
[5]VAN ITALLIE C M,HOLMES J,BRIDGES A,et al.Claudin-2-dependent changes in noncharged solute flux are mediated by the extracellular domains and require attachment to the PDZ-scaffold[J].Ann N Y Acad Sci,2009,1165(1):82-87.
[6]VAN ITALLIE C M,HOLMES J,BRIDGES A,et al.The density of small tight junction pores varies among cell types and is increased by expression of claudin-2[J].J Cell Sci,2008,121(Pt 3):298-305.
[7]HOU J,GOMES A S,PAUL D L,et al.Study of claudin function by RNA interference[J].J Biol Chem,2006,281(47):36117-36123.
[8]FURUSE M,FURUSE K,SASAKI H,et al.Conversion of zonulae occludentes from tight to leaky Strand type by introducing claudin-2 into Madin-Darby canine kidney I cells[J].J Cell Biol,2001,153(2):263-272.
[9]YU A S,CHENG M H,ANGELOW S,et al.Molecular basis for cation selectivity in claudin-2-based paracellular pores:identification of an electrostatic interaction site[J].J Gen Physiol,2009,133(1):111-127.
[10]LI J,ZHUO M,PEI L,et al.Conserved aromatic residue confers cation selectivity in claudin-2 and claudin-10b[J].J Biol Chem,2013,288(31):22790-22797.
[11]WILMES A,ASCHAUER L,LIMONCIEL A,et al.Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water Channel[J].Toxicol Appl Pharmacol,2014,279(2):163-172.
[12]MUTO S,HATA M,TANIGUCHI J,et al.Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules[J].Proc Natl Acad Sci U S A,2010,107(17):8011-8016.
[13]INAI T,SENGOKU A,HIROSE E,et al.Comparative characterization of mouse rectum CMT93-Ⅰ and-Ⅱ cells by expression of claudin isoforms and tight junction morphology and function[J].Histochem Cell Biol,2008,129(2):223-232.
[14]NIGHOT P K,HU C A,MA T Y.Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation[J].J Biol Chem,2015,290(11):7234-7246.
[15]HOLCZBAUER A,GYOENGYOESI B,LOTZ G,et al.Distinct claudin expression profiles of hepatocellular carcinoma and metastatic colorectal and pancreatic carcinomas[J].J Histochem Cytochem,2013,61(4):294-305.
[16]PATONAI A,ERDELYI-BELLE B,KOROMPAY A,et al.Claudins and tricellulin in fibrolamellar hepatocellular carcinoma[J].Virchows Arch,2011,458(6):679-688.
[17]JUNG H,JUN K H,JUNG J H,et al.The expression of claudin-1,claudin-2,claudin-3,and claudin-4 in gastric cancer tissue[J].J Surg Res,2011,167(2):e185-191.
[18]SONG X,CHEN H X,WANG X Y,et al.H.pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2[J].Cell Immunol,2013,286(1/2):22-30.
[19]DHAWAN P,AHMAD R,CHATURVEDI R,et al.Claudin-2 expression increases tumorigenicity of colon cancer cells:role of epidermal growth factor receptor activation[J].Oncogene,2011,30(29):3234-3247.
[20]BUCHERT M,PAPIN M,BONNANS C,et al.Symplekin promotes tumorigenicity by up-regulating claudin-2 expression[J].Proc Natl Acad Sci U S A,2010,107(6):2628-2633.
[21]KIM T H,HUH J H,LEE S,et al.Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease[J].Histopathology,2008,53(1):48-55.
[22]FLORES A R,REMA A,CARVALHO F,et al.Reduced expression of claudin-2 is associated with high histological grade and metastasis of feline mammary carcinomas[J].J Comp Pathol,2014,150(2/3):169-174.
[23]KIMBUNG S,KOVCS A,BENDAHL P O,et al.Claudin-2 is an independent negative prognostic factor in breast cancer and specifically predicts early liver recurrences[J].Mol Oncol,2014,8(1):119-128.
[26]MOLDVAY J,JCKEL M,PSKA C,et al.Distinct claudin expression profile in histologic subtypes of lung cancer[J].Lung Cancer,2007,57(2):159-167.
[27]IKARI A,SATO T,WATANABE R,et al.Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells[J].Biochim Biophys Acta Mol Cell Res,2012,1823(6):1110-1118.
[28]LUETTIG J,ROSENTHAL R,BARMEYER C,et al.Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation[J].Tissue Barriers,2015,3(1/2):e977176.
[29]WATSON A J,DUCKWORTH C A,GUAN Y,et al.Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function[J].Ann N Y Acad Sci,2009,1165(1):135-142.
[30]NISHIDA M,YOSHIDA M,NISHIUMI S,et al.Claudin-2 regulates colorectal inflammation via myosin light chain kinase-dependent signaling[J].Dig Dis Sci,2013,58(6):1546-1559.
[31]AHMAD R,CHATURVEDI R,OLIVARES-VILLAGMEZ D,et al.Targeted colonic claudin-2 expression renders resistance to epithelial injury,induces immune suppression,and protects from colitis[J].Mucosal Immunol,2014,7(6):1340-1353.
[32]HERING N A,RICHTER J F,KRUG S M,et al.Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers[J].Lab Invest,2011,91(2):310-324.
[33]NAZLI A,CHAN O,DOBSON-BELAIRE W N,et al.Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation[J].PLoS Pathog,2010,6(4):e1000852.