●吳冠男 (桐鄉(xiāng)市第三中學(xué) 浙江桐鄉(xiāng) 314502) ●沈新權(quán) (嘉興市第一中學(xué) 浙江嘉興 314050)
微過(guò)程 深反思
——記一次數(shù)學(xué)微課比賽的歷程
●吳冠男 (桐鄉(xiāng)市第三中學(xué) 浙江桐鄉(xiāng) 314502) ●沈新權(quán) (嘉興市第一中學(xué) 浙江嘉興 314050)
近幾年,微課快速掀起熱潮.2011年,廣東省佛山市的胡鐵生老師提出了“微課”的概念,他認(rèn)為:“微課”是指按照新課程標(biāo)準(zhǔn)及教學(xué)實(shí)踐要求,以教學(xué)視頻為主要載體,反映教師在課堂教學(xué)過(guò)程中針對(duì)某個(gè)知識(shí)點(diǎn)或教學(xué)環(huán)節(jié)而開展教與學(xué)活動(dòng)的各種教學(xué)資源的有機(jī)組合[1].此外,黎加厚、焦建利等教育專家對(duì)微課進(jìn)行了相關(guān)研究與論述,微課不斷得到教育界和社會(huì)的認(rèn)可,微課的開發(fā)、比賽、應(yīng)用等出現(xiàn)了百花齊放的新格局.
筆者有幸參加了“2015年嘉興市初中數(shù)學(xué)首屆微課說(shuō)課比賽”,所制作的微課“探索二次函數(shù)的系數(shù)與圖像的關(guān)系”獲得了一等獎(jiǎng).回顧其過(guò)程感受頗深,下面筆者將制作微課的思路和反思作簡(jiǎn)要呈現(xiàn),希望對(duì)制作微課的同仁們有所啟發(fā),并請(qǐng)專家批評(píng)指正.
2.1 微講解
2.1.1 系數(shù)a與圖像的關(guān)系
引導(dǎo)學(xué)生觀察幾何畫板演示的動(dòng)畫,思考當(dāng)a>0,a<0時(shí)拋物線開口方向的不同,以及|a|的大小與拋物線開口大小的關(guān)系(如圖1所示).
課堂教學(xué) 在幾何畫板中,讓a的取值逐漸變化,拋物線y=ax2+bx+c圖像隨之變化.并請(qǐng)學(xué)生思考當(dāng)a>0,a<0時(shí)拋物線開口方向的不同,以及|a|的大小與拋物線開口大小的關(guān)系.
分析 在視頻的動(dòng)畫演示過(guò)程中,由于演示速度過(guò)快,導(dǎo)致學(xué)生觀看時(shí),無(wú)法思考“系數(shù)a與圖像開口方向、系數(shù)a與圖像開口大小”這2種關(guān)系.
改進(jìn) 將幾何畫板演示分為2段:第1段讓學(xué)生思考當(dāng)a>0,a<0時(shí)拋物線開口方向的關(guān)系;第2段讓學(xué)生思考|a|的大小與拋物線開口大小的關(guān)系.
設(shè)計(jì)意圖 引導(dǎo)學(xué)生在觀察中思考:系數(shù)a的正負(fù)決定圖像的開口方向、|a|的大小決定開口大小.此外,可以選y=ax2為例,啟發(fā)學(xué)生從代數(shù)式的角度思考a對(duì)ax2正負(fù)的影響,即a決定函數(shù)值y的正負(fù),從而可知a決定圖像開口方向.

圖1 圖2
2.1.2 系數(shù)b與圖像的關(guān)系
觀察幾何畫板中的演示,思考當(dāng)a,b同號(hào)時(shí),對(duì)稱軸在y軸的左側(cè)還是右側(cè),以及思考當(dāng)a,b異號(hào)時(shí)和當(dāng)b=0時(shí),對(duì)稱軸的位置(如圖2所示).
課堂教學(xué) 幾何畫板演示當(dāng)a>0時(shí),讓b的取值隨機(jī)變化,包括b>0,b=0,b<0,拋物線y=ax2+bx+c的圖像隨之變化.讓學(xué)生思考a,b的符號(hào)與對(duì)稱軸位置的關(guān)系.
分析 在演示的過(guò)程中,只選取了當(dāng)a>0時(shí)的情況,沒有對(duì)a的正負(fù)情況進(jìn)行全面分類討論.
改進(jìn) 在演示過(guò)程中,分類討論當(dāng)a>0,a<0,以及b>0,b=0,b<0時(shí)的不同情況,并引導(dǎo)學(xué)生觀察對(duì)稱軸的位置并思考a,b符號(hào)的變化.

2.1.3 系數(shù)c與圖像的關(guān)系
觀察演示,并思考:當(dāng)系數(shù)c取不同的值時(shí),拋物線與y軸交點(diǎn)的位置不同(如圖3所示).
課堂教學(xué) 幾何畫板演示c的取值正負(fù)逐漸變化,當(dāng)c>0,c=0,c<0時(shí)拋物線y=ax2+bx+c的圖像與y軸交點(diǎn)的位置.
分析 視頻中沒有明確的文字說(shuō)明,在演示的過(guò)程中,學(xué)生不清楚思考什么問(wèn)題,導(dǎo)致問(wèn)題沒有針對(duì)性.
改進(jìn) 演示前,在屏幕上顯示問(wèn)題的內(nèi)容,在演示中標(biāo)出拋物線與y軸的交點(diǎn)為(0,c).
設(shè)計(jì)意圖 引導(dǎo)學(xué)生感受系數(shù)c與拋物線在y軸的交點(diǎn)位置之間的關(guān)系,此關(guān)系較為明顯.啟發(fā)學(xué)生思考拋物線y=ax2+bx+c在y軸交點(diǎn)的橫坐標(biāo)始終為0,當(dāng)x=0時(shí),y=c,從而拋物線在y軸上的交點(diǎn)為(0,c).

圖3 圖4
2.1.4b2-4ac與圖像的關(guān)系
觀察幾何畫板中b2-4ac的數(shù)值變化與x軸交點(diǎn)個(gè)數(shù)的關(guān)系(如圖4所示).
課堂教學(xué) 演示當(dāng)b2-4ac>0,b2-4ac=0,b2-4ac<0時(shí),拋物線y=ax2+bx+c圖像與x軸的交點(diǎn)情況,讓學(xué)生思考b2-4ac數(shù)值變化與x軸交點(diǎn)個(gè)數(shù)的關(guān)系.
分析b2-4ac數(shù)值與圖像的關(guān)系雖然有動(dòng)態(tài)演示,但學(xué)生僅停留在感知層面,缺少理性的理解,有必要滲透函數(shù)與方程思想.
改進(jìn) 演示后,引導(dǎo)學(xué)生思考二次函數(shù)與一元二次方程的關(guān)系,把二次函數(shù)圖像與x軸交點(diǎn)個(gè)數(shù)轉(zhuǎn)化為一元二次方程根的個(gè)數(shù).
設(shè)計(jì)意圖 引導(dǎo)學(xué)生體會(huì)“b2-4ac正負(fù)的變化”與“拋物線與x軸交點(diǎn)個(gè)數(shù)”的變化關(guān)系,感受a,b,c共同對(duì)拋物線圖像的影響.二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)可轉(zhuǎn)化為一元二次方程根的判斷,一元二次方程根的問(wèn)題可以轉(zhuǎn)化為二次函數(shù)圖像交點(diǎn)的問(wèn)題.
2.2 微練習(xí)
例1 二次函數(shù)y=ax2+bx+c(其中a≠0)圖像如圖5所示,則下列結(jié)論中正確的是
( )
A.a>0 B.b<0
C.c<0 D.a+b+c>0
設(shè)計(jì)意圖 本題是基礎(chǔ)練習(xí),鞏固系數(shù)a,b,c與拋物線圖像的簡(jiǎn)單關(guān)系:當(dāng)拋物線開口向下時(shí),a<0;當(dāng)對(duì)稱軸在y軸右側(cè)時(shí),a,b異號(hào),則b>0;當(dāng)圖像與y軸的交點(diǎn)在正半軸時(shí),c>0.本題要注重引導(dǎo)學(xué)生理解當(dāng)x=1時(shí),y=a+b+c,對(duì)函數(shù)值正負(fù)的判斷.故選D.

圖5 圖6
例2 二次函數(shù)y=ax2+bx+c(其中a≠0)的圖像如圖6所示,開口向上且對(duì)稱軸為直線x=1,圖像經(jīng)過(guò)(3,0),下列結(jié)論中正確的是
( )
A.abc<0 B.2a+b<0
C.4ac-b2<0 D.a-b+c<0
設(shè)計(jì)意圖 本題是提高練習(xí),鞏固系數(shù)a,b,c的正負(fù)判斷以及對(duì)稱軸、b2-4ac的靈活運(yùn)用.其中,要引導(dǎo)學(xué)生注意對(duì)稱軸為1時(shí)的應(yīng)用.另外,要引導(dǎo)學(xué)生對(duì)二次函數(shù)的對(duì)稱性進(jìn)行感知:一個(gè)交點(diǎn)為(3,0),對(duì)稱軸為x=1,可知另一交點(diǎn)為(-1,0).故選C.
例3 二次函數(shù)y=ax2+bx+c(其中a≠0)圖像如圖7所示,則下列結(jié)論:
①當(dāng)m≠1時(shí),a+b>am2+bm;

圖7

( )
A.①對(duì)②對(duì)
B.①錯(cuò)②錯(cuò)
C.①對(duì)②錯(cuò)
D.①錯(cuò)②對(duì)

回顧微課的制作過(guò)程,筆者有以下4點(diǎn)反思:
3.1 微課是課堂教學(xué)有益補(bǔ)充
首先,微課短小精悍.微課的時(shí)長(zhǎng)一般要控制在10分鐘左右,這符合學(xué)生注意力集中的規(guī)律.在當(dāng)下“快餐式”的文化節(jié)奏下,學(xué)生們更易于接受“一口能咽下去”的知識(shí).
其次,微課主題突出.相對(duì)于傳統(tǒng)的課堂,微課圍繞某一個(gè)知識(shí)點(diǎn)(重點(diǎn)、難點(diǎn)、疑點(diǎn))、一個(gè)例題或習(xí)題而展開教學(xué),因此,微課的教學(xué)主題更加突出,教學(xué)目標(biāo)更加明確.
再次,微課便于傳播.微課資源容量較小,師生可以在網(wǎng)絡(luò)上流暢地進(jìn)行在線觀看,也可以方便地下載到終端設(shè)備上實(shí)現(xiàn)移動(dòng)學(xué)習(xí),方便學(xué)生之間的討論與互動(dòng).
3.2 微課為學(xué)生學(xué)習(xí)提供方便
首先,微課有利于學(xué)生碎片化學(xué)習(xí).學(xué)生可以選擇在任何時(shí)間、任何地點(diǎn),利用多種信息終端(電腦、上網(wǎng)本、手機(jī)等),在有限的時(shí)間內(nèi)學(xué)習(xí)短小的、緊密聯(lián)系的知識(shí)單元,符合網(wǎng)絡(luò)時(shí)代信息碎片化的學(xué)習(xí)方式.
其次,微課有利于個(gè)性化學(xué)習(xí).學(xué)生可以在課前或課后根據(jù)自己學(xué)習(xí)的情況,在獨(dú)立的環(huán)境中自由地開展學(xué)習(xí),學(xué)生學(xué)習(xí)的速度和程度可以由自己掌控,懂的知識(shí)可以跳過(guò),沒懂的知識(shí)可以反復(fù)觀看或停下思考,從而按照自己的步驟學(xué)習(xí).
3.3 微課給教師技能帶來(lái)挑戰(zhàn)
首先,軟件設(shè)備要專業(yè).如屏幕錄像軟件、攝像機(jī)、手寫板等.微課是以視頻形式呈現(xiàn)給學(xué)生學(xué)習(xí)的,因此視頻制作的圖像要流暢而清晰.視頻中的動(dòng)態(tài)演示、速度要適中,動(dòng)靜結(jié)合,以方便學(xué)生觀察為宜.
其次,講解語(yǔ)言要生動(dòng).微課中與學(xué)生交流的主要是語(yǔ)言,因此,需要語(yǔ)調(diào)抑揚(yáng)頓挫,使內(nèi)容聽起來(lái)有意思,可以加入一些幽默風(fēng)趣的言語(yǔ),甚至與其他教師一起來(lái)講解.
再次,注釋標(biāo)記要及時(shí).在以運(yùn)算為主的數(shù)學(xué)微課中,注釋的功能是不可或缺的,我們需要在屏幕上及時(shí)書寫運(yùn)算.我們可以把屏幕想象成白板,可以利用手寫注釋的設(shè)備在屏幕上面進(jìn)行書寫,書寫的展示比用PPT直接展示的作用顯得更加有意義.
3.4 微課為學(xué)校教研開辟領(lǐng)域
微課作為新興的教研活動(dòng),學(xué)校要組織教師學(xué)習(xí)相關(guān)的理論知識(shí),進(jìn)一步理解微課的內(nèi)涵、特征、意義.微課的學(xué)習(xí)理論、微課設(shè)計(jì)、微課應(yīng)用模式等方面,目前還處于起步階段,這也為學(xué)校的教學(xué)研究帶來(lái)新的機(jī)遇.
傳統(tǒng)的一節(jié)課要40~50分鐘,而且有著復(fù)雜的教學(xué)環(huán)節(jié)和教學(xué)內(nèi)容,而微課只有10~20分鐘,內(nèi)容更為精煉而簡(jiǎn)約,要把40~50分鐘講解的內(nèi)容分解成或壓縮到10~20分鐘,這需要教師研究新的教學(xué)方式,并進(jìn)一步探索精細(xì)化教學(xué)在微課中的運(yùn)用.
總之,微課作為新的教育資源、學(xué)習(xí)方式、教學(xué)模式,悄無(wú)聲息地影響著我們的教學(xué)與學(xué)習(xí).雖然,微課的開發(fā)還有待進(jìn)一步地系統(tǒng)化、規(guī)范化,但我們應(yīng)以積極的態(tài)度去接納新事物,并努力把微課在教學(xué)中的優(yōu)勢(shì)不斷發(fā)揮出來(lái).
[1] 胡鐵生.“微課”區(qū)域教育信息資源發(fā)展的新趨勢(shì)[J].電化教育研究,2011(10):61-65.