楊承源 楊惠林 許麗珍 朱奕潼△
蘇州大學附屬第一醫院 1)骨科 2)博習診療中心,江蘇 蘇州 215000
阿爾茨海默病(Alzheimer’s disease,AD)是一種進行性神經系統退行性病變,以細胞外淀粉樣蛋白沉積及細胞內神經元纖維纏結為病理學特征,并有皮質神經元及軸突的丟失。事實上,早在神經退行性變發生之前,突觸已出現明顯的功能障礙[1]。突觸可塑性指的是神經活動引起的神經元之間信息傳遞效能增強或減弱的現象[2]。Aβ低聚肽可破壞突觸可塑性[3],誘導細胞凋亡[4],抑制嚙齒類動物的學習[5]。在海馬的神經通路上,高頻電刺激可以使海馬神經元興奮性突觸后電位(excitation postsynaptic potential,EPSP)增強,稱為長時程增強(long-term potentiation,LTP),它是突觸可塑性的一種重要形式,被公認為與學習和記憶相關?;钚哉{節細胞骨架相關蛋白(activity-regulated cytoskeletal protein,Arc)/活性調節基因3.1蛋白同系物(activity-regulated gene 3.1 protein homolog,Arg3.1)是一種獨特的即早基因(immediate early gene,IEG),與LTP密切相關[6-8]。AD轉基因大鼠模型中敲除Arc/Arg3.1基因可以減少Aβ的聚集[9]。同樣,臨床AD患者反常地表達過高的Arc/Arg3.1,因此,我們推測,Arc/Arg3.1參與AD的病理過程。
Arc/Arg3.1 cDNA約含3 000個堿基對,最早于1995由LINK和LYFORD所在實驗室相繼發現,并分別命名為Arc和Arg3.1,此后被用作大腦神經活動的分子標記物。Arc/Arg3.1蛋白在海馬神經元的樹突上含量豐富,并與樹突上的細胞骨架蛋白相關[10]。Arc/Arg3.1基因是單拷貝基因,在脊椎動物中高度保守。有趣的是,Arc/Arg3.1基因缺少序列同源性,在非脊椎動物中尚未發現功能同源染色體[11],提示Arc/Arg3.1在進化晚期出現,對于神經系統可能存在特殊的意義[12]。
癲癇發作[13]、神經活動增加[14]、腦源性神經營養因子(brain derived neurotrophic factor,BDNF)[15]、LTP[16]、長時程抑制(long-term depression,LTD)[17]和其他的刺激均可以誘導Arc/Arg3.1基因的表達。Arc/Arg3.1基因表達后能夠被迅速運送到活躍的樹突區域,并被翻譯成對應蛋白,定位在樹突突起的底部。當突觸活動增強時,Arc/Arg3.1 mRNA和表達的蛋白都顯著增加,具有明顯的活性依賴性[18]。
1.1 Arc/Arg3.1轉錄的調控Arc/Arg3.1基因在刺激發生后的5 min內迅速轉錄,故稱其為“即早”基因[14]。這類基因在起始位點下游裝有轉錄裝置,故神經元在刺激發生后得以最快的速度發生轉錄[19]。通常,Arc/Arg3.1以相對低的水平發生轉錄,AMPA受體激活后其轉錄水平進一步降低[20]。BDNF TrkB受體[15]、1組代謝型谷氨酸受體[21]、毒蕈堿型乙酰膽堿受體[22]和NMDA受體[23]的激活可極大上調Arc/Arg3.1的轉錄。細胞外信號調節激酶(extracellular signal-regulated kinase,ERK)是上述信號傳導途徑下游的一個中心位點,為Arc/Arg3.1轉錄增強所必需的因子。ERK一旦被激活,即可磷酸化血清反應因子的一個共激活劑,如三元復合物因子中的Elk1。這種復合物結合于啟動子區域血清反應元件上,起轉錄激活的作用[24]。雖然我們并不完全了解Arc/Arg3.1轉錄過程中受體、信號通路間以及啟動子區的相互聯系,但Arc/Arg3.1顯然為我們了解不同形式的突觸活動引發的神經元反應提供了一個特別的切入點。
1.2 Arc/Arg3.1蛋白的產生和降解和Arc/Arg3.1轉錄類似,Arc/Arg3.1翻譯似乎也受活動水平和特定的信號級聯反應的高度調控。在體外培養的神經元中刺激NMDA受體和Gs偶聯受體可通過蛋白激酶A作用上調Arc/Arg3.1的翻譯水平[25]。體內LTP誘導的Arc/Arg3.1翻譯需要ERK信號通路的參與,通過MAP激酶交互激酶磷酸化aIF4E而發揮作用[26]。代謝型谷氨酸受體mGluR-LTD可通過真核細胞延長因子2(eEF2)的磷酸化作用使原有的Arc/Arg3.1 mRNA迅速翻譯[17]。翻譯后,其穩定性可能受PEST序列和泛素蛋白連接酶E3A(UBE3A)的調控。前者可將翻譯好的蛋白質靶向輸送至蛋白酶。刺激發生6 h后,UBE3A合成并泛素化Arc/Arg3.1,致其降解[20]。故長時間刺激后,Arc/Arg3.1蛋白水平可恢復至基線水平。
1949年,HEBB提出著名的Hebbian突觸假說,即相互連接的兩個神經元在經歷同步放電活動后,它們之間的突觸連接就會得到增強。這種由神經活動引起的神經元之間信息傳遞效能增強或減弱的現象被稱為神經突觸可塑性。
Arc/Arg3.1不僅修飾突觸結構,還可以調節突觸強度。研究顯示,LTP后期需要Arc/Arg3.1的參與。Arc/Arg3.1基因敲除小鼠接受高頻刺激,在起始反應增強后出現穩步減弱的現象,而正常Arc/Arg3.1水平的急性調控中并未出現起始反應增強的現象,因此,它可能是終身Arc/Arg3.1表達缺陷所引起的后天性發育補償。短時間Arc/Arg3.1水平的降低也可導致LTP后期的缺失。GUZOWSKI等[27]將Arc/Arg3.1反義寡核苷酸(ODNs)在LTP誘導前1.5 h注入大鼠海馬,發現LTP的維持階段缺失而早期階段則不受影響。MESSAOUDI等在LTP誘導后2 h注射Arc/Arg3.1反義寡核苷酸可致LTP后期階段永久缺失,并徹底消除BDNF誘導的LTP形式。關于Arc/Arg3.1作用于LTP的分子機制,有研究已經證實,Arc/Arg3.1可與鈣-鈣調蛋白依賴的蛋白激酶Ⅱ(Calcium/Calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)發生相互作用,并可以增加其活性以及促進CaMKⅡ的神經元軸突生長。而CaMKⅡ是一個關鍵的信號蛋白分子,被稱作“記憶的分子開關",是LTP誘導與維持中的重要分子基礎,在神經系統中具有非常重要的生物學作用[28]。Arc/Arg3.1作用于LTP的分子機制還包括細胞骨架動態變化的調節和樹突棘形態的維持。Arc/Arg3.1定位于肌動蛋白細胞骨架,LTP可使致肌動蛋白聚合并增加其穩固性,反過來肌動蛋白穩定劑Jasplakinolide可防止Arc/Arg3.1基因受抑制所造成的LTP維持期缺失[29]。
Arc/Arg3.1除對LTP有關鍵的作用外,對于LTD來說亦必不可少。代謝型谷氨酸受體mGluR誘導的LTD需要Arc/Arg3.1發揮調節AMPA受體的內吞作用[21]。Arc/Arg3.1通過endophilin1和dynamin2促進AMPAR的胞吞作用從而降低了AMPAR介導的突觸電流的幅度[30]。目前還不清楚Arc/Arg3.1作用于AMPA受體上GluA1還是 GluA2亞基,也有可能這兩個亞基均受Arc/Arg3.1的調節。此外,Arc/Arg3.1還可以和Notch1發生共同免疫沉淀并激活Notch1受體。該受體在成熟神經元形態和突觸可塑性的調節方面具有重要的作用。海馬切片研究發現Notch1信號通路的阻斷同時影響LTP和LTD[31]。
研究發現,抑制Arc/Arg3.1蛋白的表達破壞了LTP的維持,而未影響其誘導。實驗動物經水迷宮的訓練后,并未影響其信息的采集和短時程記憶,但卻影響了其長時程記憶(long-term memory,LTM)。Arc/Arg3.1表達可以推斷動物學習任務的完成情況。紋狀體或海馬中Arc/Arg3.1含量高的動物其逆反學習機動應答任務[32]和空間學習任務[33]完成得更快。然而,有研究觀察到海馬中表達較高水平Arc/Arg3.1動物學習杠桿的速度更慢[34]。這種明顯的差異可能是由于后一種學習并不依賴于海馬。還有一項研究發現,過度杠桿訓練的動物其眾多腦區的Arc/Arg3.1表達水平均低于新訓練的動物[35]。雖然Arc/Arg3.1水平和學習能力之間的確切關系尚未明了,但Arc/Arg3.1的精確調制顯然有助于眾多形式的學習和行為反應。
AD正日益被稱為“synaptopathy”[36],反映了疾病的發展過程中突觸的丟失或損傷,從而產生特定神經回路功能的退化和隨之發生的神經網絡活動的減少[37]。AD早期病理研究主要集中于淀粉樣前體蛋白通路及其蛋白裂解產物Aβ形成的斑塊。近幾年來,越來越多的研究表明,神經毒性Aβ低聚體沉積可干擾突觸功能,而突觸功能與Arc/Arg3.1密切相關。
LANDGREN等調查人類Arc/Arg3.1遺傳變異性和罹患AD的風險,對健康組成員進行Arc/Arg3.1測序發現,SNP+2852(G/A)與AD的患病風險、簡易精神狀態量表(MMSE)分數、腦脊液(CSF)的生物標志物、總tau(T-tau蛋白)、過度磷酸化的tau181和Aβ142有關。且新發現的3’-UTR SNP+2852(A/G)中的AA基因型與AD發病風險降低相關。
GINSBERG等[38]發現AD 患者出現神經元纖維纏結的CA1區,其Arc/Arg3.1 mRNA水平較正常組明顯下降,而WU等[39]尸檢AD患者的大腦發現額中回Arc/Arg3.1蛋白水平出現極大的上調。在動物模型的研究中,ECHEVERRIA等[40]以人工合成Aβ建造AD小鼠模型,在原代皮質神經元的培養中發現Arc/Arg3.1表達水平下降。以人工合成Aβ建造大鼠模型,WANG等[41]和CHEN等[42]均在原代培養的皮質神經元中觀測到Arc/Arg3.1表達的下調,而LACOR等[43]卻在原代培養的海馬神經元中發現Arc/Arg3.1表達上升。WEGENAST-BRAUN等[44]利用多種轉基因小鼠模型研究發現,年輕和年老的小鼠海馬和皮質中Arc/Arg3.1的表達均下降,這與DICKEY等[45-46]的研究一致。有趣的是,PALOP等[47]在4~7月齡的小鼠海馬中同時觀測到Arc/Arg3.1表達上升和下降的現象??梢姡壳把芯空邔D患者體內Arc/Arg3.1表達的變化趨勢觀點不一,但可以確定的是,AD患者大腦神經元中Arc/Arg3.1表達的失調干擾了正常的神經生理活動,參與了AD的發病。RUDINSKIY等[48]提出,Arc/Arg3.1 的表達模式影響了神經系統對行為體驗的反應,也干擾了行為體驗的生理性增強。破壞Arc/Arg3.1表達模式出現的斑塊沉積干擾神經元網絡的集成,最終導致AD的突觸功能受損。
Arc/Arg3.1不僅為AD的研究打開了一扇窗,也為AD的其他發病機制假說提供了一個切入點。神經炎癥與AD等眾多神經病理性疾病有關,且可以由活化的小膠質細胞檢測。早期AD 病人便可在涉及學習和記憶的腦區觀察到小膠質細胞發生最大程度的激活。ROSI等[49]在試驗性炎癥的誘導下觀察海馬中活動誘導性即早基因Arc/Arg3.1的表達。腦室中注入脂多糖的大鼠齒狀回和CA3區Arc/Arg3.1和OX-6(主要組織相容性復合體Ⅱ類抗原)免疫標記以及Arc/Arg3.1熒光原位雜交發現激活的小膠質細胞以及Arc/Arg3.1的表達上升。行為誘導性Arc/Arg3.1表達的改變只發生在有小膠質細胞激活的區域(OX-6免疫激活),表明在學習和突觸可塑性方面,神經炎癥可能會影響神經活動與大分子物質合成的耦合。由神經炎癥引發的Arc/Arg3.1表達的活動依賴性改變,可能與AD患者認知功能缺陷有關。
AD是慢性進行性中樞神經系統變性病導致的癡呆,是癡呆最常見的病因和最常見的老年期癡呆。AD以漸進性記憶障礙、認知功能障礙、人格改變以及語言障礙等神經精神癥狀為特征,嚴重影響了患者和家人的生活及工作。Arc/Arg3.1作為一個即刻早期基因,在突觸重塑中作用顯著,而突觸可塑性與LTP有關,LTP是學習與記憶的分子基礎,因此,Arc/Arg3.1與學習記憶等認知功能關系密切。生理情況下,Arc/Arg3.1介導正常學習記憶功能的建立,而在病理情況下,如AD患者中Arc/Arg3.1的表達如何以及其變化如何影響學習記憶過程,有待進一步探討。
[1] DOROSTKAR M M,HERMS J.Arc illuminates Alzheimer's pathophysiology[J].Nature Neurosci,2012,15(10):1 323-1 325.
[2] KRAFT A W,BAUER A Q,CULVER J P,et al.Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity[J].Sci Transl Med,2018,10(426).(pii):10/426/eaag1328.
[3] SHANKAR G M,LI S,MEHTA T H,et al.Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J].Nat Med,2008,14(8):837-842.
[4] LAMBERT M P,BARLOW A K,CHROMY B A,et al.Diffusible,nonfibrillar ligands derived from Abet al-42 are potent central nervous system neurotoxins[J].Proc Natl Acad Sci U S A,1998,95(11):6 448-6 453.
[5] BALDUCCI C,BEEG M,STRAVALACI M,et al.Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein[J].Proc Natl Acad Sci U S A,2010,107(5):2 295-2 300.
[6] GASPAROVA Z,STARA V,STOLC S.Effect of antioxidants on functional recovery after in vitro-induced ischemia and long-term potentiation recorded in the pyramidal layer of the CA1 area of rat hippocampus[J].Gen Physiol Biophys,2013,361(6 407):31-39.
[7] NIKOLAIENKO O,PATIL S,ERIKSEN M S,et al.Arc protein:a flexible hub for synaptic plasticity and cognition[J].Semin Cell Dev,Biol,2017,7(17):30 343-30 349.
[8] MABB A M,EHLERS M D.Arc ubiquitination in synaptic plasticity[J].Semin Cell Dev Biol,2017.pii:S1084-9521(16)30502-X.
[9] JANKOWSKY J L,SLUNT H H,RATOVITSKI T,et al.Co-expression of multiple transgenes in mouse CNS:a comparison of strategies[J].Biomol Eng,2001,17(6):157-165.
[10] LYFORD G L,YAMAGATA K,KAUFMANN W E,et al.Arc,a growth factor andactivity-regulated gene,encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites[J].Neuron,1995,14(2):433-445.
[11] MATTALIANO M D,MONTANA E S,PARISKY K M,et al.The Drosophila ARC homolog regulates behavioral responses to starvation[J].Mol Cell Neurosci,2007,36(2):211-221.
[12] MIYASHITA T,KUBIK S,LEWANDOWSKI G,et al.Networks of neurons,networks of genes:an integrated view of memory consolidation[J].Neurobiol Learn Mem,2008,89(3):269-284.
[13] LINK W,KONIETZKO U,KAUSELMANN G,et al.Somatodendritic expression of an immediate early gene is regulated by synaptic activity[J].Proc Natl Acad Sci U S A,1995,92(12):5 734-5 738.
[14] RAMIREZ-AMAYA V,VAZDARJANOVA A,MIKHAEL D,et al.Spatial exploration-induced Arc mRNA and protein expression:evidence for selective,network-specific reactivation[J].J Neurosci,2005,25(7):1 761-1 768.
[15] PINTCHOVSKI S A,PEEBLES C L,KIM H J,et al.The serum response factor and a putative novel transcription factor regulate expression of the immediate-early gene Arc/Arg3.1 in neurons[J].J Neurosci,2009,29(5):1 525-1 537.
[16] YILMAZ-RASTODER E,MIYAMAE T,BRAUN A E,et al.LTP-and LTD-inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo[J].Hippocampus,2011,21(12):1 290-1 301.
[17] PARK S,PARK J M,KIM S,et al.Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD[J].Neuron,2008,59(1):70-83.
[18] PASTUZYN E D,SHEPHERD J D.Activity-Depen-dent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome[J].Front Mol Neurosci,2017,10:234.
[19] SAHA R N,WISSINK E M,BAILEY E R,et al.Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II[J].Nat Neurosci,2011,14(7):848-856.
[20] RAO V R,PINTCHOVSKI S A,CHIN J,et al.AMPA receptors regulate transcriptionof the plasticity-related immediate-early gene Arc[J].Nat Neurosci,2006,9(7):887-895.
[21] WAUNG M W,PFEIFFER B E,NOSYREVA E D,et al.Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate[J].Neuron,2008,59(1):84-97.
[22] TEBER I,KOHLING R,SPECKMANN E J,et al.Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC)[J].Brain Res Mol Brain Res,2004,121(1/2):131-136.
[23] STEWARD O,WORLEY P F.Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation[J].Neuron,2001,30(1):227-240.
[24] POSERN G,TREISMAN R.Actin' together:serum response factor,its cofactors and the link to signal transduction[J].Trends Cell Biol,2006,16(11):588-596.
[25] BLOOMER W A,VANDONGEN H M,VANDONGEN A M.Arc/Arg3.1 translation is controlled by conver-gent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways[J].J Biol Chem,2008,283(1):582-592.
[26] PANJA D,DAGYTE G,BIDINOSTI M,et al.Novel translational control in Arc-dependent long term potentiation consolidation in vivo[J].J Biol Chem,2009,284(46):31 498-31 511.
[27] GUZOWSKI J F,LYFORD G L,STEVENSON G D,et al.Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the main-tenance of long-term potentiation and the consolidation of long-term memory[J].J Neurosci,2000,20(11):3 993-4 001.
[28] MESSAOUDI E,KANHEMA T,SOULE J,et al.Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo[J].J Neurosci,2007,27(39):10 445-10 455.
[29] SHEPHERD J D,BEAR M F.New views of Arc,a master regulator of synaptic plasticity[J].Nat Neurosci,2011,14(3):279-284.
[30] CHOWDHURY S,SHEPHERD J D,OKUNO H,et al.Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking[J].Neuron,2006,52(3):445-459.
[31] ALBERI L,LIU S,WANG Y,et al.Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks[J].Neuron,2011,69(3):437-444.
[32] DABERKOW D P,RIEDY M D,KESNER R P,et al.Arc mRNA induction in striatal efferent neurons associated with response learning[J].Eur J Neurosci,2007,26(1):228-241.
[33] GUZOWSKI J F,SETLOW B,WAGNER E K,et al.Experience-dependent gene expression in the rat hippocampus after spatial learning:a comparison of the immediate-early genes Arc,c-fos,and zif268[J].J Neurosci,2001,21(14):5 089-5 098.
[34] KELLY M P,DEADWYLER S A.Experience-depen-dent regulation of the immediate-early gene arc differs across brain regions[J].J Neurosci,2003,23(16):6 443-6 451.
[35] KELLY M P,DEADWYLER S A.Acquisition of a novel behavior induces higher levels of Arc mRNA than does overtrained performance[J].Neuroscience,2002,110(4):617-626.
[36] Kerrigan T L,Randall A D.A new player in the "synaptopathy" of Alzheimer's disease-arc/arg 3.1[J].Front Neurol,2013,4:9.
[37] LANDGREN S,VON OTTER M,PALMER M S,et al.A novel ARC gene polymorphism is associated with reduced risk of Alzheimer's disease[J].J Neural Transm,2012,119(7):833-842.
[38] GINSBERG S D,HEMBY S E,LEE V M,et al.Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons[J].Ann Neurol,2000,48(1):77-87.
[39] WU J,PETRALIA R S,KURUSHIMA H,et al.Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent beta-amyloid generation[J].Cell,2011,147(3):615-628.
[40] ECHEVERRIA V,BERMAN D E,ARANCIO O.Oligomers of beta-amyloid peptide inhibit BDNF-induced arc expression in cultured cortical Neurons[J].Curr Alzheimer Res,2007,4(5):518-521.
[41] WANG K H,MAJEWSKA A,SCHUMMERS J,et al.In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex[J].Cell,2006,126(2):389-402.
[42] CHEN T J,WANG D C,CHEN S S.Amyloid-beta interrupts the PI3K-Akt-mTOR signalingpathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons[J].J Neurosci Res,2009,87(10):2 297-2 307.
[43] LACOR P N,BUNIEL M C,CHANG L,et al.Synaptic targeting by Alzheimer's-related amyloid beta oligomers[J].J Neurosci,2004,24(45):10 191-10 200.
[44] WEGENAST-BRAUN B M,FULGENCIO M A,EICKE D,et al.Independent effects of intra-and extracellular Abeta on learning-related gene expression[J].Am J Pathol,2009,175(1):271-282.
[45] DICKEY C A,GORDON M N,MASON J E,et al.Amyloid suppresses induction of genes critical for memory consolidation in APP+PS1 transgenic mice[J].J Neurochem,2004,88(2):434-442.
[46] DICKEY C A,LORING J F,MONTGOMERY J,et al.Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice[J].J Neurosci,2003,23(12):5 219-5 226.
[47] PALOP J J,CHIN J,BIEN-LY N,et al.Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice[J].J Neurosci,2005,25(42):9 686-9 693.
[48] RUDINSKIY N,HAWKES J M,BETENSKY R A,et al.Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease[J].Nat Neurosci,2012,15(10):1 422-1 429.
[49] ROSI S,RAMIREZ-AMAYA V,VAZDARJANOVA A,et al.Neuroinflammation alters the hippocampal pattern of behaviorally induced Arc expression[J].J Neurosci,2005,25(3):723-731.