999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

綠茶兒茶素類生物標記物的檢測及應用

2017-10-19 06:10:48孫麗麗曾祥泉NileshGaikwad王歡須海榮葉儉慧
茶葉科學 2017年5期
關鍵詞:血漿生物檢測

孫麗麗,曾祥泉,Nilesh W Gaikwad,王歡,須海榮,葉儉慧*

1. 浙江大學茶葉研究所,浙江 杭州 310058;2. 紹興出入境檢驗檢疫局,浙江 紹興 312000;3. 加州大學戴維斯分校環境與毒理系,加州 戴維斯 95616;4. 浙江大學作物研究所,浙江 杭州 310058

綠茶兒茶素類生物標記物的檢測及應用

孫麗麗1,曾祥泉2,Nilesh W Gaikwad3,王歡4,須海榮1,葉儉慧1*

1. 浙江大學茶葉研究所,浙江 杭州 310058;2. 紹興出入境檢驗檢疫局,浙江 紹興 312000;3. 加州大學戴維斯分校環境與毒理系,加州 戴維斯 95616;4. 浙江大學作物研究所,浙江 杭州 310058

綠茶被認為具有多種生理功效,但臨床實驗和流行病學研究仍存有爭議。綠茶兒茶素類生物標記物檢測方法的建立是為了從代謝物水平研究綠茶及其提取物對人體的生理效用,有助于闡釋綠茶生理功效的作用機理,并避免或減輕由于攝入樣品化學組成差異和生物個體差異對實驗結果的影響。兒茶素類化合物 EGCG、EGC、EC和 ECG及其派生物是常用的綠茶兒茶素類生物標記物,主要檢測方法有高效液相色譜-電化學檢測法、液相色譜-串聯質譜法等。本文綜述了綠茶兒茶素類生物標記物的種類、備樣方法和檢測手段,分析、討論了基于綠茶兒茶素類生物標記物開展的綠茶生物利用率研究,以及臨床實驗和流行病學研究結果,提出在后續研究中應進一步完善和規范人體中兒茶素類生物標記物的備樣和檢測方法,并可嘗試尋找在生物體內比較穩定的、更能反映綠茶及其提取物攝入水平的新型生物標記物。

綠茶兒茶素類生物標記物;HPLC-EC;兒茶素化合物;EGCG;代謝產物;流行病學;綜述

近30年來,綠茶生理功效和藥理功效受到了科學界的廣泛關注。大量細胞和動物實驗證明綠茶具有抗氧化、清除自由基、減肥降脂、抗炎抗癌等功效[1-6],部分臨床實驗結果亦表明飲用綠茶能夠預防或有助于治療癌癥、神經退行性疾病、心血管疾病和抑郁癥等[2,7-12]。但是綠茶及其提取物藥理功能的臨床實驗結果仍存在爭議[13-14],諸多功效尚未得到流行病學研究的佐證[15-18]。部分人體實驗結果的不一致與其實驗條件較難控制有關。綠茶生理功效的臨床研究和流行病學研究通常是對受試者進行綠茶或綠茶提取物攝入干預或者調查[9,15,19-21],其實驗結果受到綠茶及其提取物化學組成[22-23]、受試人群生物學個體差異[24]、受試人群飲食習慣和生活習慣的影響[24]。為了從機理上研究綠茶及其提取物對人體的生理及藥理功效,減少或避免由于樣品攝入、受試者個體差異等因素引起的實驗結果差異,這就需要明確攝入綠茶后其活性成分在人體體液或組織中的分布情況、濃度水平和代謝途徑。

生物標記物是指對正常生物學過程、致病過程或治療干預造成的藥物反應進行測量而得到的特征指標,已被廣泛應用于臨床藥理學和人體營養代謝組學的研究[25-26]。生物標記物可分為外源性和內源性標記物,可以是存在于血液、尿液、細胞、組織或組織液中的目標化學成分[26-27]。根據膳食生物標記物的定義[25],綠茶生物標記物是指綠茶攝入后在任何生物樣本中近期或長期的狀態,包括綠茶內含成分及其代謝派生物。通過檢測人體不同體液或組織中綠茶生物標記物的濃度,研究綠茶及其提取物對人體的生理功效及其可能的作用機制[25,28]。由于動物模型中綠茶代謝產物或與人體有所不同[29],本文所指的綠茶兒茶素類生物標記均指人體內所能檢測到的兒茶素類綠茶生物標記物,主要介紹兒茶素類及其派生物標記物的種類、不同取樣部位的備樣方法和檢測手段,結合兒茶素類生物標記物水平探討綠茶的生物利用率,以及綠茶生理功效相關臨床實驗和流行病學研究結果,并對后續研究提出建議。

1 綠茶兒茶素類生物標記物的種類

理想的綠茶兒茶素類生物標記物應能準確反映綠茶的攝入水平,與綠茶的生理功效相關,且具有特異性、靈敏性,滿足半衰期檢測要求[24,30]。綠茶的主要化學成分有茶多酚、生物堿、氨基酸、糖類和蛋白質[15]。兒茶素類化合物是茶多酚的主體成分,占茶多酚總量70%~80%,被認為與綠茶的生理功效密切相關[31]。綠茶中兒茶素類化合物主要包括兒茶素(C)、表兒茶素(EC)、沒食子兒茶素(GC)、表沒食子兒茶素(EGC)、兒茶素沒食子酸酯(CG)、表兒茶素沒食子酸酯(ECG)、沒食子兒茶素沒食子酸酯(GCG)、表沒食子兒茶素沒食子酸酯(EGCG),其中EGCG是含量最高、最具生物活性的兒茶素組分[32]。ECG、EGCG、EC和EGC已被用于綠茶兒茶素類生物標記,在受試者的血漿和尿液中呈現劑量效應[19,33-35],且攝入方式(短期和長期攝入)對血漿中兒茶素水平和存在形式有顯著影響[36]。40名成年受試者日服 800 mg EGCG,4周后發現血漿中自由態 EGCG的累積濃度提高了60%以上[37]。但考慮到EC亦存在于其他常見食物如蘋果、葡萄酒和巧克力[38-39]中,Sun等[28]和 Dai等[9]認為尿液中 EGC是更直接的綠茶兒茶素類生物標志物。

兒茶素類進入人體后由于酶和微生物代謝容易發生轉化,生成相應的II相代謝物。兒茶素類派生物是除自由態兒茶素化合物以外的另一類重要的綠茶兒茶素類生物標記物,主要有甲基化兒茶素、葡萄糖醛酸化和硫酸化兒茶素[40-43]。兒茶素類在血漿、尿液或組織液中的存在狀態有所不同[19],且其派生物生成受到兒茶素分子結構的影響[44]。在血漿中兒茶素類化合物多以自由態存在,而在尿液中則多以其硫酸酯或葡糖醛酸結合物的形式存在[19,44]。EGCG 多以自由態存在于血漿中[19],而EGC和EC多以結合態存于血漿中[44];100% EC和89% EGC以結合態存在于尿液中[19],而EGCG和ECG及其代謝物均未在尿液中被檢測到[44-45]。由于血漿中 ECG和EGCG(自由態和結合態)呈現明顯的劑量效應關系,因此血漿ECG和EGCG是比較可靠的綠茶兒茶素類生物標記物[19,33]。從人體尿液樣本中已分離鑒定多種兒茶素代謝物,包括EGC和EC的葡萄糖醛酸結合物、甲基化產物、硫酸化結合物,以及開環產物 5-(3′,4′,5′-三羥基苯基)-γ-戊內酯(M4),5-(3′,4′-二羥基苯基)-γ-戊內酯(M6)和5-(3′,5′-二羥基苯基)-γ-戊內酯(M6′)等[28,45]。但考慮到EGC和EC代謝產物M4和M6會受到人體大腸微生物環境的影響,單獨作為生物標記物劑量效應不明顯,不具特異性。對于尿液樣品選擇EGC和EC(自由態和結合態)作為具有濃度效應的綠茶兒茶素類生物標記物[19,33]。此外,在血漿和尿液中均檢測出比自由態EGC更高濃度的甲基化代謝產物4′-O-甲基EGC[44,46],4′-O-甲基EGC具有更長的半衰期,當血漿和尿液中絕大多數的兒茶素化合物已被清除時,仍然可以檢測到4′-O-甲基EGC[41],可作為綠茶兒茶素類生物標記物[19]。

2 綠茶兒茶素類生物標記物的備樣、檢測和代謝動力學研究

鑒于綠茶兒茶素類生物標記物主要包括兩大類:自由態兒茶素及其派生物,綠茶兒茶素類生物標記的備樣方法大致可分為非酶解法和酶解法。非酶解法只能從生物樣品中獲得游離態的兒茶素生物標記物,而酶解法則通過添加β-葡萄糖醛酸酶和硫酸酯酶對生物樣品中的葡萄糖醛酸化和硫酸化兒茶素進行酶解,獲得相應的兒茶素標記物總量[42,47]。表1列舉了綠茶兒茶素類生物標記物的備樣方法、檢測手段和藥代謝動力學研究結果。由于兒茶素在生理環境下容易被氧化,可向生物樣品中添加抗氧化劑維生素C保護[42]。由于血漿中含有大量的脂類和蛋白質成分,可采用氯仿或二氯甲烷萃取去除血漿中的蛋白質和脂類[42,47]。從生物樣品中提取綠茶兒茶素類生物標記物的方法有:乙酸乙酯萃取法[42]和固相萃取法[47]。口服攝入后進入人體循環系統的兒茶類化合物濃度很低,在檢測前通常需要真空濃縮、氮氣吹干或真空干燥后再復溶重組樣品,用于提高待測樣品的濃度。

綠茶兒茶素類生物標記物的檢測方法有高效液相色譜-紫外檢測法(HPLC-UV)、高效液相色譜-熒光檢測法(HPLC-FL)、高效液相色譜-化學發光檢測法(HPLC-CL)、高效液相色譜-電化學檢測法(HPLC-EC)、液相色譜-串聯質譜法(LC-MS)和超高液相色譜-串聯質譜法(UPLC-MS)[48]。最常用的是HPLC-EC和LC-MS法。前者主要用于已知的目標生物標記物的濃度檢測,靈敏度高;后者用于新標記物的發現與鑒定,可測出量種類多[45,48]。HPLC-EC的血漿EGCG、ECG和二甲基化EGCG的最低檢測限可達0.5 ng·mL-1,尿液中EC、EGC和甲基化EGC的最低檢測限量也可達到0.5 ng·mL-1[19]。Nakagawa等[49]報道血漿中EGCG和EGC的最低檢測限量可達到2 pmol·mL-1。飲用綠茶或其提取物1.3~2.0 h后,人體血液中的綠茶兒茶素類生物標記物達到峰值,血漿EGCG的最高濃度與其攝入量有明顯的量效關系[19,44,47],最高可達2 μg·mL-1[50];飲用6 h后,血漿中EGCG濃度顯著回落,低至20 ng·mL-1[47]。攝入綠茶或其提取物后,尿液中EC和EGC濃度(自由態和結合態)明顯升高且存在劑量效應[33],90%的兒茶素在8 h內排出[44]。Lee等[42]報道健康男性攝入含有1.2 g茶粉的200 mL溫水(含88 mg EGCG, 82 mg EGC, 33 mg ECG, 32 mg EC)后,24 h累積尿液排出2.8~3.2 mg EGC(自由態<1%)和1.6~2.3 mg EC(自由態<1%)。另外,UPLC-MS能一次檢測出更多的多酚類物質的同時縮短檢測時間,有助于進行代謝組學的檢測[51-52]。

表1 綠茶兒茶素類生物標記物的備樣方法、檢測手段和藥代謝動力學研究Table 1 Studies on preparation method, determination techniques and pharmacokinetics of greentea catechin biomarkers

續表1

續表1

3 綠茶兒茶素類生物標記物和生物利用率研究

兒茶素類在人體內的藥物代謝動力學研究揭示了兒茶素類在人體內的吸收、分布、代謝以及排泄特點,同時解答了綠茶及其提取物的生物利用率問題(Bioavailability)。生物利用率是指所服用藥物能到達體循環的比例,是度量藥物制劑被機體吸收程度的一種指標。生物利用率涉及消化、吸收、代謝過程,并受到其他共攝成分的影響[57-58]。兒茶素類化合物的生物利用率低,這主要是由于兒茶素類在胃腸道消化系統中的降解和代謝、細胞膜滲透能力弱,以及肝臟的首渡效應[59],具體表現在進入人體血液的綠茶兒茶素類生物標記物濃度低。兒茶素類在胃液(pH 1.5~2.0)中較穩定,而在腸液(pH 6~8)環境下極不穩定[60-61],消化過程中的降解致使兒茶素類生物利用率低下[62-63]。胃腸道消化后,兒茶素類被小腸吸收進而進入循環系統。然而由于兒茶素類的脂溶性差,導致其滲透腸膜細胞的能力弱[64]。這兩方面的因素導致了兒茶素類較低的可獲得率,從而導致血漿中的兒茶素類化合物濃度低。據報道,在隨機、雙盲實驗中,攝入1 600 mg EGCG后血漿中僅檢測到9 628 ng EGCG[65]。而不同的兒茶素化合物具有不同的穩定性,酯型兒茶素類在腸液中的穩定性低于非酯型兒茶素[66-67]。綠茶攝入后24 h尿液中EC和EGC的回收率分別達到28.5%和11.4%,高于其他兒茶素單體[49]??梢?,不同兒茶素化合物的生物利用率存在差異[40]。除了由腸道吸收進入人體循環系統,兒茶素類在人體大腸(結腸)部位的代謝是人體利用兒茶素類的重要途徑[49]。兒茶素類在腸道內被微生物所代謝,然后進入血液被吸收或者隨糞便排出。兒茶素在結腸微生物的催化作用下發生環裂解反應[68],降解為酚酸及其甘氨酸結合物等簡單的復合物,目前已發現有數十種這樣的代謝產物。因此,僅采用血漿中的兒茶素類生物標記物的藥物動力學衡量,兒茶素類的生物利用率容易被低估。

4 綠茶兒茶素類生物標記物與臨床實驗、流行病學研究

綠茶兒茶素類生物標記物從藥物代謝動力學角度闡述綠茶對人體健康的作用??紤]到樣品收集的可行性和可操作性,血液和尿液是臨床上檢測綠茶兒茶素類生物標記物的最主要的樣本來源。通過檢測人體血液或尿液的綠茶兒茶素類生物標記物濃度,結合統計學分析,來研究攝入綠茶及其提取物對人體的健康功效。

4.1 對疾病或癥狀相關生物標記物的影響

Pietta等[34]發現攝入綠茶兒茶素后,血漿中抗壞血酸鹽和谷胱甘肽濃度有 10%~20%的短暫下降,而血漿 TRAP值提高了16%~19%。8-羥基脫氧鳥苷(8-OhdG)是一種顯示全身氧化性DNA損傷的生物標記物,是可能導致遺傳突變的危險因素。Takechi等[69]針對57名38~73歲的健康日本女性開展其血漿和尿液中綠茶兒茶素類標記物濃度與血漿脂類水平相關性的研究,發現血漿中綠茶兒茶素類標記物濃度與甘油三酸酯和低密度脂蛋白膽固醇的濃度略有相關,或能改善健康女性的血脂水平。

4.2 對疾病的治療或預防作用

為探明飲用綠茶對乳腺癌發生的影響,研究者對 74 942名中國女性進行跟蹤調查,采用LC-MS對受試者尿液中EC、EGC及其代謝產物M4和M6進行相關指標的檢測,與受試者的飲茶頻率、種類、消耗量、起始時間等建立統計模型,結果表明飲茶習慣可能會延緩乳腺癌的發生[9]。Luo等[70]通過對年齡在40~70歲的353例女性乳腺癌病例和701例匹配對照的尿液EGC、EC及其代謝物含量進行檢測,發現尿液中EC濃度與患乳腺癌風險間呈負相關關系(OR=0.59,95% CI=0.39~0.88)。然而在一項日本公共衛生中心研究中,共有24 226名40~69歲的婦女在1990—1995年期間回答了調查問卷并提供了血液,隨訪至2002年12月,通過檢測乳腺癌患者及對照血漿中EGC、EC、EGCG和ECG的含量,發現血漿中茶多酚濃度與乳腺癌風險之間沒有統計學意義的關聯[71]。Sun等[72]對上海地區1986—1989年期間招募的18 000名45~64歲男性進行調查問卷并收集尿液樣本,檢測尿液中的EGC、EC及其代謝產物M4和M6,結果表明尿液中EGC濃度與食管癌發生呈顯著負相關關系(OR=0.49,95% CI=0.26~0.94)。Yuan等[73]對中國上海的18 244名男性的結腸直腸癌發生風險做了一項前瞻性研究,并進行了16年的隨訪,研究結果表明尿液中EGC和4'-MeEGC濃度較高的個體具有較低的結腸癌風險,而尿液中EC或其代謝物的濃度與直腸癌風險無關。然而,另一項研究對上海18 244名男性(211例和1 067個匹配對照)采集尿液評價EC、EGC及其代謝產物4'-MeEGC濃度與HCC患病風險的相關性,未發現相關;并表示高水平的兒茶素甚至可能增加高危個體的患病風險[46]。此外,還有將綠茶兒茶素類生物標記物應用于綠茶與其他慢性疾病(如肥胖、心血管疾病、認知障礙等)臨床干預的研究。Chow等[37]報道 Fitzpatric皮膚型II和III的受試者連續服用EGCG膠囊或茶多酚膠囊 4周后,發現攝入 EGCG膠囊對紫外線引發的皮膚紅斑沒有保護作用。

5 關于綠茶兒茶素類生物標記物檢測和臨床應用的幾點思考

5.1 綠茶兒茶素類生物標記物檢測方法的完善和規范化

已報道的兒茶素類生物標記物的最低檢測限量可達 2 pmol·mL-1[49],但檢測結果很大程度上受到備樣方法的影響。用血漿作為綠茶兒茶素類生物標記物的檢測載體,因血漿半衰期短[37,44,74],采集時間及其間隔都會影響數據的有效性,并且人體血液pH值為7.3~7.4,呈弱堿性,兒茶素類在弱堿性環境下不穩定,易發生化學轉變;血漿中含有大量其他化學成分如蛋白質、脂類,這些環境因素均會影響樣品中兒茶素生物標記物的檢測。此外,兒茶素類與血漿蛋白能發生相互作用,形成氫鍵、疏水作用及共價鍵[75-76]。乙酸乙酯萃取能有效破壞兒茶素類與血漿蛋白間的氫鍵和部分疏水作用,但無法破壞共價鍵-S-S-,導致兒茶素檢測濃度或低于真實值,可采用 2-巰基乙醇還原二硫鍵,對萃取方法進行改善[47]。由于備樣方法可直接影響血漿中綠茶兒茶素類生物標記物的檢出濃度,因此在后續工作中需對血漿樣品的備樣方法進行規范。由于血漿壽命短、成本高,可采用尿液進行生物標記物定量,大多數酚類生物標記物測量需要采集24 h尿樣[30]。然而,尿液中兒茶素生物標記物多以葡萄糖醛酸結合物、甲基化和硫酸鹽、開環裂解產物等 II相代謝物形式存在,要對所有兒茶素派生物進行定性定量檢測存在技術壁壘且缺乏相關標準品。兒茶素類進入人體后在酶和微生物的作用下發生多種化學轉變。因此,尿液中綠茶兒茶素類生物標記物水平更易受到生物個體差異的影響,如個體間腸道菌落種群差異。動物實驗易控制且取樣方便,大量研究采用動物模型研究茶葉多酚在生物體內的吸收、代謝和轉化[77-78],但值得注意的是兒茶素類在動物體內的代謝產物組成或有別于人體內[29]??紤]到兒茶素類在人體中并不穩定,茶葉中除了初級代謝物,還包括許多次級代謝物如茶多酚、黃嘌呤、蛋白質和氨基酸、多糖、揮發性化合物等,可嘗試尋找在生物體內比較穩定的新綠茶生物標記物。此外,還要考慮綠茶兒茶素類生物標記物與其他化合物或食物基質的相互作用[79]。有研究表明,單純攝入兒茶素和飲用含有兒茶素的紅葡萄酒,兩者血漿中檢測到的物質存在很大差異,前者在血漿中能夠檢測到自由態兒茶素類化合物,而后者只能檢測到結合態兒茶素[19]。綜上,應進一步完善和規范綠茶兒茶素類生物標記物的檢測方法,包括樣品收集、儲存、標志物的提取等,同時通過化學合成等手段獲得較多的兒茶素派生物標準品,用于精確定量。

5.2 綠茶兒茶素類生物標記物在臨床實驗中的應用和展望

研究綠茶生理功效和藥理功效很重要的環節是受試人群的篩選。家族歷史、生活習慣和飲食習慣、是否吸煙,以及疾病等因素都會影響受試者對綠茶及其提取物攝入的生理反應,并影響實驗結果[80-82]。因此,對受試者應限定多項條件進行嚴格篩選,減少其他因素的影響,以獲得綠茶及其提取物干預實驗的真正效果。研究綠茶及其提取物攝入對某些疾病的預防或治療功效時,除了做統計相關性分析以外,還需開發與疾病或癥狀密切相關的生物標記物或代謝圖譜,研究人體內綠茶兒茶素類生物標記物濃度與內源目標生物標記物水平變化的相關性,采用代謝組學的研究方法從機理上對綠茶的生理功效進行闡釋。追蹤綠茶攝入后兒茶素類生物標記物在人體中的代謝軌跡,有助于掌握綠茶主要活性成分——兒茶素類化合物的機體內代謝、轉化機理,從兒茶素類生物代謝和轉變角度結合其機體內的分布和濃度水平思考兒茶素類化合物對人體的主要作用部位、生理活性及功效,提供兒茶素類的人體代謝動力學理論基礎,有助于綠茶生理功效的臨床研究更具有方向性和前瞻性。近年來研究表明,兒茶素類在人體下消化道部位(結腸)的代謝是人體利用兒茶素類的重要途徑[83],兒茶素類或能通過調節人體腸道菌群改善機體免疫調節功能[84],這為后續研究提供了新的方向。此外,有研究報道綠茶8種兒茶素化合物的人體生物利用率差異較大,C和EC的生物利用率明顯高于其他6種兒茶素化合物[48,85],或可以選擇生物利用率較高的組分開展臨床實驗。

通過檢測受試者體內綠茶生物標記物的濃度和水平變化,從代謝物水平研究綠茶及其提取物對人體的生理效用,避免或減輕由于攝入樣品化學組成差異和生物個體差異對臨床實驗和流行病學研究實驗結果的影響。但由于攝入后進入人體循環系統的綠茶生物標記物濃度極低,其備樣方式和檢測手段影響到檢測結果,在后續研究中需進一步完善和規范人體內不同部位的綠茶兒茶素類生物標記物檢測方法,并開發穩定性更高、更能反映綠茶攝入水平的新型生物標記物。

[1]Chan D K, Woo J, Ho S C, et al. Genetic and environmental risk factors for Parkinson's disease in a Chinese population [J]. Journal of Neurology, Neurosurgery and Psychiatry, 1998, 65(5): 781-784.

[2]劉崗. 茶多酚對脂代謝基因的調控作用及對人群血壓影響的薈萃分析[D]. 北京: 北京協和醫學院, 2015: 5-76.

[3]劉智偉, 曾本華, 張曉婧, 等. 茶多酚飲食對 HFA小鼠腸道菌群和脂肪代謝的影響[J]. 中國食品學報, 2015, 15(6): 26-31.

[4]王瑋, 曾本華, 李桂花, 等. 茶多酚對 apoE-/-小鼠脂類代謝和腸道雙歧桿菌的影響[J]. 食品與機械, 2012, 28(4): 106-109.

[5]王澤穆. 飲食與心血管病風險的 Meta分析及綠茶多酚EGCG 的抗炎機制實驗研究[D]. 南京: 南京醫科大學, 2014: 8-59.

[6]Di Lorenzo A, Nabavi S F, Sureda A, et al. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression [J]. Molecular Nutrition & Food Research, 2016, 60(3): 566-579.

[7]Hu G, Bidel S, Jousilahti P, et al. Coffee and tea consumption and the risk of Parkinson's disease [J]. Movement Disorders, 2007, 22(15): 2242-2248.

[8]Ogunleye A A, Xue F, Michels K B. Green tea consumption and breast cancer risk or recurrence: a meta-analysis [J]. Breast Cancer Research and Treatment, 2010, 119(2): 477-484.

[9]Dai Q, Shu X O, Li H, et al. Is green tea drinking associated with a later onset of breast cancer? [J]. Annals of Epidemiology, 2010, 20(1): 74-81.

[10]Onakpoya I, Spencer E, Heneghan C, et al. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials [J]. Nutrition Metabolism and Cardiovascular Diseases, 2014, 24(8): 823-836.

[11]Khalesi S, Sun J, Buys N, et al. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials [J]. European Journal of Nutrition, 2014, 53(6): 1299-1311.

[12]Dong X, Yang C, Cao S, et al. Tea consumption and the risk of depression: a meta-analysis of observational studies [J]. Australian and New Zealand Journal of Psychiatry, 2015, 49(4): 334-345.

[13]Lambert J D, Yang C S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols [J]. Mutation Research, 2003, 523/524(1): 201-208.

[14]Higdon J V, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions [J]. Critical Reviews in Food Science and Nutrition, 2003, 43(1): 89-143.

[15]Vuong Q V. Epidemiological evidence linking tea consumption to human health: a review [J]. Critical Reviews in Food Science and Nutrition, 2014, 54(4): 523-536.

[16]Johnson R, Bryant S, Huntley A L. Green tea and green tea catechin extracts: an overview of the clinical evidence [J]. Maturitas, 2012, 73(4): 280-287.

[17]Seely D, Mills E J, Wu P, et al. The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: a systematic review and meta-analysis [J]. Integrative Cancer Therapies, 2005, 4(2): 144-155.

[18]Yuan J M, Sun C, Butler L M. Tea and cancer prevention: epidemiological studies [J]. Pharmacological Research, 2011, 64(2): 123-135.

[19]Wang J S, Haitao L, Wang P W, et al. Validation of green tea polyphenol biomarkers in a phase II human intervention trial [J]. Food and Chemical Toxicology, 2008, 46(1): 232-240.

[20]Zamora Ros R, Rabassa M, Llorach R, et al. Application of dietary phenolic biomarkers in epidemiology: past, present and future [J]. Journal of Agricultural and Food Chemistry, 2012, 60(27): 6648-6657.

[21]Li W, He N, Tian L, et al. Inhibitory effects of polyphenol-enriched extract from Ziyang tea against human breast cancer MCF-7 cells through reactive oxygen species-dependent mitochondria molecular mechanism [J]. Journal of Food and Drug Analysis, 2016, 24(3): 527-538.

[22]Daglia M, Di Lorenzo A, Nabavi S F, et al. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! [J]. Current Pharmaceutical Biotechnology, 2014, 15(4): 362-372.

[23]Diniz P H, Pistonesi M F, Alvarez M, et al. Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) [J]. Journal of Food Composition and Analysis, 2015, 39: 103-110.

[24]Jenab M, Slimani N, Bictash M, et al. Biomarkers in nutritional epidemiology: applications, needs and new horizons [J]. Human Genetics, 2009, 125(5/6): 507-525.

[25]Llorach R, Garcia Aloy M, Tulipani S, et al. Nutrimetabolomic strategies to develop new biomarkers of intake and health effects [J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8797-8808.

[26]Strimbu K, Tavel J A. What are biomarkers? [J]. Current Opinion in Hiv and Aids, 2010, 5(6): 463-466.

[27]Potischman N. Biologic and methodologic issues for nutritional biomarkers [J]. Journal of Nutrition, 2003, 133(3): 875S-880S.

[28]Sun C L, Yuan J M, Lee M J, et al. Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China [J]. Carcinogenesis, 2002, 23(9): 1497-1503.

[29]Ottaviani J I, Borges G, Momma T Y, et al. The metabolome of [2-C-14](-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives [J]. Scientific Reports, 2016, 6: 29034.

[30]Spencer J P, Mohsen M M, Minihane A, et al. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research [J]. British Journal of Nutrition, 2008, 99(1): 12-22.

[31]Yang J, Liu R H. The phenolic profiles and antioxidant activity in different types of tea [J]. International Journal of Food Science and Technology, 2013, 48(1): 163-171.

[32]Row K H, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction [J]. Bioresource Technology, 2006, 97(5): 790-793.

[33]Luo H, Stephen B C, Gao W M, et al. Metabolic profiling in validation of plasma biomarkers for green tea polyphenols [J]. Metabolomics, 2006, 2(4): 235-241.

[34]Pietta P, Paolo S, Claudio G, et al. Relationship between rate and extent of catechin absorption and plasma antioxidant status [J]. IUBMB Life, 1998, 46(5): 895-903.

[35]Yuan J M, Gao Y T, Yang C S, et al. Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai cohort study [J]. International Journal of Cancer, 2007, 120(6): 1344-1350.

[36]Fung S T, Ho C K, Choi S W, et al. Comparison of catechin profiles in human plasma and urine after single dosing and regular intake of green tea (Camellia sinensis) [J]. British Journal of Nutrition, 2013, 109(12): 2199-2207.

[37]Chow H H, Cai Y, Hakim I A, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals [J]. Clinical Cancer Research, 2003, 9(9): 3312-3319.

[38]Bell J R, Donovan J L, Wong R, et al. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine [J]. American Journal of Clinical Nutrition, 2000, 71(1): 103-108.

[39]Richelle M, Tavazzi I, Enslen M, et al. Plasma kinetics in man of epicatechin from black chocolate [J]. European Journal of Clinical Nutrition, 1999, 53(1): 22-26.

[40]張梁, 陳欣, 陳博, 等. 茶多酚體內吸收、分布、代謝和排泄研究進展[J]. 安徽農業大學學報, 2016, 43 (5): 667-675.

[41]Feng W Y. Metabolism of green tea catechins: an overview [J]. Current Drug Metabolism, 2006, 7(7): 755-809.

[42]Lee M J, Wang Z Y, Li H, et al. Analysis of plasma and urinary tea polyphenols in human subjects [J]. Cancer Epidemiology Biomarkers & Prevention, 1995, 4(4): 393-399.

[43]Meng X, Sang S, Zhu N, et al. Identification and characterization of methylated and ringfission metabolites of tea catechins formed in humans, mice, and rats [J]. Chemical Research in Toxicology, 2002, 15(8): 1042-1050.

[44]Lee M J, Maliakal P, Chen L, et al. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability [J]. Cancer Epidemiology, Biomarkers & Prevention, 2002, 11(10): 1025-1032.

[45]Sang S, Mao Jung Lee, Brian B, et al. Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data‐dependent acquisition [J]. Rapid Communications in Mass Spectrometry, 2008, 22(10): 1567-1578.

[46]Butler L M, Joyce Y H, Wang R, et al. Urinary biomarkers of catechins and risk of hepatocellular carcinoma in the Shanghai cohort study [J]. American Journal of Epidemiology, 2015, 181(6): 397-405.

[47]Tomonori Unno K K, Hiroshige I, Tadakazu T. Analysis of (-)-Epigallocatechin gallate in human serum obtained after ingesting green tea [J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(12): 2066-2068.

[48]Masukawa Y, Matsui Y, Shimizu N, et al. Determination of green tea catechins in human plasma using liquid chromatography-electrospray ionization mass spectrometry [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2006, 834(1/2): 26-34.

[49]Nakagawa K, Okuda S, Miyazawa T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma [J]. Bioscience Biotechnology and Biochemistry, 1997, 61(12): 1981-1985.

[50]Miyazawa T. Absorption, metabolism and antioxidative effects of tea catechin in humans [J]. Biofactors, 2000, 13(1/4): 55-59.

[51]Zhang L, Han Y H, Shan J J, et al. Simultaneous determination of seven catechins in rat plasma by ultra-high performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetics study [J]. Analytical Methods, 2015, 7(22): 9415-9420.

[52]Huo Y S, Zhang Q, Li Q, et al. Development of a UFLC-MS/MS method for the simultaneous determination of seven tea catechins in rat plasma and its application to a pharmacokinetic study after administration of green tea extract [J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 125: 229-235.

[53]Lee M J, Prabhu S, Meng X, et al. An improved method for the determination of green and black tea polyphenols in biomatrices by high-performance liquid chromatography with coulometric array detection [J]. Analytical Biochemistry, 2000, 279(2): 164-169.

[54]Van Amelsvoort J M M, Hof K H V, Mathot J N J J, et al. Plasma concentrations of individual tea catechins after a single oral dose in humans [J]. Xenobiotica, 2001, 31(12): 891-901.

[55]Unno T, Sagesaka Y M, Kakuda T. Analysis of tea catechins in human plasma by high-performance liquid chromatography with solid-phase extraction [J]. Journal of Agricultural and Food Chemistry, 2005, 53(26): 9885-9889.

[56]Luo H, Tang L, Tang M, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine [J]. Carcinogenesis, 2006, 27(2): 262-268.

[57]Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability [J]. American Journal of Clinical Nutrition, 2004, 79(5): 727-747.

[58]Toutain P L, Bousquet-Melou A. Bioavailability and its assessment [J]. Journal of Veterinary Pharmacology and Therapeutics, 2004, 27(6): 455-466.

[59]Cai Y, Anavy N D, Chow H H. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats [J]. Drug Metabolism and Disposition, 2002, 30(11): 1246-1249.

[60]Li N, Taylor L S, Ferruzzi M G, et al. Kinetic study of catechin stability: effects of pH, concentration, and temperature [J]. Journal of Agricultural and Food Chemistry, 2012, 60(51): 12531-12539.

[61]Wu L Y, Sanguansri L, Augustin M A. Protection of epigallocatechin gallate against degradation during in vitro digestion using apple pomace as a carrier [J]. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12265-12270.

[62]Rodrigues C F, Ascencao K, Silva F A, et al. Drug-delivery systems of green tea catechins for improved stability and bioavailability [J]. Current Medicinal Chemistry, 2013, 20(37): 4744-4757.

[63]Benshitrit R C, Levi C S, Tal S L, et al. Development of oral food-grade delivery systems: current knowledge and future challenges [J]. Food & Function, 2012, 3(1): 10-21.

[64]Kadowaki M, Sugihara N, Tagashira T, et al. Presence or absence of a gallate moiety on catechins affects their cellular transport [J]. Journal of Pharmacy and Pharmacology, 2008, 60(9): 1189-1195.

[65]Ullmann U, Haller J, Decourt J P, et al. A single ascending dose study of epigallocatechin gallate in healthy volunteers [J]. Journal of International Medical Research, 2003, 31(2): 88-101.

[66]Bhushani J A, Karthik P, Anandharamakrishnan C. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins [J]. Food Hydrocolloids, 2016, 56: 372-382.

[67]Mario G F, Catrina M P, Andrew P N, et al. The influence of food formulation on digestive behavior and bioavailability of catechin polyphenols [J]. Acta Horticulturae, 2009, 841(841): 121-128.

[68]Tomas Barberan F A, Selma M V, Espin J C. Interactions of gut microbiota with dietary polyphenols and consequences to human health [J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19(6): 471-476.

[69]Takechi R, Alfonso H, Hiramatsu N, et al. Elevated plasma and urinary concentrations of green tea catechins associated with improved plasma lipid profile in healthy Japanese women [J]. Nutrition Research, 2016, 36(3): 220-226.

[70]Luo J F, Gao Y T, Chow W H, et al. Urinary polyphenols and breast cancer risk: results from the Shanghai women's health study [J]. Breast Cancer Research and Treatment, 2010, 120(3): 693-702.

[71]Iwasaki M, Inoue M, Sasazuki S, et al. Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case-control study [J]. Breast Cancer Research and Treatment, 2010, 124(3): 827-834.

[72]Sun C L, Yuan J M, Lee M J, et al. Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China [J]. Carcinogenesis, 2002, 23(9): 1497-1503.

[73]Yuan J M, Gao Y T, Yang C S, et al. Urinary biomarkers of tea polyphenols and risk of colorectal cancer in the Shanghai cohort study [J]. International Journal of Cancer, 2007, 120(6): 1344-1350.

[74]Xie G, Zhao A, Zhao L, et al. Metabolic fate of tea polyphenols in humans [J]. Journal of Proteome Research, 2012, 11(6): 3449-3457.

[75]Ishii T, Ichikawa T, Minoda K, et al. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization [J]. Bioscience Biotechnology and Biochemistry, 2011, 75(1): 100-106.

[76]Maiti T K, Ghosh K S, Dasgupta S. Interaction of (-)-epigallocatechin-3-gallate with human serum albumin: fluorescence, fourier transform infrared, circular dichroism, and docking studies [J]. Proteins-Structure Function and Bioinformatics, 2006, 64(2): 355-362.

[77]Kim S, Lee M J, Hong J, et al. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols [J]. Nutrition and Cancer, 2000, 37(1): 41-48.

[78]Chen L, Lee M J, Li H, et al. Absorption, distribution, elimination of tea polyphenols in rats [J]. Drug Metabolism and Disposition, 1997, 25(9): 1045-1050.

[79]Senechal S, Kussmann M, Nutriproteomics. Technologies and applications for identification and quantification of biomarkers and ingredients [J]. Proceedings of the Nutrition Society, 2011, 70(3): 351-364.

[80]Van Velzen E J, Westerhuis J A, Van Duynhoven J P, et al. Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites [J]. Journal of Proteome Research, 2009, 8(7): 3317-3330.

[81]Holmes E, Loo R L, Stamler J, et al. Human metabolic phenotype diversity and its association with diet and blood pressure [J]. Nature, 2008, 453(7193): 396-400.

[82]Zanesco A, da Silva C V, Delbin M A, et al. Interactions between L-arginine supplementation and physical training in the mitochondrial biomarkers and nitric oxide bioavailability in rat skeletal muscle [J]. The FASEB Journal, 2013, 27: 1.

[83]Roowi S, Stalmach A, Mullen W, et al. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans [J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1296-1304.

[84]Cardona F, Andreslacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health [J]. Journal of Nutritional Biochemistry, 2013, 24(8): 1415-1422.

[85]Misaka S, Kawabe K, Onoue S, et al. Development of rapid and simultaneous quantitative method for green tea catechins on the bioanalytical study using UPLC/ESI-MS [J]. Biomedical Chromatography, 2013, 27(1): 1-6.

Determination of Green Tea Catechin Biomarkers and It′s Relative Application

SUN Lili1, ZENG Xiangquan2, Nilesh W Gaikwad3, WANG Huan4, XU Hairong1, YE Jianhui1*

1. Tea Research Institute, Zhejiang University, Hangzhou 310058, China; 2. Shaoxing Entry-Exit Inspection and Quarantine Bureau, Shaoxing 312000, China; 3. Department of Nutrition and Environmental Toxicology, University of California at Davis, Davis 95616, USA; 4. Crop Research Institute, Zhejiang University, Hangzhou 310058, China

Green tea has been considered to have many health benefits, but there is still controversy about the clinical and epidemiological results. Development of green tea catechin biomarkers was to evaluate the physiological effects of green tea from a metabolic point of view, which will be helpful to interpret the functional mechanism of green tea in vivo and also avoid or reduce the influences of chemical compositions of samples intake or individual differences in human studies. Catechin compounds EGCG, EGC, EC, C, ECG and their derivatives are common green tea catechin biomarkers that have many determination methods including HPLC-EC, LC-MS and so on. This paper reviewed the types of green tea catechin biomarkers and their preparation and determination methods, discussed the results of biomarker-level based bioavailability studies, clinical trials and epidemiological studies, proposed suggestions for future research, such as further improvement and standardization of the preparation and determination methods of catechin biomarkers as well as development of new green tea biomarkers with higher stability in human body and sensitivity in reflecting their intake levels.

green tea catechin biomarker, HPLC-EC, catechin compounds, EGCG, metabolites, epidemiology, review

TS272.5+1;Q946.84+1

A

1000-369X(2017)05-429-13

2017-05-09

2017-05-30

美國農業部國家糧食和農業研究所專項基金(#CA-D-NTR-2104-H)、國家留學基金委國家公派碩士研究生項目基金[2015]3024

孫麗麗,女,碩士研究生,主要從事茶與營養學研究,E-mail:21416071@zju.edu.cn。*通訊作者:jianhuiye@zju.edu.cn

猜你喜歡
血漿生物檢測
糖尿病早期認知功能障礙與血漿P-tau217相關性研究進展
生物多樣性
天天愛科學(2022年9期)2022-09-15 01:12:54
生物多樣性
天天愛科學(2022年4期)2022-05-23 12:41:48
上上生物
當代水產(2022年3期)2022-04-26 14:26:56
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
血漿置換加雙重血漿分子吸附對自身免疫性肝炎合并肝衰竭的細胞因子的影響
第12話 完美生物
航空世界(2020年10期)2020-01-19 14:36:20
CHF患者血漿NT-proBNP、UA和hs-CRP的變化及其臨床意義
海南醫學(2016年8期)2016-06-08 05:43:00
主站蜘蛛池模板: 国产精选自拍| 美女无遮挡拍拍拍免费视频| 99无码中文字幕视频| 亚洲第七页| 亚洲AⅤ无码国产精品| 97久久超碰极品视觉盛宴| 人妻91无码色偷偷色噜噜噜| 欧洲成人免费视频| 亚洲成aⅴ人片在线影院八| 欧洲成人免费视频| 国产激情第一页| 国产真实乱了在线播放| 伊在人亚洲香蕉精品播放| 欧美一区二区三区欧美日韩亚洲| 国产簧片免费在线播放| 91年精品国产福利线观看久久| 97精品伊人久久大香线蕉| 国产97区一区二区三区无码| 国产三级视频网站| 熟妇丰满人妻av无码区| 亚洲人人视频| 综合五月天网| 亚洲日本在线免费观看| 欧美成人精品欧美一级乱黄| 国产主播一区二区三区| 午夜福利亚洲精品| 国产久操视频| 国产成人精品日本亚洲| 亚洲精品成人7777在线观看| 久久香蕉欧美精品| 99re热精品视频中文字幕不卡| 亚洲黄网在线| 91成人免费观看| 在线日本国产成人免费的| 国产精品九九视频| 日本色综合网| 91精品国产一区自在线拍| 欧美亚洲国产视频| 成人福利在线视频免费观看| 亚洲黄网视频| 亚洲伊人久久精品影院| 国产高清无码第一十页在线观看| 91免费片| 国产网友愉拍精品| 久久一日本道色综合久久| 免费观看精品视频999| 毛片免费网址| 亚亚洲乱码一二三四区| 久久精品视频亚洲| 国产无码精品在线播放| 国产精品网址在线观看你懂的| 色婷婷狠狠干| 91九色最新地址| 国产美女一级毛片| 动漫精品啪啪一区二区三区| 1024你懂的国产精品| 亚洲va在线∨a天堂va欧美va| 97国产一区二区精品久久呦| 国产色婷婷| 精品欧美视频| 伊伊人成亚洲综合人网7777| 人妻21p大胆| 国产9191精品免费观看| 国产亚洲精品91| 亚洲中字无码AV电影在线观看| 福利视频一区| 国产成人艳妇AA视频在线| 熟妇无码人妻| 成人年鲁鲁在线观看视频| 国产乱人伦精品一区二区| 午夜爽爽视频| 五月婷婷综合在线视频| 精品综合久久久久久97超人| 国产色婷婷视频在线观看| 亚洲一级毛片免费看| 国产主播福利在线观看| 国产午夜一级毛片| 青青草原国产| 久久夜色精品| 成人午夜久久| 无码电影在线观看| 亚洲午夜国产片在线观看|