王 鈾,崔 賡,任寧濤,王 博,張 恒,齊 鵬,董天祥
解放軍總醫院 骨科,北京 100853
椎體旋轉對后路椎弓根螺釘治療脊柱畸形置釘準確性的影響
王 鈾,崔 賡,任寧濤,王 博,張 恒,齊 鵬,董天祥
解放軍總醫院 骨科,北京 100853
目的 探討在后路椎弓根螺釘技術治療脊柱畸形過程中不同椎體旋轉度對置釘準確性的影響。方法 回顧性分析2009年6月- 2012年9月于我院行后路椎弓根螺釘技術治療的63例脊柱畸形患者,其中男性28例,女性35例,年齡3 ~63(18.87±12.04)歲。在術中椎弓根螺釘置釘全部完成后及矯形前,應用術中CT掃描重建影像,測量椎體旋轉角度(R),根據旋轉角度分組(1組:R=0°;2組:0° ~ 10°;3組:11° ~ 20°;4組:R>20°),各組螺釘評估位置并行準確性分級。計算每組不同準確性等級的螺釘數目,評級結果為Ⅱ級和Ⅲ級的螺釘評定為誤置螺釘且需重新置入;并對在不同的椎體旋轉條件下行后路椎弓根螺釘置入的準確性進行比較分析。結果 63例置入椎弓根螺釘共1 072枚,其中1組206枚,2組534枚,3組252枚,4組80枚;置釘破出率分別為4.4%(9枚)、5.8%(31枚)、20.6%(52枚)、40%(32枚);螺釘誤置率分別為1.9%(4枚)、2.6%(14枚)、9.9%(25枚)、27.5%(22枚)。和1、2組相比,3、4組的置釘破出率及誤置率較高(P<0.01);但3組螺釘破出率及誤置率均低于4組(P<0.05)。結論 后路椎弓根螺釘技術治療脊柱畸形的手術過程中,椎體旋轉程度較高時,置釘準確性降低。
椎弓根螺釘;脊柱畸形;椎體旋轉
網絡出版時間:2015-04-09 17:17 網絡出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150409.1717.003.html
椎弓根螺釘內固定技術的出現和發展為脊柱外科醫生行后路手術時提供了更多的選擇,由于其生物力學強度高、椎體去旋轉能力好、三維矯形能力強、所需固定節段短等優點[1-4],近年來在脊柱畸形的矯形治療上得到普及。盡管有上述優勢,若置釘失誤卻可導致一系列嚴重的并發癥,如神經功能受損、血管損傷、內固定生物力學強度下降等[5-6]。脊柱畸形病例中,骨性結構的異常是影響椎弓根置釘準確性的主要原因。本研究主要探討椎體旋轉對置釘準確性的影響,對在不同程度的椎體旋轉條件下,椎弓根螺釘置釘準確性進行分析。
1 一般資料 2009年6月- 2012年9月于我院行后路全椎弓根螺釘技術治療的63例脊柱畸形患者,術前診斷為特發性脊柱側凸者31例,先天性脊柱畸形者25例,Pott's畸形者3例,神經肌肉型脊柱側凸者2例,退行性脊柱側凸者2例。其中男性28例,女性35例,年齡3 ~ 63(18.873±12.04)歲。
2 手術及螺釘準確性評定方法 患者氣管插管全身麻醉后取俯臥位,消毒后鋪無菌單,按術前擬定融合范圍選取脊柱后路正中切口,常規切開皮膚及皮下組織,骨膜下電刀剝離兩側椎旁肌,顯露預融合節段后方骨性結構后以傳統置釘方式徒手置入椎弓根螺釘,待所有螺釘均置入完畢后,行術中CT掃描并給予三維重建。根據重建影像測量椎體旋轉角度(R)并分組(1組:R=0°,2組:0° ~ 10°;3組:11° ~ 20°;4組:R>20°)[7],觀察螺釘位置并評定其準確性。置釘準確性采取Rao等[8]的評定方法,根據螺釘破出皮質長度(L):0級:未穿破皮質;Ⅰ級:0 ~ 2 mm;Ⅱ級:>2 mm且≤4 mm,Ⅲ級:>4 mm。Ⅱ、Ⅲ級螺釘為誤置螺釘,予以重置。若出現誤置螺釘,修正螺釘位置后,再次行CT掃描直至所有螺釘位置良好,然后按術前擬定方案進行矯形。
3 統計學方法 采用SPSS16.0統計軟件進行統計分析,計量數據以±s表示,多個率的兩兩比較采用χ2檢驗,檢驗水準α=0.05。
63例患者置入椎弓根螺釘共1 072枚,經過CT測量分組及螺釘準確性評估后,其中1組206枚,2組534枚,3組252枚,4組80枚,其置釘破出率分別為9枚(4.4%)、31枚(5.8%)、52枚(20.6%)、32枚(40%),螺釘誤置率分別為4枚(1.9%)、14枚(2.6%)、25枚(9.9%)、22枚(27.5%)。1組和2組間螺釘破出率及誤置率差異均無統計學意義(P>0.05);與1組、2組相比,3組和4組的置釘破出率及誤置率均較高(P<0.01);且3組的螺釘破出率及誤置率均明顯低于4組(P<0.05)。見表1。

表1 不同椎體旋轉程度的置釘準確性Tab. 1 Accuracy of pedicle screws placement with different extent of vertebral rotation (n, %)
后路椎弓根螺釘內固定術應用于脊柱矯形手術以來,由于其強大的矯形能力、優良的生物力學效應,在脊柱矯形上取得了較好的效果[2,9]。然而,脊柱畸形普遍同時存在骨性結構異常及椎管內容物不對稱[10-11]。有研究報道稱特發性脊柱側彎上胸彎及主胸彎頂椎凹側的椎弓根直徑較凸側窄,且在頂椎區域硬膜囊更加靠近凹側[12-15]。另外,在脊柱畸形患者中,椎體旋轉也是一種非常普遍的現象。異常的解剖結構導致了椎弓根螺釘技術應用于矯形易出現置釘錯誤,并由此帶來神經血管損傷、內固定生物力學效應減弱及社會經濟負擔加重等一系列不良后果。
在影響脊柱畸形椎弓根置釘準確性的諸多原因中,椎體旋轉是一個較為重要的因素,因為椎體旋轉會導致置釘方向的變化,若術者仍遵循傳統思維不予變通,必然增加神經血管受損的風險,且椎體旋轉通常體現于三維空間而不僅是橫斷位,并常伴有椎弓根的形態學異常,如椎弓根不對稱、骨性解剖標志缺失等[16]。有文獻報道稱,椎體旋轉角度與凹側椎弓根直徑存在明顯負相關關系[17]。這會增加進釘點及釘道方向的不確定性,從而增加置釘難度,提高螺釘誤置帶來的風險。在普通X線檢查上,即使存在椎體三維旋轉,也不容易判斷,這也是導致置釘準確性下降的一個原因[18]。Hicks等[19]的文獻回顧中發現,在脊柱側彎手術中椎弓根螺釘誤置率高達15.7%。既往研究中少有文獻報道椎體旋轉與置釘準確性的關系,未見關于脊柱畸形椎體旋轉與置釘準確性關系的報道。
Tian和Lang[7]于普通腰椎模型試驗中發現,徒手置釘準確性與腰椎旋轉角度間存在負相關關系(r=-0.8),即隨著椎體旋轉角度增加,置釘準確性下降。但上述研究僅描述了結構正常的腰椎椎體旋轉程度不同時置釘準確性的變化,且椎體旋轉局限于軸狀位,無法體現脊柱畸形椎體三維旋轉的影響。在我們的研究中,除1組和2組置釘準確性無統計學差異外,其他各組間均有統計學差異,3、4組置釘準確性低于1、2組,4組置釘準確性低于3組,我們分析有以下原因:1)椎體旋轉使置釘方向及螺釘長度發生變化;2)椎體旋轉常伴有雙側椎弓根直徑不對稱;3)椎體旋轉角度越大,以上異常越明顯,越容易導致螺釘誤置。本研究結果與Tian和Lang研究結果相似,即椎體旋轉角度越大,置釘準確性越低。
然而,本研究也有局限性。本研究為回顧性研究,且因為置釘時無法去除其他可影響置釘的因素,如骨結構異常、雙側椎弓根直徑不對稱等,因此結果難免產生偏倚。但我們認為,這對指導臨床工作仍有積極意義。若能采取一些措施在置釘時將椎體旋轉的影響盡可能降低,如術前行三維CT掃描,仔細評估椎弓根結構或應用導航技術輔助置釘,則在行脊柱矯形手術時,可進一步提高置釘準確性[20]。另外,納入病例手術醫師并非同一人,這可能對研究結果產生一定影響。本研究依據旋轉角度對椎體進行分組時,未對不同的椎體節段進行區分,因此,椎體旋轉對椎弓根置釘準確性的影響是否和椎體節段的不同有關,還需在以后的研究中進一步明確。
1 Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis[J]. Spine(Phila Pa 1976), 2004, 29(3): 343-349.
2 Gaines RW. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders[J]. J Bone Joint Surg Am,2000, 82A(10): 1458-1476.
3 Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2004,29(18): 2040-2048.
4 Bridwell KH. Surgical treatment of idiopathic adolescent scoliosis[J]. Spine (Phila Pa 1976), 1999, 24(24):2607-2616.
5 Lonstein JE, Denis F, Perra JH, et al. Complications associated with pedicle screws[J]. J Bone Joint Surg Am, 1999, 81(11):1519-1528.
6 Tormenti MJ, Kostov DB, Gardner PA, et al. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery[J]. Neurosurg Focus, 2010, 28(3): E11.
7 Tian W, Lang Z. Placement of pedicle screws using three-dimensional fluoroscopy-based navigation in lumbar vertebrae with axial rotation[J]. Eur Spine J, 2010, 19(11): 1928-1935.
8 Rao G, Brodke DS, Rondina M, et al. Inter- and intraobserver reliability of computed tomography in assessment of thoracic pedicle screw placement[J]. Spine (Phila Pa 1976), 2003, 28(22):2527-2530.
9 O'brien MF, Lenke LG, Mardjetko S, et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis - Is pedicle fixation an anatomically viable technique?[J]. Spine (Phila Pa 1976), 2000,25(18): 2285-2293.
10 Deng Y, Zhou Y, Lu G, et al. Complication of thoracic pedicle screw fixation in spinal deformities[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2009, 34(8):820-824.
11 Kuklo TR, Lenke LG, O'brien MF, et al. Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees[J]. Spine(Phila Pa 1976), 2005, 30(2): 222-226.
12 Catan H, Bulu? L, Anik Y, et al. Pedicle morphology of the thoracic spine in preadolescent idiopathic scoliosis: magnetic resonance supported analysis[J]. Eur Spine J, 2007, 16(8): 1203-1208.
13 Lam GC, Hill DL, Le LH, et al. Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods[J]. Scoliosis, 2008, 3:16.
14 Parent S, Labelle H, Skalli W, et al. Thoracic pedicle morphometry in vertebrae from scoliotic spines[J]. Spine (Phila Pa 1976),2004, 29(3): 239-248.
15 Takeshita K, Maruyama T, Chikuda H, et al. Diameter, length, and direction of pedicle screws for scoliotic spine: analysis by multiplanar Reconstruction of computed tomography[J]. Spine (Phila Pa 1976), 2009, 34(8): 798-803.
16 Jeswani S, Drazin D, Hsieh JC, et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery[J]. Neurosurg Focus, 2014, 36(3): E6.
17 Liljenqvist UR, Link TM, Halm HF. Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2000, 25(10): 1247-1253.
18 Hecquet J, Legaye J, Duval-Beaupère G. Access to a threedimensional measure of vertebral axial rotation[J]. Eur Spine J,1998, 7(3): 206-211.
19 Hicks JM, Singla A, Shen FH, et al. Complications of pedicle screw fixation in scoliosis surgery: a systematic review[J]. Spine (Phila Pa 1976), 2010, 35(11): E465-E470.
20 Flynn JM, Sakai DS. Improving safety in spinal deformity surgery:advances in navigation and neurologic monitoring[J]. Eur Spine J,2013, 22(Suppl 2): S131-S137.
Accuracy of posterior pedicle screws placement for surgical correction of spinal deformity with vertebral rotation
WANG You, CUI Geng, REN Ningtao, WANG Bo, ZHANG Heng, QI Peng, DONG Tianxiang
Department of Orthopaedic, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: CUI Geng. Email: cuigeng@aliyun.com
Objective To explore the accuracy of posterior pedicle screws placement for surgical correction of spinal deformity with different extent of vertebral rotation. Methods Sixty-three patients who underwent surgical spinal deformity correction in our department from June 2009 to September 2012 were included and their clinical data were retrospectively analyzed. Of all 63 patients,there were 28 males and 35 females with an average age of 18.87±12.04 years ranging from 3 to 63 years. After the completion of all pedicle screws insertion and before correction, intraoperative CT scan was applied and three dimensional image was reconstructed to measure vertebral rotation degree (R) and access the accuracy of each screw. According to the vertebral rotation degree, all screws were divided into 4 groups (Group 1: R=0°; Group 2: 0°- 10°; Group 3: 11°- 20°; Group 4: R>20°). Grade Ⅱ and Ⅲ screws were defined as malposition and needed revision. Broken screws rate, malposition rate of each group with different magnitude of vertebral rotation were calculated and analyzed. Results There were 1 072 pedicle screws placed in 63 patients including 206 screws in Group 1, 534 screws in Group 2, 252 screws in Group 3 and 80 screws in Group 4 after intraoperative CT measurement. The broken screws rate in Group 1 was 4.4% (9 screws) and 5.8% (31 screws), 20.6% (52 screws), 40% (32 screws) in Group 2, 3, 4 respectively. And the malposition rate of each group was 1.9% (4 screws) in Group 1 , 2.6% (14 screws) in Group 2, 9.9% (25 screws) in Group 3 and 27.5% (22 screws) in Group 4. Compared with Group 1 and Group 2, significant higher broken screws rate and malposition rate were found in Group 3 and Group 4 (P<0.01). However, it revealed a significant higher broken screws rate and malposition rate in Group 4 in comparison to Group 3 (P<0.05). Conclusion Vertebral rotation provides an obvious influence in accuracy of posterior pedicle screws placement for surgical spinal deformity correction. Screws placement accuracy will be lower when vertebral rotation is severer.
pedicle screws; spinal deformity; vertebral rotation
R 687.3
A
2095-5227(2015)07-0713-03
10.3969/j.issn.2095-5227.2015.07.020
2015-01-22
王鈾,男,在讀碩士,醫師。研究方向:脊柱外科。Email: magicwangyou@163.com
崔賡,男,副主任醫師,碩士生導師。Email: cuigeng @aliyun.com