潘紅娟
【片斷一】分數是用來表示數量多少的數
問題:老師拿來幾個餅?
師:這是幾個月餅?你是什么時候學的?
生:2個月餅,幼兒園中班學的。
師:現在有幾個餅?原來有幾個?增加了幾個?
生:現在有3個餅,原來有2個,增加了1個。
師:現在是幾個呢?什么時候知道的?
生:半個,幼兒園小班就知道了。
師:問題來了,這樣又是幾個餅呢?
生(指名多人回答):半個;小半個;小小塊;一半的一半。
師:到底幾個呢?數學上用哪個數來表示呢?
生:2個、1個……(全場笑)
師:半個是用哪個數來表示的?
生:0.5。
師:今天我們學習新的數,這樣的半個、小半個,以至于更小的餅,用哪個數表示。
【片斷解讀:俞老師不斷讓學生用一個“數”來表示月餅個數,從“2個月餅”、“3個月餅”,到“半個月餅”、“小半個月餅”、“小小半個月餅”,引領學生經歷“用數表示物體數量”的過程,從計數單位“1”的累到“1”的分,筆者認為應該有兩層意義:(1)喚醒用“數”表達的經驗,感受用分數表達的必要性。不能用自然數1、2、3表示了,要用一個新的數,分數學習的必要性隨即產生。(2)將分數納入概念系統?!胺謹狄彩且粋€數,分數也像以前學習的自然數 1、2、3 一樣,是一個表示物體的‘多’和‘少’的數”。在不斷用“數”表示的過程中,自然將“分數”納入到“數”的知識體系之中,為學生形成概念系統作了很好的鋪墊。】
【片斷二】“分的過程”與“意義理解”建立聯系
問題一:這半個餅是怎樣來的?
師:這半個餅是怎樣來的?
生:把一個餅切成兩塊。
生:把一個餅切成兩半。
師:為什么不說把一個餅切成兩塊,而要說切成兩半?
生:兩塊有可能是不一樣大小的,兩半就是說“兩塊一樣大”。
師:兩半就是兩邊一樣大,這樣的分法我們以前叫什么?
生:平均分。
(板書:平均分)
師:這半個是怎么得到的?
生:把一個餅切成兩半,拿其中的一塊就得到了半個。
師:這半個容易得到嗎?(不容易)為什么不容易?
生:一不小心就會分得不一樣。
師:是的,一定要平均分。把分的過程輕輕說一遍。
生:把一個餅平均分成兩份,其中的一塊就得到了半個。
【片斷解讀:“善用童言童智”是兒童教學觀的重要標志。此片斷中,從“兩塊”到“兩半”,銜接的是“經驗”與“數學”之間的距離,俞老師正是捕捉了最為原生態的兒童語言,進行點撥、整理、提升,將經驗生長為概念的理解,很好強化了分數概念中的“平均分”要點?!?/p>
問題二:這個過程如果用一個數可以怎樣記錄?
師:這么長的話,用數學的話怎樣把它記錄下來呢?平均分,用一條線表示;兩塊用“2”表示,拿走其中一塊,用“1”表示,連起來用“”表示。
師:你喜歡用哪一種方式記錄?
生:數學的方式,因為很方便,很簡單。
師:這個數怎么讀?
生:二分之一。
問題三:小半個餅是怎么得來的?用哪個數來表示?
師:(出示小半個餅圖)它是怎么得來的?
生:就是把一個餅平均分成3份,拿其中的一份。
(板書:把一個餅平均分成3份,拿其中的一份)
師:你能用數的方式記錄嗎?
師:哪一個比較好?
師:這些數就是我們新學的數。這些數是怎么來的?(分出來的)
師:是的,這些數是分出來的,我們把這些數統統稱作“分數”。
師:分數是由幾部分組成的?
板書:

【片斷解讀:我們可以看到,支撐分數概念理解的,不是分月餅的情境,而是由這一情境激發而起的經驗?!斑@半個是怎么來的?”“把一個餅切成兩半,拿其中的一塊,就得到了半個”,“這么長的話,用數學記錄下來:平均分——用“—”表示,兩塊——用“2”表示,其中一塊——用“1”表示,連起來,用“”表示?!啊钡膶W習過程有“”的展開為基礎,順勢遷移,水到渠成。這一過程,將學生已有的“分餅經驗”,與“分數的意義”、“分數的表征”,以及“分母、分子、分數線的含義”,建立緊密聯系。意義有了分的經驗作支撐、分的過程作表象,學生的理解將會十分透徹、深刻。】
【整體解讀】
1.選擇新知的最佳“經驗點”。
對于小學生來說,一次完整的課堂學習可以描述為學生從他的認知起點,到課堂學習目標之間的認知發展過程。就這一過程而言,在學習目標既定的情況下,起點的選擇決定著這一過程的距離長短。因此,在教師選擇認知起點的時候,學生課堂學習的距離空間便被設置了。
“這是幾個餅”?——“半個”、“小半個”、“小小半個”,這是學生的生活經驗。
“半個是怎么來的”——“把一個餅切成兩半”、“兩半是兩塊一樣多”、“把一個餅切成兩半,拿其中的一塊,就得到了半個。”這是學生的生活經驗。
俞老師正是找到了“分數”概念與學生“經驗”之間的最佳契合點,大大縮短了起點與目標之間的距離,于是,“數學”與“經驗”無縫對接,課堂教學自然生長,水到渠成。
2.尋找“不同”中的“相同”。
“分數初步認識”是概念教學,而概念是事物本質的反映,是對一類事物的概括和表征。什么時候抽象概括?事實上,我們看到,俞老師并不急于進行概念揭示,而是不斷引導學生經歷“怎么分”與“怎么表達”的過程,“半個,你是怎么得來的”、“小半個是怎么得來的?”、“小小半個你能用幾分之幾表示”,在大量同類材料的感知之后,才引導概括:“你有什么感覺”?學生答:“都是分成幾塊,分母就是幾,拿幾塊,分子就是幾”、“都要平均分”、“都是……”。通過同類材料的多次感知,學生經歷比較、歸納、概括,此時,標志著分數的概念(包括分母、分子的含義)已然建立。這一過程中,俞老師所運用的概念教學基本策略與途徑是:“多材料感知”——“比較、抽象、概括”——“揭示概念”。