呂生華,朱琳琳,李 瑩,賀亞亞,楊文強
(陜西科技大學 資源與環境學院,西安 710021)
?
氧化石墨烯復合材料的研究現狀及進展
呂生華,朱琳琳,李 瑩,賀亞亞,楊文強
(陜西科技大學 資源與環境學院,西安 710021)
氧化石墨烯(Graphene Oxide,GO)以其獨特的二維納米片層結構、超大的比表面積和親水極性界面,使其在功能復合材料領域有著廣泛的應用和發展前景。本文綜述了近年來GO復合材料在增強增韌、吸附分離、光催化及生物醫藥等方面的研究現狀及進展,介紹了GO調控高分子材料及水泥基體形成規整有序的微觀結構形貌而產生顯著的增強增韌效果的機理,分析了GO復合材料在吸附、催化、生物醫藥等方面作用原理,指出了GO增強增韌復合材料、GO吸附復合材料和GO光催化復合材料的應用前景和發展趨勢。
氧化石墨烯;復合材料;微觀結構;增強增韌;光催化降解
氧化石墨烯(Graphene Oxide,GO)是將石墨氧化后經過超聲剝離、分散、粉碎后得到的片層狀物質,從化學結構上看GO是石墨烯的氧化產物,與石墨烯相同的是其結構單元具有由C原子構成六元環狀結構,與石墨烯不同的片層結構上帶有親水性基團,如羧基、羥基和環氧基等,在水相中容易分散成為穩定的納米片層分散液,GO分散液中的聚集態GO是由不同片層數構成,其片層的數量與GO的制備過程及分散條件有關系,對GO的應用有重要的影響。目前,GO的用途主要有:(1)制備還原氧化石墨烯(Reduction of Graphene Oxide, RGO)。通過GO與還原性的化學試劑如水合肼、苯肼、抗壞血酸、沒食子酸、硼氫化鈉等[1-11]反應制備RGO,將RGO廣泛應用于電池的電極材料、超級電容器、生物傳感器、催化劑組分等領域;(2)制備吸附材料。GO具有很好的吸附性能,通過與一些化學材料的復合及化學改性[12-17]等反應,在GO上接枝特定吸附功能化學基團,提高吸附的選擇性和效果;(3)制備復合材料。GO與有機物和無機物通過原位聚合、物理共混等方法制備復合材料,顯著提高材料的強度和韌性等性能[18,19]。由于GO的納米片層結構狀態,直接使用GO受到了很大的限制,目前GO的主要用途是制備復合材料,其中增強增韌復合材料、吸附復合材料及其具有催化、蛋白修復等功能的復合材料成為了研究的熱點。本文主要綜述了采用GO制備增強增韌、吸附、光催化降解等功能復合材料的研究進展,展望了GO在復合材料中的應用前景。
1.1 GO/聚L-乳酸(PLLA)基復合材料
GO具有納米片層結構,其尺寸大小可以調控,而且片層上帶有羧基、羥基等化學基團,在能夠形成晶體的環境中,GO的參與可以調控和改變晶體的形狀和聚集方式,從而提高材料的熱穩定性和力學性能。研究表明,L-聚乳酸(Poly(L-Lactic Acid), PLLA)存在力學性能差、結晶速率低、降解速率慢以及生物相容性差的問題[20-23]。GO納米片層能夠調控聚PLLA的結晶行為,使其形成規整有序、分布均勻的花瓣狀晶體(圖1),顯著提高PLLA耐熱性能和力學性能[20]。
1.2 GO/聚ε-己內酯(PCL)基復合材料
RGO是GO在還原劑的作用下得到的,是含氧量較低的GO。Wang等[25]研究了RGO和GO對聚ε-己內酯(Poly(e-Caprolactone), PCL)微觀結構及性能的影響,結果表明,摻有RGO和GO的聚合物的微觀結構中均出現了規整的晶體(圖2),其屈服應力和楊氏模量都有約24%的提升,GO比RGO 的增強增韌效果更加明顯。

圖1 純PLLA(a),PLLA/0.5%GO(b),PLLA/1%GO(c)和PLLA/2%GO(d)在138℃的POM圖[20]Fig.1 POM images of neat PLLA(a), PLLA/0.5%GO(b),PLLA/1%GO(c) and PLLA/2%GO(d) crystallized at 138℃[20]
1.3 GO/玻璃纖維基復合材料
Ning等[26]討論了玻璃纖維、氨基改性玻璃纖維和用GO改性玻璃纖維的微觀結構和性能,結果表明,GO的引入使得玻璃纖維的半晶態聚合物在界面處的結晶性能明顯提升,同時材料的力學性能也獲得了較大的提升。因此,GO可以用于玻璃纖維基復合材料的增強和增韌。
1.4 水泥/GO復合材料
GO納米片層對于水泥水化產物的形狀及聚集態結構和性能有顯著的調控作用。呂生華等[27]研究了GO納米片層摻入量為水泥質量的0%~0.06%時,水泥基復合材料的微觀結構和力學性能變化(表1),結果表明,添加GO后水泥試樣的力學性能有了顯著的提高。
摻有GO的水泥基體SEM形貌如圖3所示[27]。結果表明,沒有摻入GO的水泥基體雖然有棒狀和片狀晶體,但是其聚集方法呈現雜亂無章的堆疊,存在著大量的縫隙和孔洞。摻入GO的水泥基體中形成了由棒狀、花狀和多面體狀晶體構成的規整有序的聚集狀態,同時發現晶體在結構疏松的部位以及孔隙、孔洞部位較多,其生長過程對于這些結構缺陷進行了修復,使得水泥基復合材料的結構均勻和緊實,從而提高了水泥基材料的力學性能。

圖2 不同結晶時間時純PCL(1)和PCL/0.1%RGO納米復合物(2)的POM圖[25] (a)1min;(b)4min;(c)7minFig.2 POM images of neat PCL(1) and PCL/0.1%RGO nanocomposites(2) in different crystallization time[25] (a)1min;(b)4min;(c)7min

MassofGO/gCompressivestrength/MPaRateofincrease/%Flexuralstrength/MPaRateofincrease/%Tensilestrength/MPaRateofincrease/%0.0036.74/59.310.0/0.05.63/8.840.0/0.01.94/3.830.0/0.00.0141.23/67.2412.2/13.48.55/13.4151.9/51.72..47/5.6328.0/47.00.0248.33/75.6631.5/27.68.68/11.7554.2/32.92.48/6.1128.6/59.50.0353.32/82.3645.1/38.99.11/14.2161.8/60.72.93/6.3451.0/65.50.0456.42/84.3553.6/42.28.13/13.5444.4/53.22.72/5.8340.2/52.20.0558.45/87.6959.0/47.97.21/11.5128.1/30.22.41/5.2024.2/35.8
呂生華等[28,29]研究了GO 片層含氧量對水泥水化產物的結晶形狀和性能的影響,結果表明,隨著含氧量的增加,水泥基體中形成的規則晶體的數量增多,而力學性能也呈現增加的趨勢(圖4)。GO片層含氧量為9.31%時,形成規整的花狀結構,體積較小,數量較少,分布不均勻,力學性能提高率在20%左右;含氧量在25.43%時,花狀晶體體積變大,數量增多,分布均勻,力學性能提高率達30%;含氧量為31.78%時,形成多面體結構,體積大,數量多,抗壓強度高。

圖4 不同GO含氧量的水泥水化產物養護28d的SEM圖[29] (a)9.31%;(b)25.43%;(c)31.78%Fig.4 SEM images of cement hydration products at 28d with GO of different oxygen content added 9.31%(a),25.43%(b) and 31.78%(c) [29]
呂生華等[28,29]通過觀察GO摻量為0.03%時不同養護時間水泥水化基體的SEM形貌(圖5),分析了其生長的過程,結果表明,養護1天后較多的微球狀晶體生長出來,養護3天后長成棒狀的晶體,養護7天后長出了由棒狀晶體組裝形成的花形晶體,養護28天后長成大體積的花狀晶體,養護60天時花狀晶體形成了密集的簇狀晶體,90天時花狀晶體通過相互貫穿、交叉構成較為密實的交聯狀結構。這些水化晶體的生長形成了交聯、密集的微觀結構,提高了水泥基材料的體積穩定性和力學性能。

圖5 GO摻量0.03%時在不同水化時間的水泥水化晶體的SEM圖[30] (a)1天;(b)3天;(c)7天;(d)28天;(e)60天;(f)90天Fig.5 SEM images of cement hydration crystals with 0.03%GO with different hydration time[30](a)1d;(b)3d;(c)7d;(d)28d;(e)60d;(f)90d
在上述分析的基礎上,Lv等[30]提出GO調控水泥水化結晶的作用機理(圖6)。首先,水泥基中的活性成分與GO上的活性基團作用,形成晶體的生長點,吸引水泥基材料的活性成分繼續反應形成棒狀晶體,聚集在一起的棒狀晶體在水泥基體中的孔洞、裂縫處分裂形成花狀晶體。GO納米片層在水泥水化晶體的形成過程中起著模板和組裝的作用。

圖6 GO 對水泥水化產物的調控機理圖(a)和SEM圖(b)[30]Fig.6 Schematic(a) and SEM image(b) of the regulatory mechanism of GO on cement hydration products[30]
Fakhim課題組[31]摻入了0.1%~2.0%的GO,制備得到GO-cement復合材料。發現在GO摻量為水泥量的1.5%時,水泥基材料的拉伸強度提高了48%。通過SEM檢測,發現在水泥基體中有針狀晶體聚集區和片層狀晶體聚集區,晶體聚集區的存在說明GO對水泥水化產物形狀有調控作用,也表明GO在水泥基體中分布不均勻。通過一定的手段使得GO納米片層均勻地分散在水泥基體中,其微觀結構也呈現了規整有序、均勻的微觀結構,力學性能提高了很多,說明了GO納米片層的分散是關鍵因素。
GO片層具有超大比表面積,表面上含有羧基、羥基、環氧基等基團[32],使得GO具有特別優異的吸附性能,GO在吸附材料中有著重要的應用[33-36]。
2.1 GO磁性復合吸附材料研究進展
復合材料的磁性主要是引入了磁性Fe3O4粒子,利用磁性使其再生時方便回收吸附,提高吸附材料的循環使用的次數。張燚等[37]采用高溫分解法制備得到了粒徑18nm左右的Fe3O4納米粒子,經過復雜的表面修飾后與GO得到磁性復合材料,飽和磁場強度達41.3A·m2·kg-1。Fan等[38]制備了結構穩定、可重復使用的磁性殼聚糖/GO復合材料,具有再生方便快捷的特點,對于Pb(Ⅱ)的吸附能力可達76.94mg·g-1,解吸效率達90.3%。Fan等[39]研究了Fe3O4-β環糊精-殼聚糖/GO納米吸附材料對染料的吸附,初次的吸附能力為50mg·g-1,經過5次的吸附循環過程后,對廢水中甲基藍的吸附量能夠保持在30mg·g-1。Ye等[40]制備得到Fe3O4/GO/殼聚糖復合材料,將其應用于對蛋白質的富集吸附,吸附量達到了7.57mg·g-1。Ehsan等[41]用3-巰基丙烷對GO-磁性殼聚糖(GO-MC)復合材料進行了改性,制備得到一種新型的生物吸附劑,可用于污水中Hg2+的預富集和萃取。饒維等[42]對環境中含量低、危害大的四溴雙酚A的吸附處理進行了研究,制備出了對四溴雙酚A(Tetrabromobisphenol A, TBBPA),具有高選擇性和高吸附容量的磁性印跡復合材料,對TBBPA材料的飽和吸附量為16.33mg·g-1,并且TBBPA回收效率達86.30%~98.60%,而沒有加入TBBPA的磁性復合材料的飽和吸附量僅為0.87mg·g-1。研究表明,ZnO具有化學惰性[43],在光催化降解有機污染物時扮演著非常重要的角色,然而ZnO只能吸收紫外區域的光進行催化降解,若在ZnO上摻雜Ni[44]、強吸附性能的GO[45]就可以明顯提高其降解性能。Qin等[46]制備了Ag/ZnO/GO復合材料,可使催化降解后羅丹明B的去除效率達90%。
2.2 GO非磁性復合吸附材料研究進展
非磁性GO基復合材料主要是處理水體中的重金屬污染和有機物污染,是磁性GO基復合材料的重要補充,同樣獲得了廣泛的研究。
殼聚糖分子鏈上含有較多的—NH2和其他活性基團,使其具有獨特的理化性能和生物活化功能,因而廣泛應用于吸附和絮凝領域。但是殼聚糖本身的力學性能很差,限制了其應用。而GO具有很強的力學性能和反應活性,許多研究人員將殼聚糖和GO復合后進行了研究。GO/CS復合材料對不同污染物吸附性能如表2所示。
Luo等[54]發現,除了殼聚糖含有較多與重金屬離子作用的基團外,聚氨基硅氧烷(Poly3-Aminopropyltriethoxysilane, PAS)上含有的大量—NH2,能夠同一些金屬離子如Pb(Ⅱ)形成穩定的絡合物。GO具有大比表面積和豐富的含氧官能團,在GO納米片層上交聯氨基硅氧烷低聚物(以3-氨丙基三乙氧基硅烷為交聯劑)制備高性能吸附劑,明顯提升了復合材料的吸附性能,在pH=4~6、溫度為303K時PAS/GO,GO/AS的最大吸附量分別為312.5,119.05mg·g-1,聚合物復合材料的吸附能力明顯高于PAS。復合材料的PAS/GO的制備流程如圖7所示。

表2 GO/CS復合材料對不同污染物最大吸附量

圖7 PAS/GO復合材料的制備流程[54]Fig.7 Schematic illustration of preparation for PAS/GO composites[54]
Xia等[55]將不同濃度的GO作為外加劑加入到聚偏二氟乙烯(Poly(Vinylidene Fluoride), PVDF),采用相轉移催化法制備得到了PVDF-GO復合薄膜,應用于天然有機物質的吸附去除,吸附性能提高了1倍。GO的加入不僅提升了復合物薄膜的機械強度[56-58],而且增強了材料的抗菌性能[59,60]和滲透性能,對污水處理能力也得到提升。
當前吸附劑的發展方向是高選擇性、高吸附效率和高重復利用率,GO的摻入有助于提高吸附劑選擇性和吸附效率。
光催化技術廣泛應用于降解有機物[61-63]物質,研究發現,光催化劑的催化能力不僅與其晶型、粒徑大小和結晶程度相關,而且往往會與某些材料復合產生協同作用,如與碳納米管、富勒烯、石墨烯、GO等進行復合,可以提高光子在材料中的傳遞速率,增強復合材料對于廢水中的有機物和空氣中的有害氣體的光催化性能。
張瓊等[64]用Ti(SO4)2和經不同濃度的NaOH處理的不同分散程度的GO分散液復合,經過干燥得到一系列TiO2/GO復合材料,測其光催化降解性能時以濃度為20mg/L的甲基橙為目標降解物,降解效率η=1.16mg/(min·g)。當經過多次循環降解過程和4周敞口存放,其光催化效率只發生稍微降低,表現出非常好的重復利用率和化學穩定性,為TiO2/GO復合材料在催化降解廢水有機物和空氣中的有害氣體提供了更多的參考。Chen等[65]通過兩步法改性制備了ZnO/GO復合材料,與單獨使用ZnO和GO相比,復合材料光催化降解甲基橙的效率獲得了很大的提高。Qin等[46]將Ag納米顆粒和GO負載到ZnO上,應用于降解羅丹明B,結果表明,復合材料將催化劑可用光源的范圍擴充到可見-紫外光區,并取得很好的催化降解效果。對于羅丹明B的催化降解,Li等[66]采用原位聚合法制備了多組分復合材料GO-PA-CeOX,結果顯示,聚丙烯酰胺(Polyacryl Amide, PAM)和Ce的氧化物很好地負載在了GO的納米片層上,最后將復合材料和GO應用于催化降解羅丹明B的實驗,在相同的條件下進行對比,經過30min和70min的紫外光的照射,GO和復合材料對羅丹明B的降解效率分別為18%,31%和50%,80%,復合材料的催化降解性能明顯優于GO。
綜上所述,GO光催化復合材料在光催化降解領域表現出非常優異的性能,原因歸結為:(1)GO的引入在很大程度上增加了復合材料的比表面積,提高了復合材料與光子的接觸機會,增強了復合材料對有機污染物的吸附能力;(2)在復合材料界面形成的異質結改善了光生電子和空穴的復合;(3)GO的引入在一定程度上提高了催化材料的吸收波長的范圍,為在可見光范圍內進行光催化降解提供了可能。
GO對于生物蛋白的富集吸附是一種非特異性吸附,會引起蛋白質發生聚集、結構異變和失掉蛋白活性[67,68]。而聚乙二醇(Polyethylene Glycol, PEG)是一種多羥基化合物,具有很好的生物相容性,對于細胞和生物蛋白吸附性能較弱。如果將聚乙二醇和GO進行復合,可以很好地改善GO表面化學性質,并且能夠形成和蛋白質相互作用的納米表面,改善GO對蛋白質結構和活性的不利影響。Chen等[69]通過原位生長和自組裝法,將FeOOH納米棒與經過PEG接枝改性的GO進行復合,制備了對生物全血白蛋白有高效吸附作用的FeOOH-PEG-GO復合材料,結果表明,該復合材料對牛血清白蛋白(沒有亞鐵血紅素)的最高吸附量達1377.4mg·g-1,在pH=12~13時的解析率為70%,很好地減弱了對非特異性蛋白的吸附。
DNA尿嘧啶糖基化酶(Uracil-DNA Glycosylase, UDG)是一種重要的剪切修復酶,有維護基因結構完整性的作用。Zhou等[70]將示蹤熒光探針負載到GO片層上,制備了一種GO基生物探針,發現在較寬的動態范圍(0.0017~0.8U/mL)有很好的檢測效果,而且最低檢出限為0.0008U/mL。Xin等[71]則采用靜電紡絲法制備了熱塑型的小直徑人工血管支架聚氨酯-GO復合材料,其力學性能、表面性能、拉伸性能、楊氏模量及親水性均滿足要求。在抑菌方面,Andreia等[59]以AgNO3為銀納米顆粒前驅物、檸檬酸鈉為穩定劑,將銀納米顆粒裝飾到GO 片層上,制備了GO/Ag納米復合材料,應用于抑制綠膿假單胞菌,經過1h的抑菌實驗,復合材料的抑菌效率在95%以上。Justin等[72]在藥物載體研究中采用便宜易得、易生物降解的殼聚糖和高機械強度、比表面積大和多活性官能團的GO制備納米復合材料,在給藥設備中有潛在的應用價值。Wang等[73]用魔芋葡甘聚糖(Konjac Glucomannan,KGM)、海藻酸鈉(Sodium Alginate, SA)和GO為原料,以Ca2+做交聯劑制備水凝膠KGM/SA/GO,使得抗癌藥物達到可控釋放,當pH=1.2時藥物的平衡釋放率僅為38.02%,而pH=6.8時,經過12h后平衡釋放率達84.19%。KGM/SA/GO凝膠過程如圖8所示。
GO基生物醫學復合材料在吸附特異性蛋白、藥物載體、基因工程及調控藥物的釋放等領域表現出優異的性能,隨著研究的深入,相信GO基生物醫學復合材料最終將在抗癌領域有所突破。
目前,GO復合材料的應用和研究已經成為研究的熱點之一,原因是GO獨特的結構和性能使其形成的復合材料在強度韌性、吸附分離和光催化等方面比起傳統的材料具有明顯的優勢,滿足了一些領域技術發展對于材料性能的要求。同時,GO與其他材料形成復合材料是GO發揮作用的主要途徑,其中GO在復合材料中的作用又與GO的結構和性能有很大的關系。比如,GO增強增韌高分子材料和水泥基材料,就是通過GO調控高分子和水泥基材料,從而形成了規整有序的微觀結構而實現其增強增韌作用。今后,GO在增強增韌、吸附分離、光催化等功能復合材料的發展趨勢是:(1)GO復合材料的制備及GO在其中的作用原理是研究的重點;(2)GO增強增韌復合材料具有產業化、規模化應用的可能,其中GO增強增韌高分子材料、GO增強增韌水泥基復合材料、GO增強增韌陶瓷材料等方面的技術已經比較成熟,達到了產業化的要求;(3)GO復合材料在吸附、光催化和生物醫藥領域的研究還處于研究階段,有關GO復合材料的結構和性能之間的關系還沒有建立,產業化關鍵技術還沒有掌握,GO復合材料的規模化、高效率及可重復使用的技術問題還沒有解決,這些方面的產業化應用還需要做大量的研究工作。

圖8 KGM(a),SA(b)和KGM/SA/GO(c)凝膠過程[73]Fig.8 Gel process of KGM(a),SA(b),and KGM/SA/GO(c)[73]
[1] FAN Z J,WANG K,WEI T,et al.An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J].Carbon,2010,48(5):1686-1689.
[2] 楊勇輝,孫紅娟,彭同江.石墨烯的氧化還原法制備及結構表征[J].無機化學學報,2011,26(11):2083-2090.
YANG Y H,SUN H J,PENG T J.Synthesis and structural characterization of graphene by oxidation reduction[J].Chinese Journal of Inorganic Chemistry,2011,26(11):2083-2090.
[3] AKHAVAN O,GHADERI E.Photocatalytic reduction of graphene oxide nanosheets on TiO2thin film for photoinactivation of bacteria in solar light irradiation[J].The Journal of Physical Chemistry C,2009,113(47):20214-20220.
[4] SHIN H J,KIM K K,BENAYAD A.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J].Advanced Functional Materials,2009,19(12):1987-1992.
[5] 萬武波,趙宗彬,胡涵,等.檸檬酸鈉綠色還原制備石墨烯[J].新型炭材料,2011,26(1):16-20.
WAN W B,ZHAO Z B,HU H,et al.“Green” reduction of graphene oxide to graphene by sodium citrate[J].New Carbon Materials,2011,26(1):16-20.
[6] JIN Y H,HUANG S,ZHANG M,et al.A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent[J].Applied Surface Science,2013,268(3):541-546.
[7] AKHAVAN O.Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol[J].Carbon,2011,49(1):11-18.
[8] CHOOBTASHANI M,AKHAVAN O.Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films[J].Applied Surface Science,2013,276:628-634.
[9] AKHAVAN O,KALAEE M,ALAVI Z S,et al.Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide[J].Carbon,2012,50(8):3015-3025.
[10] KAUPPILA J,KUNNAS P,DAMLIN P.Electrochemical reduction of graphene oxide film in aqueous and organic solutions[J].Electrochemical Acta,2013,89:84-89.
[11] WANG C,ZHAN L,QIAO W M,et al.Preparation of graphene nanosheets through detonation[J].New Carbon Materials,2011,26(1):21-25.
[12] STANKOVICH S,PINER R D,NGUYEN S T,et al.Synthesis and exfoliation of isocyanate treated graphene oxide nanoplatelets[J].Carbon,2006,44(15):3342-3347.
[13] FANG F,KONG L T,HUANG J R,et al.Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J].Journal of Hazardous Materials,2014,270:1-10.
[14] ZHUANG X D,CHEN Y,LIU G,et al.Conjugated polymer-functionalized graphene oxide:synthesis and nonvolatile rewritable memory effect[J].Advanced Materials,2010,22(15):1731-1735.
[15] CHIEN H C,TSAI L D,HUANG C P,et al.Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells[J].International Journal of Hydrogen Energy,2013,38(31):13792-13801.
[16] YAZMIN I A-V,CESAR C L-P,MARCELA M,et al.Nitroxide-functionalized graphene oxide from graphite oxide[J].Carbon,2013,63:376-389.
[17] ISIS E M-C,JOEY D M,HANG N N,et al.Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications[J].Carbon,2014,77(10):289-301.
[18] 鄭玉嬰.功能化氧化石墨烯納米帶/EVA復合材料薄膜的制備及表征[J].材料工程,2015,43(2):99-102.
ZHENG Y Y.Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J].Journal of Materials Engineering,2015,43(2):99-102.
[19] 楊文彬,張麗,劉菁偉,等.石墨烯復合材料的制備及應用研究進展[J].材料工程,2015,43(3):91-97.
YANG W B,ZHANG L,LIU J W,et al.Progress in research on preparation and application of graphene composites[J].Journal of Materials Engineering,2015,43(3):91-97.
[20] MARIA L D L.Crystallization behavior of poly(L-lactic acid)[J].Polymer,2006,47(21):7554-7563.
[21] RENé A,MARIA L D L.Kinetics of crystal nucleation of poly(L-lactic acid)[J].Polymer,2013,54(26):6882-6885.
[22] ARTUR M P,SUSANA M,INES C G.et al.Biocompatibility of poly(lactic acid) with incorporated graphene-based materials[J].Colloids and Surfaces B:Biointerfaces,2013,104(3):229-238.
[23] WANG H S,QIU Z B.Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites:influences of graphene oxide loading and crystallization temperature[J].Thermochimica Acta,2012,527:40-46.
[24] WANG H S,QIU Z B.Crystallization behaviors of biodegradabale poly(L-lactic acid)/graphene oxide nanocomposites from the amorphous state[J].Thermochim Acta,2011,526(1-2):229-236.
[25] WANG B J,LI Y G,WENG G S,et al.Reduced graphene oxide enhances the crystallization and orientation of poly(ε-caprolactone)[J].Composites Science Technology,2014,96:63-70.
[26] NING N Y,ZHANG W,YAN J J,et al.Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier[J].Polymer,2013,54(1):303-309.
[27] 呂生華,孫婷,劉晶晶,等.氧化石墨烯納米片層對水泥基復合材料的增韌效果及機制[J].復合材料學報,2014,31(3):644-652.
LV S H,SUN T,LIU J J,et al.Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J].Acta Materiae Compositae Sinica,2014,31(3):644-652.
[28] 呂生華,周慶芳,孫婷,等.GO納米片層對水泥水化晶體及膠砂力學性能的影響[J].建筑材料學報,2014,17(5):749-754.
LV S H,ZHOU Q F,SUN T,et al.Effect of graphene oxide nanosheets on cement hydration crystals and mechanical properties of mortar[J].Journal of Building Materials,2014,17(5):749-754.
[29] 呂生華,孫婷,馬宇娟,等.納米氧化石墨烯對水泥復合材料中水化晶體結構的控制及增韌作用[J].混凝土,2013,(11):1-6.
LV S H,SUN T,MA Y J,et al.Regulation of graphene oxide on microstructure of hydration crystals of cement composites and its impact reinforcing toughenss[J].Concrete,2013,(11):1-6.
[30] LV S H,MA Y J,QIU C C,et al.Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites construct[J].Construction and Building Materials,2013,49(12):121-127.
[31] FAKHIM B,HASSANI A,RASHIDI A,et al.Preparation and mechanical properties of graphene oxide:cement nanocomposites[J].The Scientific World Journal,2014,(4):983-990.
[32] KIM J,COTE L J,KIM F,et al.Graphene oxide sheets at interfaces[J].Journal of the American Chemistry Society,2010,132:8180-8186.
[33] CHANG S T,LIN K-Y A,LU C.Efficient adsorptive removal of Tetramethylammonium hydroxide(TMAH) from water using graphene oxide[J].Separation and Purification Technology,2014,133(36):99-107.
[34] WANG H,YUAN X Z,WU Y,et al.Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution[J].Applied Surface Science,2013,279(8):432-440.
[35] 孫彤,崔欣,候雨,等.氧化石墨烯的功能化及生物相容性研究[J].應用化工,2013,42(5):806-808.
SUN T,CUI X,HOU Y,et al.The functionalization and biocompatibility of graphene oxide[J].Applied Chemical Industry,2013,42(5):806-808.
[36] SUN J P,LIANG Q L,HAN Q,et al.One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples[J].Talanta,2015,132(4):557-563.
[37] 張燚,陳彪,楊祖培,等.Fe3O4磁性納米粒子-氧化石墨烯復合材料的可控制備及結構與性能表征[J].物理化學學報,2011,27(5):1261-1266.
ZHANG Y,CHEN B,YANG Z P,et al.Controlled synthesis and characterization of the structure and property of Fe3O4nanopartical-graphene oxide composites[J].Acta Physico-Chimica Sinica,2011,27(5):1261-1266.
[38] FAN L L,LUO C N,SUN M,et al.Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J].Colloids and Surfaces B:Biointerfaces,2013,103(1):523-529.
[39] FAN L L,LUO C N,SUN M,et al.Synthesis of magnetic-cyclodextrin chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J].Colloids and Surfaces B:Biointerfaces,2013,103(6):601-607.
[40] YE N S,XIE Y L,SHI P Z,et al.Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption[J].Materials Science and Engineering:C,2014,45:8-14.
[41] EHSAN Z,ALI M,ALI J.A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples[J].Analytica Chimica Acta,2014,850:49-56.
[42] 饒維,蔡蓉,陳星,等.氧化石墨烯表面新型磁性四溴雙酚A印跡復合材料的制備及吸附性能[J].高等學校化學學報,2013,34(6):1353-1359.
RAO W,CAI R,CHEN X,et al.Preparation and adsorption properties of novel magnetic tetrabromobisphenol a molecularly imprinted composite material based on graphene oxide surface[J].Chemical Journal of Chinese Universities,2013,34(6):1353-1359.
[43] ZHU C Q,LU B A,SU Q,et al.A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst[J].Nanoscale,2012,4(10):3060-3064.
[44] LIU J W,YANG T,MA L Y,et al.Nickel nanoparticle decorated graphene for highly selective isolation of polyhistidine-tagged proteins[J].Nanotechnology,2013,24(50):505704.
[45] NGUYEN T L,DO T C,NGO X D,et al.Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization[J].Journal of Alloys and Compounds,2014,615(2):843-848.
[46] QIN J L,LI R,LU C Y,et al.Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption-degradation effects[J].Ceramics International,2015,41(3):4231-4237.
[47] HE Y Q,ZHANG N N,WANG X D.Adsorption of graphene oxide/chitosan porous materials for metal ions[J].Chinese Chemical Letters,2011,22(7):859-862.
[48] YU B W,XU J,LIU J H,et al.Adsorption behavior of copper ions on graphene oxide-chitosan aerogel [J].Journal of Environmental Chemical Engineering,2013,1(4):1044-1050.
[49] WANG Y,LIU X,WANG H F,et al.Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions[J].Journal of Colloid and Interface Science,2014,416:243-251.
[50] GE H C,MA Z W.Microwave preparation of triethylenetetramine modified grapheneoxide/chitosan composite for adsorption of Cr(VI)[J].Carbohydrate Polymers,2015,131:280-287.
[51] LI X Y,ZHOU H H,WU W Q,et al.Studies of heavy metal ion adsorption on chitosan/sulfydryl functionalized graphene oxide composites[J].Journal of Colloid and Interface Science,2015,448:389-397.
[52] DU Q J,SUN J K,LI Y H,et al.Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles[J].Chemical Engineering Journal,2014,245(6):99-106.
[53] NIKOLINA A T,GEORGE Z K,NIKOLAOS K L,et al.Graphite oxide/chitosan composite for reactive dye removal[J].Chemical Engineering Journal,2013,217:256-265.
[54] LUO S L,XU X L,ZHOU G Y,et al.Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater[J].Journal of Hazardous Materials,2014,274(12):145-155.
[55] XIA S J,NI M Z.Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal[J].Journal of Membrane Science,2015,473:54-62.
[56] LIN D,LIU C R,CHENG G J.Single-layer graphene oxide reinforced metal matrix composites by laser sintering:microstructure and mechanical property enhancement[J].Acta Materialia,2014,80:183-193.
[57] PASZKIEWICZ S,SZYMCZYK A,PITALSKY Z,et al.Structure and properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in situ polymerization[J].European Polymer Journal,2014,50:69-77.
[58] LIN Q L,QU L J,LU Q F,et al.Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites[J].Polymer Testing,2013,32(2):330-337.
[59] ANDREIA F D F,DIEGO S T M,STELA M M M,et al.Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J].Colloids and Surfaces B:Biointerfaces,2014,113:115-124.
[60] YU L,ZHANG Y,ZHANG B,et al.Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties[J].Journal of Membrane Science,2013,447:452-462.
[61] 張建斌,田海鋒,查飛,等.納米二氧化鈦光催化降解染料廢水動力學研究[J].應用化工,2014,43(8):1369-1372.
ZHANG J B,TIAN H F,ZHA F,et al.Study of dynamics and photocatalytic degredation of dyeing wastewater by nano-titanium dioxide[J].Applied Chemical Industry,2014,43(8):1369-1372.
[62] 張平,莫尊理,張春,等.磁響應性TiO2/石墨烯納米復合材料的合成及光催化性能[J].材料工程,2015,43(3):72-77.
ZHANG P,MO Z L,ZHANG C,et al.Preparation and photocatalytic properties of magnetic responsive TiO2/graphene nanocomposites[J].Journal of Materials Engineering,2015,43(3):72-77.
[63] SANTOS V C,WILSON K,LEE A F,et al.Physicochemical properties of WOx/ZrO2catalysts for palmitic acid esterification[J].Applied Catalysis B:Environmental,2015,162:75-84.
[64] 張瓊,賀蘊秋,陳小剛,等.氧化鈦/氧化石墨烯復合結構及其光催化性能[J].科學通報,2010,55(7):620-628.
ZHANG Q,HE Y Q,CHEN X G,et al.Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite[J].Chinese Science Bulletin,2010,55(7):620-628.
[65] CHEN Y L,ZHANG C E,DENG C,et al.Preparation of ZnO/GO composite material with highly photocatalytic performance via an improved two-step method[J].Chinese Chemical Letters,2013,24(6):518-520.
[66] LI C P,ZHU H J,HOU T T,et al.Simultaneous polymerization and crosslinking for the synthesis of molecular-level graphene oxide-polyacryl amide-CeOx composites[J].Chemical Engineering Journal,2015,263:27-37.
[67] ZHANG M,MAO X B,WANG C X,et al.The effect of graphene oxide on conformation change,aggregation and cytotoxicity of HIV-1 regulatory protein(Vpr)[J].Biomaterials,2012,34(4):1383-1390.
[68] ALAVA T,MANN J A,THEODORE C,et al.Control of the graphene-protein interface is required to preserve adsorbed protein function[J].Analytical Chemistry,2013,85(5):2754-2759.
[69] CHEN M L,WANG H,MAO Q X,et al.Hydrous-ferric oxide nanorods grown on PEGylated graphene oxide with superior capacity for selective adsorption of albumin[J].Carbon,2015,85:335-343.
[70] ZHOU D M,XI Q,LIANG M F,et al.Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening[J].Biosensors and Bioelectronics,2013,41(5):359-365.
[71] XIN J,HAO Y M,MAX R S,et al.Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications[J].Materials Science and Engineering C,2015,49:40-50.
[72] JUSTIN R,CHEN B Q.Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites[J].Carbohydrate Polymers,2014,103(1):70-80.
[73] WANG J,LIU C H,SHUAI Y,et al.Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J].Colloids and Surfaces B:Biointerfaces,2014,113(13):223-229.
Current Situation and Progress of Graphene Oxide Composites
LYU Sheng-hua,ZHU Lin-lin,LI Ying,HE Ya-ya,YANG Wen-qiang
(College of Resources & Environment,Shaanxi University of Science &Technology,Xi’an 710021,China)
Graphene oxide (GO) has wide applications and development prospects in the functional composites owing to its many unique properties, such as two-dimensional structure and large theoretical specific surface areas as well as hydrophilic and polarized interface. The present situation and progress of the graphene oxide composites used in reinforcing and toughening, adsorption separation, photocatalysis and biological medicine were introduced in this paper. The mechanism of producing reinforcing and toughening of polymer and cement based composites caused by forming regular and ordered microstructure regulated with GO nanosheets was mainly summerized. Meanwhile, application principle of the GO composites in the field of adsorption, photocatalysis and biological medicine were analyzed. Finally, the application and development trend of GO composites in reinforcing and toughness as well as adsorption and photocatalysis were pointed out.
graphene oxide;composite material;microstructure;reinforcing and toughening;photocatalytic degradation
10.11868/j.issn.1001-4381.2016.12.017
O613.71;TQ172.4
A
1001-4381(2016)12-0107-11
國家自然科學基金資助項目(21276152)
2015-06-03;
2016-04-22
呂生華(1963-),男,教授,博士生導師,主要從事氧化石墨烯的制備及復合材料的研究 ,聯系地址:陜西省西安市未央大學園區陜西科技大學資源與環境學院1B實驗樓(710021),E-mail:lvsh@sust.edu.cn