李巍 丁晨旸 李萍



摘要對高分一號衛(wèi)星影像進行大氣校正、幾何校正、裁剪等,利用Libsvm 4.0在Matlab平臺里編程進行交叉驗證網(wǎng)格法尋優(yōu),最終獲得支持向量機分類的最佳懲罰系數(shù)為45,不敏感系數(shù)為0.31。改進支持向量機分類器綠地分類精度為94.6%,該提取精度能滿足高分辨率遙感影像在城市綠地動態(tài)監(jiān)測。
關(guān)鍵詞遙感;高分一號影像;城市綠地;支持向量機分類器
中圖分類號S127文獻標(biāo)識碼A文章編號0517-6611(2017)14-0208-03
AbstractThe atmospheric correction, geometric correction, cutting were conducted on GF1 satellite images. The cross validation grid optimization was made in Matalb platform by Libsvm 4.0. The best penalty coefficient of support vector machine classifier was 45, and sensitivity coefficient was 0.31. The results showed that the classification accuracy was 94.6%, and the extraction accuracy can meet the high resolution remote sensing images in dynamic monitoring of urban green space.
Key wordsRemote sensing;GF1 image;Urban green space;Support vector classifier
近年來,伴隨著城市化進程,城市環(huán)境與城市發(fā)展之間很難平衡,然而城市綠地使城市環(huán)境得到很好改善。城市綠地作為城市的自然屬性之一[1],在凈化城市空氣和城市生態(tài)系統(tǒng)環(huán)境方面有著重要作用,同時還可為城市居民提供休閑和娛樂場所,陶冶人們情操和改善人們生活質(zhì)量[2]。城市綠地的規(guī)劃必須立足于對城市綠地現(xiàn)狀的了解,傳統(tǒng)的綠地調(diào)查采用實地測量與統(tǒng)計相結(jié)合的方法,效率低下而且統(tǒng)計結(jié)果易受人為影響[3]。隨著遙感技術(shù)的發(fā)展,近年來眾多高分辨率遙感衛(wèi)星的發(fā)射為城市綠地信息提取提供了高效的手段,如何充分利用高分辨率遙感影像進行現(xiàn)代城市規(guī)劃和生態(tài)環(huán)境評價具有重要意義[4]。筆者以成都市高新區(qū)建成區(qū)為研究區(qū),以 2014年8月16日的高分一號多光譜影像(分辨率為8 m)為數(shù)據(jù)源,在高分一號影像上隨機選取樣本點,通過在Libsvm 4.0在Matlab平臺里編程進行交叉驗證網(wǎng)格法尋優(yōu),獲取支持向量機分類時的最佳懲罰系數(shù)G和不敏感系數(shù)C;……