高奮華(平潭城關(guān)小學(xué),福建平潭350400)
把握關(guān)鍵點(diǎn)提升學(xué)生思考能力
高奮華
(平潭城關(guān)小學(xué),福建平潭350400)
數(shù)學(xué)課題應(yīng)注重培養(yǎng)小學(xué)生的數(shù)學(xué)思考,注意把握三個(gè)方面:關(guān)注學(xué)生學(xué)習(xí)起點(diǎn),誘發(fā)數(shù)學(xué)思考;找準(zhǔn)課堂教學(xué)的切入點(diǎn),激發(fā)數(shù)學(xué)思考;把握課堂教學(xué)的生成點(diǎn),促進(jìn)數(shù)學(xué)思考。
數(shù)學(xué)思考;學(xué)生學(xué)習(xí);課堂教學(xué)
什么是“數(shù)學(xué)思考”?華東師范大學(xué)孔企平專家對此解釋:思考是學(xué)生學(xué)習(xí)數(shù)學(xué)認(rèn)知過程的本質(zhì)特點(diǎn),是數(shù)學(xué)知識的本質(zhì)特征。學(xué)生只有學(xué)會思考,有了一定的思考能力,才能促進(jìn)知識的理解與內(nèi)化,知識與方法也才能升華為智慧。我們只有抓住數(shù)學(xué)本源的東西,與新課程理念進(jìn)行有效結(jié)合,才能發(fā)揮最大的數(shù)學(xué)教育價(jià)值,凸顯數(shù)學(xué)本色!找回?cái)?shù)學(xué)教學(xué)的靈魂!那么,在數(shù)學(xué)教學(xué)中如何才能抓住“本源”,促成“智慧之水”源流不息呢?
美國教育心理學(xué)家奧蘇伯爾說過:“如果我不得不將教育心理學(xué)還原為一條原理的話,我將會說,影響學(xué)習(xí)的最重要的因素是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進(jìn)行教學(xué)。”學(xué)生不是一張張“白紙”,而是一個(gè)個(gè)活生生的人,當(dāng)他們走進(jìn)教室的時(shí)候也就帶來了自己的認(rèn)識與想法、經(jīng)驗(yàn)與經(jīng)歷。因此,備課中首先要準(zhǔn)確地了解學(xué)生已有的知識經(jīng)驗(yàn)和認(rèn)知發(fā)展水平,數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)上,根據(jù)學(xué)生自身已有的知識與經(jīng)驗(yàn),找尋學(xué)生的學(xué)習(xí)起點(diǎn),為學(xué)習(xí)提供豐富的感性材料和學(xué)習(xí)平臺。
教學(xué)片斷一——“長方形、正方形面積的計(jì)算”
師:同學(xué)們,我們已經(jīng)學(xué)習(xí)了一些關(guān)于面積的知識,我想考考你,敢接受挑戰(zhàn)嗎?誰來說說常用的面積單位有哪些?這些面積單位到底有多大呢?
生:平方米、平方分米、平方厘米(學(xué)生邊回答邊比劃)
師:說說下面每個(gè)長方形的面積各是多少平方厘米?(每個(gè)小方格表示1平方厘米)

師:剛才同學(xué)們用數(shù)方格的方法求出了長方形的面積。(課件出示籃球場圖片)。現(xiàn)在還能用數(shù)方格的方法求籃球場的面積嗎?方便嗎?
生:不方便。
師:為什么?
在本環(huán)節(jié)的教學(xué)中,教師很清楚學(xué)生已經(jīng)掌握了長方形和正方形的特征,并會計(jì)算長方形和正方形的周長,知道了面積和面積單位,會用面積單位直接度量面積,已經(jīng)形成一定的空間觀念,并會用度量的方法比較面積的大小。但受年齡的限制,學(xué)生的空間想象力還不夠豐富,需要在不斷的探索活動中,循序漸進(jìn)、由淺入深地進(jìn)行操作和觀察,發(fā)展空間觀念。因此,教師設(shè)置這幾個(gè)復(fù)習(xí)問題針對性強(qiáng),層層深入,有效突出認(rèn)知矛盾,學(xué)生從中發(fā)現(xiàn)問題、提出問題,從而激發(fā)他們學(xué)習(xí)興趣,使他們在熟悉的情境中進(jìn)一步產(chǎn)生求知的欲望,調(diào)動思考的積極性。
許多數(shù)學(xué)知識之間有著非常緊密地聯(lián)系與溝通、引伸與擴(kuò)展。很多新知識在一定情境之下可以轉(zhuǎn)化為用舊知識去認(rèn)識和解決。我們應(yīng)充分關(guān)注學(xué)生已有知識與新知識之間的聯(lián)系,找準(zhǔn)新舊知識間的連接點(diǎn),使新課的學(xué)習(xí)切入學(xué)生的經(jīng)驗(yàn)系統(tǒng),為學(xué)生整節(jié)課上的積極思考提供土壤。
教學(xué)片斷二——“異分母分?jǐn)?shù)加減法”
師:前段時(shí)間我們一直在學(xué)習(xí)分?jǐn)?shù)的哪些知識?
生:約分、通分……
師:那好,我們就先選取其中的一部分來檢測大家掌握的情況,好嗎?
⑴通分

生:分母相同(師板書,同分母分?jǐn)?shù)加減法)
師:①怎樣計(jì)算同分母分?jǐn)?shù)加減法?②同分母分?jǐn)?shù)加減法為什么可以分母不變,分子相加減?③計(jì)算結(jié)果要注意些什么?
顯然,教師不是照本宣科,而是抓住異分母分?jǐn)?shù)加減法與同分母分?jǐn)?shù)加減法的連接點(diǎn)即“通分”來著力:先復(fù)習(xí)通分,再對同分母分?jǐn)?shù)加減法的計(jì)算方法進(jìn)行回顧。接著啟發(fā)學(xué)生思考:為什么可以分母不變,分子相加減?這樣的學(xué)習(xí)情境有利于知識順利遷移,在對異分母分?jǐn)?shù)加減法的計(jì)算方法進(jìn)行探究時(shí),學(xué)生會自然而然地找到學(xué)習(xí)新知的切入口,明確只要把異分母分?jǐn)?shù)通過通分轉(zhuǎn)化為同分母分?jǐn)?shù)就順利解決了問題。
又如教學(xué)“乘法的初步”認(rèn)識時(shí),教師很明確“幾個(gè)幾”相加是乘法知識的切入點(diǎn),學(xué)生認(rèn)識乘法需要從認(rèn)識“幾個(gè)幾”相加入手。課一開始教師就借助創(chuàng)設(shè)游樂園的情境,讓學(xué)生觀察歸納“幾個(gè)幾”相加的算式的特點(diǎn),接著通過動手操作、解決問題等一系列的教學(xué)活動,圍繞著“幾個(gè)幾”相加,讓學(xué)生真切地感受到用加法太麻煩了,從而產(chǎn)生了學(xué)習(xí)乘法的需求。這樣的設(shè)計(jì),既便于知識形成系統(tǒng),又能為學(xué)生開啟思考的閘門,點(diǎn)燃思考的火花,從而以積極的狀態(tài)進(jìn)入學(xué)習(xí)。
古人云:學(xué)起于思,思源于疑。古往今來的許多發(fā)明創(chuàng)造都起源于“疑”。“疑”能使學(xué)生心理上產(chǎn)生困惑,認(rèn)知上產(chǎn)生沖突,從而展開積極思考。由于學(xué)生原有的知識儲備、現(xiàn)實(shí)生活中的經(jīng)驗(yàn)積累以及他們在日常生活中形成的許多數(shù)學(xué)認(rèn)識,都會影響并制約著數(shù)學(xué)思考。因此,在質(zhì)疑問難時(shí),有的會“一語中的”,而有的則偏離關(guān)鍵。對于提出質(zhì)疑的學(xué)生,無論他提出的問題是否有價(jià)值,都應(yīng)該及時(shí)地給予關(guān)注,切不可對那些貌似“無厘頭”的聲音置之不理,關(guān)鍵是教師要因勢利導(dǎo)、適時(shí)點(diǎn)撥、靈活調(diào)控,使它成為課堂教學(xué)動態(tài)生成點(diǎn)。
一次教研活動上,一位教師在進(jìn)行“十幾減9、8”的課堂教學(xué),其間有一位學(xué)生發(fā)出了細(xì)微的聲音:“老師,我發(fā)現(xiàn)14-9的4減9不夠,就倒著減,先用9減4,得5,再10減5得5。可以嗎?”這個(gè)問題像一顆“炸彈”,全班學(xué)生議論紛紛,有的干脆在嘲笑,顯然這是授課教師始料未及的。面對這突如其來的“混亂”局面,教師迅速用手勢止住了學(xué)生們,并對質(zhì)疑的學(xué)生投去贊賞的目光,“請同學(xué)們獨(dú)立思考,然后同桌交流,這種想法合理嗎?”班上恢復(fù)了平靜,大家都在靜靜地思考……慢慢開始有討論聲、爭執(zhí)聲,再后來就有了幾只小手舉起來了……最后大家一致認(rèn)可這種想法:實(shí)際上14-9中,是先減去4,余10,從10中再減5。筆者很欣賞這位教師的睿智和瞬間對質(zhì)疑的學(xué)生所采取的態(tài)度。學(xué)生的質(zhì)疑是伴隨著思考而產(chǎn)生的,課堂上應(yīng)及時(shí)關(guān)注學(xué)生的質(zhì)疑。當(dāng)有學(xué)生疑,受到教師的引導(dǎo)、鼓勵,會激發(fā)更多的學(xué)生去釋疑,并且在釋疑中提出一些有創(chuàng)意的答案,為促進(jìn)學(xué)生的有效思考添磚加瓦。
孟子曰:思則得之,不思則不得。培養(yǎng)學(xué)生的數(shù)學(xué)思考能力,需要長期貫穿于課內(nèi)外的教學(xué)活動中,同時(shí)更需要教師不斷地學(xué)習(xí)、探索,關(guān)注他們每個(gè)時(shí)期的學(xué)習(xí)狀態(tài),給予提供更多的數(shù)學(xué)思考的時(shí)間和空間,不斷地提高他們的數(shù)學(xué)思考能力,從而讓數(shù)學(xué)課堂真正充滿生機(jī)。
[1]鐘建林,林武.小學(xué)數(shù)學(xué)專題式教學(xué)導(dǎo)引[M].福州:福建人民出版社,2012.
[2]教育部.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)[S].北京:北京師范大學(xué)出版社.
[3]賁友林.此岸與彼岸[M].南京:江蘇教育出版社,2007.
[4]林碧珍.數(shù)學(xué)思維養(yǎng)成課[M].福州:福建教育出版社,2013.
(責(zé)任編輯:陳志華)