不難證明,模型(2)在邊界條件(3)和初始條件(4)下有唯一的非負解。
1 基本再生率與穩態解
顯然,模型(2)總存在一個未感染穩態解E0(x0,0,0),其中x0=s/d。
使用文獻[14]中介紹的下一代矩陣方法,通過計算可以得到病毒的基本再生率的表達式為

如果模型(2)存在病毒感染穩態解E*(x*,y*(a),v*),則它必滿足下列方程組:
(6)
從式(6)的第2和第4個方程解得:
y*(a)=x*f(v*)e-∫a0δ(ε)dε,
(7)
將式(7)代入式(6)的第3個方程可得:

(8)
因此,若模型(2)存在病毒感染穩態解,則以下方程組有正根。
(9)
定理1當R0>1時,模型(2)存在唯一的病毒感染穩態解E*。
證明考慮方程組(9)正根的存在性問題。若x*為正,方程組(9)等價于

(10)

令

計算可得:


由拉格朗日中值定理可知,在(0,v)上至少存在1點ξ,使得:

2 局部穩定性
定理2當R0<1時,模型(2)的未感染穩態解E0是局部漸近穩定的。
證明將模型(2)在E0處線性化并引入擾動變量:

得到:
(11)
求式(11)滿足下列形式:
(12)
的非平凡解。
將式(12)代入式(11)可得:
(13)
從式(13)的第2和第4個方程解得:

(14)
將式(14)代入式(13)的第3個方程,整理可得模型(2)在E0處的特征方程:

(15)
下面用反正法證明,當R0<1時,方程(15)的根都具有負實部。
假設方程(15)存在一個根λ1,滿足Re(λ1)≥0。則:

顯然,這與R0<1矛盾。因此,當R0<1時,方程(15)的根都具有負實部,E0是局部漸近穩定的。
定理3當R0>1時,模型(2)的病毒感染穩態解E*是局部漸近穩定的。
證明將模型(2)在E*處線性化并引入擾動變量:
x2(t)=x(t)-x*,y2(a,t)=y(a,t)-y*(a),v2(t)=v(t)-v*,
得到:
(16)
求式(16)滿足下列形式:
(17)
的非平凡解。
將式(17)代入式(16)可得:
(18)
從式(18)的第2和第4個方程解得:

(19)
從式(18)的第1個方程可以得到:
(λ+d+f(v*))c3=-f′(v*)x*c4,
(20)
將式(19)和式(20)代入式(18)的第3個方程,得到模型(2)在E*處的特征方程:

(21)
當R0>1時,由拉格朗日中值定理和條件(5)可得:

下面用反證法證明,當R0>1時,方程(21)的根都具有負實部。
假設方程(21)存在1個根λ1,滿足Re(λ1)≥0,則:

顯然,這是矛盾的。因此,當R0>1時,方程(21)的根都具有負實部,E*是局部漸近穩定的。
3 全局穩定性
筆者通過構造適當的Lyapunov泛函并應用LaSalle不變集原理來研究模型(2)的可行穩態解的全局穩定性。
定理4當R0<1時,模型(2)的未感染穩態解E0是全局漸近穩定的。
證明記

(22)
顯然,在條件H2)和條件H3)下p(a)是有界的。p(a)的導數為
p′(a)=δ(a)p(a)-k(a),
(23)
構造Lyapunov泛函:

顯然,V1(t)是非負的,且在E0處取得最小值0。沿著模型(2)的解對V1(t)求全導數可得:

(24)
使用分部積分法可以得到:

(25)
將式(25)代入式(24)可得:


(26)
當v(t)=0時,

當v(t)>0時,

由拉格朗日中值定理和條件(5)可知,存在ξ∈(0,v(t)),使得:



定理5當R0>1時,模型(2)的病毒感染穩態解E*是全局漸近穩定的。
證明構造Lyapunov泛函:

其中p(a)如式(22)中所定義。
顯然,V1(t)是非負的,且在E*處取得最小值0。沿著模型(2)的解對V2(t)求全導數可得:

(27)
由
和
可得:

使用分部積分法得到:

(28)
在式(28)中:
(29)
由式(28)和式(29)推出:

(30)
將式(30)代入式(27),整理可得:

/
[1]王開發. 病毒感染動力學模型分析[D]. 重慶:西南大學, 2007.
WANG Kaifa. Studies on Dynamics of Virus Infection[D]. Chongqing: Southwest University, 2007.
[2]NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J]. Science, 1996, 272:74-83.
[3]CULSHAW R, RUAN S, WEB G. A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay[J]. Journal of Mathematical Biology, 2003, 46(5):399-428.
[4]SONG Xinyu, NEUMANN A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1):281-297.
[5]DEANS J A, COHEN S. Immunology of malaria [J]. Annual Review of Microbiology, 1985, 52:541-542.
[6]PERELSON A, NELSON P W. Mathematical analysis of HIV-1 dynamics in vivo [J]. Siam Review, 1999, 41(1):3-44.
[7]WANG Xia, TAO Youde, SONG Xinyu. Global stability of a virus dynamics model with Beddington-De-Angelis incidence rate and CTL immune response [J]. Nonlinear Dynamics, 2011, 66(4): 825-830.
[8]REILLY C, WIETGREFE S, SEDGEWICK G, et al. Determination of simian immunodeficiency virus production by infected activated and resting cells [J]. Aids, 2007, 21(2):163-171.
[9]GILCHIRST M A, COOMBS D, PERELSON A S. Optimizing within-host viral fitness: Infected cell lifespan and virion production rate [J]. Journal of Theoretical Biology, 2004, 229(2): 281-289.
[10]NELSON P W, GILCHRIST M A, COOMBS D, et al. An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells[J]. Mathematical Biosciences and Engineering Mbe, 2004, 1(2):267-288.
[11]HAMER W H. Epidemic disease in England-the evidence of variability and of persistency of type[J]. Lancet, 1906, 1:733-739.
[12]EBERT D, ZSCHOKKE-ROHRINGER C D, CARIUS H J. Dose effects and density dependent regulation of two micro parasites of Daphnia magna [J]. Oecologia, 2000, 122(2):200-209.
[13]MCLEAN A R, BOSTOCK C J. Scrapie infections initiated at varying doses: an analysis of 117 titration experiments[J]. Philosophical Transactions of the Royal Society of London, 2000, 355:1043-1093.
[14]DENESSCHE P V, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.
[15]SIGDEL R P, MCCLUSKEY C C. Global stability for an SEI model of infectious disease with immigration[J]. Applied Mathematics and Computation, 2014, 243: 684-689.
[16]HALE J K, LUNEL S V. Introduction to Functional Differential Equations[M]. New York: Springer, 1993.
Stability analysis of a viral infection dynamics model with infection age of cells and general saturated infection rate
LI Liangchen, XU Rui
(Basic Courses Department, Ordnance Engineering College, Shijiazhuang,Hebei 050003, China)
In order to understand the viral dynamics processes inclucding infection, duplicate, eliminate, etc. in human body, a viral infection model with infection age of cells and general saturated infection rate is investigated. It is proved that the model has a unique infected steady state when the basic reproduction ratio is greater than one unity. By analyzing the characteristic of relevant equations, the local stability of effective steady state is dislussed. By using suitable Lyapunov functional and LaSalle’s invariance principle, it is proved that when the basic reproduction ratio is less than one unity, the infection-free steady state is globally asymptotically stable; and when the basic reproduction ratio is greater than one unity, the infected steady state is globally asymptotically stable.
stability theory; infection age of cells; saturation infection rate; Lyapunov functional; LaSalle’s invariance principle
1008-1542(2016)04-0349-08
10.7535/hbkd.2016yx04006
2015-12-09;
2016-04-19;責任編輯:張軍
國家自然科學基金(11371368)
李梁晨(1990—),男,河北唐山人,碩士研究生,主要從事微分方程與動力系統方面的研究。
E-mail:llc610@126.com
O175MSC(2010)主題分類:34N05
A
李梁晨,徐瑞.一類具有細胞感染年齡和一般飽和感染率的病毒感染動力學模型的穩定性分析[J].河北科技大學學報,2016,37(4):349-356.
LI Liangchen, XU Rui.Stability analysis of a viral infection dynamics model with infection age of cells and general saturated infection rate[J].Journal of Hebei University of Science and Technology,2016,37(4):349-356.