焦俊穎
【摘要】加強發散思維訓練是提高學生思維能力的重要措施。數學教學要走出機械訓練的誤區,注重培養靈活解題思想,發展變通思維,鼓勵學生針對問題進行個性化思考,引導學生創新思考,針對學生的學習方式進行多種形式的發散思維訓練,全面提高學生的數學綜合能力。
【關鍵詞】小學數學 發散思維
傳統的數學教學注重機械訓練,讓學生記住的是結果,對學生的評價也注重于計算結果的正誤,缺乏過程、方法及思維的訓練和評價。因此,學生長期以來始終處于被動學習的狀態,教師布置哪些習題,學生把這些習題解決了就算完成任務,小學數學教學以集中思維為主要思維方式,課本上的題目和材料的呈現過程大都循著一個模式,學生習慣于按照書上寫的與教師教的方式去思考問題,用符合常規的思路和方法解決問題,這對于基礎知識、基本技能的掌握是必要的,但對于小學生學習數學興趣的激發、智力能力的發展,特別是創造性思維的發展,顯然是不夠的。新課程理念強調,小學數學教學的基本出發點就是促進學生全面、和諧、持續發展,而這些需要教師徹底改變傳統的告訴式教學,讓學生自主探索,在探索發展中形成創新精神和創新能力。強化發散思維訓練是促進學生能力提高的基本途徑之一。在小學數學教學中如何強化發散思維訓練呢?
一、培養靈活解題思想,在變通中培養發散思維
數學問題千變萬化,僅靠幾個公式或例題,是不能解決問題的,因此,要培養學生靈活綜合運算各種解題方法的思想,擺脫習慣性思考方式的束縛,不受固定模式的制約。因此,在學生較好地掌握了一般方法后,要注意誘導學生離開原有思維軌道,從多方面思考問題,進行思維變通。當學生思維閉塞時,教師要善于調度原型幫助學生接通與有關舊知識和解題經驗的聯系,作出轉換、假設、化歸、逆反等變通,產生多種解決問題的設想。如對于下面的應用題:王師傅做一批零件,8天做了這批零件的2/5,這樣,剩下的工作還要幾天可以完成?學生一般都能根據題意作出(1-2/5)÷(2/5÷8)的習慣解答。此時,教師可作如下引導:教師誘導性提問學生求異性解答①完成這批零件需要多少天8÷2/5-8或8÷2/5×(1-2/5)②已做零件數是剩下零件數2/5÷(1一2/5)的幾分之幾?③剩下零件數是已做零件數(1-2/5)÷2/5的幾倍?④能從題中數量間找出相等方程解法關系嗎?⑤從題中幾種量中能判斷出比例解法比例關系嗎?通過這些引導,使學生自覺地從一個思維過程轉換到另一個思維過程,逐步形成在題中數量間自由往返調節的變通能力,這不僅有利于數學問題的解決,更對學生在現實生活中遇到問題形成靈活變通的解決思想具有重大影響。
二、鼓勵學生個性化思考,在創新中培養學生的發散思維能力。
在分析和解決問題的過程中,學生能別出心裁地提出新異的想法和解法,這是思維獨創性的表現。盡管小學生的獨創從總體上看是處于低層次的,但它卻蘊育著未來的大發明、大創造,教師應滿腔熱情地鼓勵他們別出心裁地思考問題,大膽地提出與眾不同的意見與質疑,獨辟蹊徑地解決問題,這樣才能使學生思維從求異、發散向創新推進。如解答“某玩具廠生產一批兒童玩具,原計劃每天生產60件,7天完成任務,實際只用6天就全部完成了。實際每天比原計劃多生產多少件玩具?”一題時,照常規解法,先求出總任務有多少件,實際每天生產多少件,然后求出實際每天比原計劃多生產多少件,列式為60×7÷6-60=10(件)。 而有一個學生卻說:“只須60÷6就行了”。他理由是:“這一天的任務要在6天內完成所以要多做10件。”從他的回答中,可以看出他的思路是跳躍的,省略了許多分析的步驟。他是這樣想的:7天任務6天完成,時間提前了1天,自然這一天的任務(60件)也必須分配在6天內完成,所以,同樣得60÷6=10,就是實際每天比計劃多做的件數了。毫無疑問,這種獨創性應該給予鼓勵。獨創往往蘊含于求異與發散之中,經常誘導學生思維發散,才有可能出現超出常規的獨創;反之,獨創性又豐富了發散思維,促使思維不斷地向橫向與縱向發散。
三、開展多種形式的訓練,培養學生的發散思維能力
在小學數學教學過程中,教師可結合教學內容和學生的實際情況,采取多種形式的訓練,培養學生思維的敏捷性和靈活性,以達到誘導學生思維發散,培養發散思維能力的目的。
1、一題多變。對題中的條件、問題、情節作各種擴縮、順逆、對比或敘述形式的變化,讓學生在各種變化了的情境中,從各種不同角度認識數量關系。如,有一批零件,由甲單獨做需要12小時,乙單獨做需要10小時,丙單獨做需要15小時。如果三個人合做,多少小時可以完成?解答后,要求學生再提出幾個問題并解答,可能提出如下一些問題:甲單獨做,每小時完成這批零件的幾分之幾?乙呢?丙呢?甲、乙合做多少小時可以做完?乙、丙合做呢?甲單獨先做了3小時,剩下的由乙、丙做,還要幾小時做完?甲、乙先合做2小時,再由丙單獨做8小時,能不能做完?甲、乙、丙合做4小時,完成這批零件的幾分之幾?通過這種訓練不僅使學生更深入地掌握工程問題的結構和解法,還可預防思維定勢,同時也培養了發散思維能力。
2、一題多議。提供某種數學情境,調度學生多方面的舊知、技能或經驗,組織議論,引起思維火花的撞擊。如算式27+3,要求學生從不同角度表述意義:①把27平均分成3份,每份是多少?②27里包含幾個3?③3除27,所得的商是多少?④27是3的幾倍?⑤3與一 個數的乘積是27,求這個數?⑥多少個3相加的和是27?⑦學校有27只花皮球,平均分給一年級的三個班,問每班得到多少只花皮球?
3、一題多解。在條件和問題不變的情況下,讓學生多角度、多側面地進行分析思考,探求不同的解題途徑。一題多解的訓練是培養學生發散思維的一個好方法。它可以通過縱橫發散,使知識串聯、綜合溝通,達到舉一反三、融會貫通的目的。例如,甲乙兩地相距200千米。一輛貨車,從甲地開往乙地,前3小時行了全程的2/5,照這樣的速度,行全程需要多少小時?解法一:200 ÷(200×2/5÷3)或1÷(2/5÷3);從倍數關系考慮可得解法二:3×〔200÷(200×2/5)〕或3×(1÷2/5);用列方程的辦法得解法三:設行完全程需要X小時。200÷X=200×2/5÷3;從時間+路程=單位路程所需的時間,可得解法四:3÷2/5,引導學生一題求多解,是培養發散思維的有效方法。