張 炯 孫耕耘 尤青海
B型利鈉肽(B-type natriuretic peptide, BNP)又稱腦鈉肽(brain natriuretic peptide),是一種多肽類激素,主要由心室肌細胞合成和分泌,以應對心臟容量和壓力負荷的變化。B型利鈉肽和氨基末端B型利鈉肽(N-terminal pro-B-type natriuretic peptide, NT-proBNP)前體最先被應用于心力衰竭的臨床診斷、危險分層和預后評價等,但它們在一些肺部疾病中也具有一定的臨床價值。現就BNP和NT-proBNP在呼吸系統疾病中的最新研究進展做一綜述。
編碼人類的BNP基因位于1號染色體,由3個外顯子和2個內含子組成,可編碼含有108個氨基酸的BNP前體(proBNP)。ProBNP在進入血液后被非特異性蛋白酶裂解成為含有32個氨基酸的C端片段(BNP)和含有72個氨基酸的N端片段(NT-proBNP)。二者生物學來源相同,但NT-proBNP不具有生物活性,體外穩定性好,半衰期較BNP長(分別約為2 h和20 min),臨床檢測時不受生理節律、標本采集條件的影響和限制[1]。BNP與利鈉肽受體-A(natriuretic peptide receptor-A, NPR-A)結合發揮生物學效應,主要有利鈉利尿、舒張血管、抑制腎素-血管緊張素-醛固酮系統(renin-angiotensin-aldosterone system, RAAS)及交感神經活性、抑制血管平滑肌細胞增生和心肌纖維化等。
低濃度BNP與心房利鈉肽(arterial natriuretic peptide,ANP)共同儲存于心房顆粒中,主要由心室肌細胞的合成、分泌,如心室容量和壓力負荷增加時,BNP基因快速表達。因而,在右心功能不全的患者中也可出現BNP和NT-proBNP濃度的升高,且與肺動脈收縮壓(pulmonary artery systolic pressure, PASP)成正相關。
呼吸困難是諸多呼吸系統疾病,如慢性阻塞性肺疾病、支氣管哮喘、肺栓塞、胸腔積液等常見的臨床癥狀,與心源性呼吸困難的鑒別診斷是臨床面臨的最常見問題。僅憑體格檢查和臨床癥狀做出的診斷不夠準確且敏感性不高。臨床常用輔助檢查如X線、超聲心動圖具有檢查儀器不夠輕便、不能及時操作、容易延誤診療時機等局限性,血漿BNP和NT-proBNP濃度的床旁檢測,有助于快速明確呼吸困難病因。研究表明,以血漿BNP濃度100 pg/ml為截斷值鑒別充血性心力衰竭與其他原因導致的呼吸困難,準確性達83%,靈敏度達90%,特異度為76%,并且其濃度越低,心力衰竭的可能性越小,<50 pg/ml的陰性預測值為96%[2]。血漿NT-proBNP濃度低于300 pg/ml可用于排除心力衰竭,陰性預測值為99%[3]。因此,血漿BNP和NT-proBNP濃度的檢測有利于心源性與肺源性呼吸困難病因的鑒別診斷并指導治療。
1. BNP與肺動脈高壓: 根據BNP的基因表達和分泌機制可知,肺動脈高壓通過右心室合成和釋放BNP和NT-proBNP,但由于右心室心肌細胞數量遠遠小于左心室,故研究發現肺動脈高壓患者的BNP和NT-proBNP血漿濃度低于心力衰竭患者[4-5]。BNP和NT-proBNP濃度的檢測有助于早期發現肺部疾病所致的肺動脈高壓[6]。Goto等[7]發現肺動脈高壓患者排除左心衰竭和左心室肥大后,BNP濃度與右心導管測量的肺動脈收縮壓成正相關,因而可用于預測肺動脈壓力。Benza等[8]發現對于肺動脈高壓患者,BNP > 180 pg/ml時,1年內死亡率顯著增加;NYHA心功能分級Ⅰ、BNP<50 pg/ml、6 min步行距離≥440 m等可增加肺動脈高壓患者1年生存率。研究發現在原發型肺動脈高壓患者中,血漿BNP水平與平均肺動脈壓、總肺血管阻力、右心室舒張末壓、NYHA心功能分級呈正相關,與最大攝氧量、心輸出量、6 min步行距離呈負相關,與肺毛細血管楔壓無關。Agoston-Coldea等[9]研究COPD并發肺動脈高壓患者,發現血漿NT-proBNP濃度高于健康對照人群,NT-proBNP對于發現合并右心功能不全具有很高的敏感性和特異性分別為100%和84%。
2. BNP與肺血栓栓塞癥: 在右心功能正常的急性肺栓塞患者中,BNP與NT-proBNP濃度常在正常范圍內,因而不能用于診斷肺血栓栓塞癥(pulmonary thromboembolism, PTE),但有助于早期發現右心功能不全[10]。Gutte等[11]研究發現在急性肺栓塞患者中,并發右心功能不全患者的BNP濃度為251.0 (103.8~672.4) pg/ml,高于右心功能正常的患者[濃度為19.6(8.2~47.9)pg/ml]。用于診斷右心功能不全的截斷值為103 pg/ml,敏感度86%,特異度91%,陽性預測值75%,陰性預測值95%,準確率90%。Pasha等[12]研究表明急性肺栓塞患者的NT-proBNP濃度升高與右心室射血分數、右心室舒張末容量相關,而與左心室射血分數、左心室舒張末容量無關。一項多中心前瞻性臨床研究顯示,NT-proBNP濃度高于300 pg/ml是非大面積PTE不良預后的預測因子,其預測價值優于D-二聚體、心肌肌鈣蛋白、肌紅蛋白、心肌型脂肪酸結合蛋白等指標[13]。右心功能不全、利鈉肽濃度升高時,肺栓塞患者的短期死亡率增加[14]。因此,利鈉肽濃度的檢測可用于肺栓塞患者的危險分層及預后判斷,但對發生不良事件的排除價值更有臨床意義,其陰性預測值可達99% (95% CI, 97~100)[15]。
3. BNP與慢性阻塞性肺疾病:利鈉肽水平在慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)穩定期患者中的升高幅度低于急性加重期及心力衰竭患者[16]。BNP和NT-proBNP濃度的檢測可用于呼吸困難患者中COPD與心力衰竭的鑒別診斷,并有助于臨床醫生發現COPD患者合并左心衰竭或肺源性心臟病,并判斷預后[17-18]。Stolz等[19]研究顯示COPD急性加重期患者血漿BNP濃度[65(34~189) pg/ml]高于恢復期[45 ( 25~85) pg/ml],在入住ICU治療的患者中顯著升高并與治療時間相關,但與短期或長期死亡率無明顯相關性。Lee等[20]分析COPD急性加重患者的血漿NT-proBNP濃度與心功能關系后,發現NT-proBNP濃度的增加與左、右心室功能損傷均有關,并不是由于肺心病或COPD繼發的肺動脈高壓而單獨引起其合成和分泌,但COPD急性加重期左心室功能損害的機制仍未明確。應用利尿劑和/或血管舒張劑等藥物可使COPD急性加重患者(無右心功能不全)血漿BNP濃度顯著下降[21],二者聯合使用時BNP濃度降低更顯著。早期應用利尿劑和血管舒張劑可有助于降低COPD急性加重時的右心室壓力,減少心臟容量負荷,降低肺血管阻力,使BNP濃度降低。
4. BNP與間質性肺疾病: 血漿BNP和NT-proBNP濃度升高有助于發現間質性肺疾病患者出現肺動脈高壓或右心功能衰竭,但不能早期發現潛在或輕度肺動脈高壓的存在[22]。有研究表明:間質性肺疾病患者的血漿BNP濃度與肺動脈收縮壓、肺血管阻力以及6 min步行試驗有關[23]。Song等[24]回顧性分析同時行BNP與超聲心動圖檢查的特發性肺間質纖維化(idiopathic pulmonary fibrosis, IPF)患者臨床資料,發現BNP是IPF預后的獨立預測因子,并且預后判斷的價值優于肺動脈高壓,BNP濃度升高患者的一年內死亡率高于濃度正常者(分別為70.5%和23.7%),平均生存時間低于BNP濃度正常者(分別為11個月和22.5個月)。在間質性肺疾病患者中,BNP濃度與右心室收縮壓(right ventricular systolic pressure, RVSP)、肺動脈壓力有關,BNP ≥ 20 pmol/L時患者死亡率明顯升高,且與年齡、性別、肺功能無關[25]。
5. BNP與急性呼吸窘迫綜合征: Karmpaliotis等[26]觀察了80例缺氧性呼吸衰竭的ICU患者并且X線顯示雙肺部浸潤,其中急性呼吸窘迫綜合征(acute respiratory distress syndrome, ARDS)患者血漿BNP濃度為325(82~767)pg/ml,而充血性心力衰竭患者血漿BNP濃度為1260(541~2020)pg/ml 。ROC曲線下面積顯示BNP水平≤200 pg/ml對于診斷ARDS的特異性和陽性預測值為91%,≥1200 pg/ml對于診斷心源性肺水腫的特異性和陽性預測值分別為92%和75%。Komiya等[27]發現C反應蛋白(C-reactive protein, CRP)和BNP鑒別ALI/ARDS與心源性肺水腫的ROC曲線下面積分別為0.831和0.887,二者聯合可提高鑒別診斷的準確性(ROC曲線下面積為0.931),并且可以排除因肺炎或敗血癥導致的血漿BNP濃度升高的急性肺水腫患者。血漿BNP和NT-proBNP濃度在右心功能不全的ARDS患者中明顯升高[28-29]。Determann等[30]認為在低潮氣量通氣的ARDS患者中出現急性肺心病的可能性較小,因而血漿NT-proBNP濃度應低于心力衰竭患者。分析150例機械通氣患者的血漿NT-proBNP濃度,發現無ARDS患者的血漿NT-proBNP濃度較低,且不受潮氣量大小的影響,當出現ARDS時NT-proBNP水平升高,且與ARDS進展有關,NT-proBNP并不能用于診斷呼吸機導致的肺損傷。一些治療方法,如液體復蘇、升壓藥物、正壓通氣等也可使利鈉肽濃度升高[31]。
6. BNP與胸腔積液: 有研究證實BNP和NT-proBNP可用于心源性漏出液與其他原因引起胸腔積液的鑒別診斷[32-34]。Marinho等[34]納入77例胸腔積液患者,其中34例為心力衰竭引起的胸腔積液,43例為其他原因引起的胸腔積液(如肝性胸水、癌性胸水和結核性胸水等)。心力衰竭患者與非心源性胸腔積液患者的血漿BNP濃度分別為748(462~1419) pg/ml和36(13~20)pg/ml;心力衰竭患者與非心源性胸腔積液患者的胸水BNP濃度分別為386(222~638)pg/ml和43(28~90)pg/ml;血漿和胸水BNP用于鑒別心力衰竭與其他原因引起的胸腔積液的ROC曲線下面積分別為0.987和0.949。NT-proBNP半衰期長且在試管中性質穩定,比BNP具有更高的準確性和鑒別效能,因而更有助于臨床診斷或排除心力衰竭引起的胸腔積液[35-36]。因此,有學者證實胸水NT-proBNP濃度用于診斷心源性漏出液的敏感性和特異性分別為95%和94%[37-38]。臨床常用的Light′s標準用于診斷滲出液敏感性高而特異性低,并且需要實施胸腔穿刺術獲得胸水標本,同時,在使用利尿劑治療的心力衰竭患者中,通過Light′s標準可將大約25%的漏出液誤診為滲出液[32],而血漿NT-proBNP水平升高可用于Light′s標準誤診或未施行胸腔穿刺術的心力衰竭患者的診斷[39-41]。
7. BNP與社區獲得性肺炎:血漿BNP和NT-proBNP濃度有助于判斷CAP患者疾病嚴重程度和預后[42-43]。研究報道BNP與肺炎嚴重度指數(pneumonia severity index, PSI)呈顯著正相關[42],社區獲得性肺炎(community-acquired pneumonia, CAP)死亡患者的BNP濃度高于生存患者[分別為439.2 (137.1-1384.6) 和114.3 (51.3-359.6) pg/ml 1,P<0.001];BNP和PSI預測CAP生存率的曲線下面積分別為0.75和0.71,二者無差異。與臨床常用炎癥指標的對比研究顯示,血漿BNP和降鈣素原(procalcitonin, PCT)濃度升高與CAP嚴重程度成正相關,而CRP、白細胞總數與CAP嚴重程度不相關[44-45]。血漿BNP和NT-proBNP濃度在CAP患者中升高的機制尚未明確。Christ-Crain等[42]發現CAP患者血漿BNP濃度與氧飽和度無相關性,推測缺氧不是引起BNP濃度升高的主要機制,可能與炎癥反應以及交感神經興奮性增加有關[46-47]。
8. BNP與肺癌: 研究發現肺小細胞肺癌細胞中能檢測到BNP基因表達,而Masago等[48]發現非小細胞肺癌患者血漿BNP濃度的平均值和中位數分別為11.5、22.4 pg/ml,有遠處轉移的肺癌患者BNP濃度低于無遠處轉移的患者,但與患者生存期無明顯相關性。血漿NT-proBNP濃度在合并心肌或心包浸潤的非小細胞肺癌中顯著升高,是發現非小細胞肺癌合并心臟轉移的一項敏感指標。
9. BNP與手術: 術后房顫(postoperative atrial fibrillation, POAF)發生在18%非心臟開胸手術術后患者中,也是肺切除術后的常見并發癥[49-50]。Nojiri等[49]分別觀察了87例施行肺切除手術的肺癌患者術前和術后第1、3、7天的血漿BNP濃度。結果表明術前血漿BNP濃度升高的患者在肺切除術后更易并發心房顫動,術前血漿BNP濃度是預測術后發生心房顫動的獨立因素,同時,并發心房顫動的患者血漿BNP濃度在術后顯著升高。
10. BNP與阻塞型睡眠呼吸暫停綜合征: Usui等[51]檢測了235例符合阻塞型睡眠呼吸暫停(obstructive sleep Apnoea, OSA)患者的血漿BNP濃度值,其中合并左心室肥大患者的血漿BNP濃度高于未合并左心室肥大患者,合并心室舒張功能不全患者血漿BNP濃度高于心室功能正常患者。OSA患者嚴重程度增加,左心室肥大和舒張功能不全發生的概率增加,血漿BNP濃度升高可反映嚴重OSA患者更易發生左心室肥大。一項以社區為基礎的女性OSA樣本研究顯示: 夜間睡眠呼吸暫停的嚴重程度與清晨血漿BNP濃度呈劑量反應關系[52]。
BNP與NT-proBNP不僅可作為心臟標記物反映心臟結構和功能的變化,在一些呼吸系統疾病中也可升高,因此可以將其與心力衰竭等心臟疾病相鑒別,同時可作為部分肺部疾病嚴重程度和預后的判斷指標。臨床醫生對待利鈉肽濃度升高的患者,應綜合分析和考慮,以免誤診和漏診。
參 考 文 獻
1 Gopal DJ, Iqbal MN, Maisel A, et al. Updating the role of natriuretic peptide levels in cardiovascular disease[J]. Postgrad Med, 2011,123(6): 102-113.
2 Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure [J]. N Engl J Med, 2002, 347(3): 161-167.
3 Maisel A, Mueller C, Adams K Jr, et al. State of the art: using natriuretic peptide levels in clinical practice [J]. Eur J Heart Fail, 2008, 10(9): 824-839.
4 Leuchte HH, Holzapfel M, Baumgartner RA, et al. Clinical significance of brain natriuretic peptide in primary pulmonary hypertension [J]. J Am Coll Cardiol, 2004, 43(5): 764-770.
5 Takatsuki S, Wagner BD, Ivy DD. B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide in pediatric patients with pulmonary arterial hypertension [J]. Congenit Heart Dis, 2012, 7(3): 259-267.
6 Badesch DB, Champion HC, Sanchez MA, et al. Diagnosis and assessment of pulmonary arterial hypertension [J]. J Am Coll Cardiol, 2009, 54(1 Suppl): S55-66.
7 Goto K, Arai M, Watanabe A, et al. Utility of echocardiography versus BNP level for the prediction of pulmonary arterial pressure in patients with pulmonary arterial hypertension [J]. Int Heart J, 2010, 51(5): 343-347.
8 Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) [J]. Circulation, 2010, 122(2): 164-172.
9 Agoston-Coldea L, Lupu S, Hicea S, et al. Serum levels of the soluble IL-1 receptor family member ST2 and right ventricular dysfunction [J]. Biomark Med, 2014, 8(1): 11-18.
10 Kaczyńska A, Kostrubiec M, Ciurzyński M, et al. B-type natriuretic peptide in acute pulmonary embolism [J]. Clin Chim Acta, 2008, 398(1-2): 1-4.
11 Gutte H, Mortensen J, Jensen CV, et al. ANP, BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism [J]. Clin Physiol Funct Imaging, 2010, 30(6): 466-472.
12 Pasha SM, Klok FA, van der Bijl N, et al. NT-pro-BNP levels in patients with acute pulmonary embolism are correlated to right but not left ventricular volume and function [J]. Thromb Haemost, 2012, 108(2): 367-372.
13 Vuilleumier N, Le Gal G, Verschuren F, et al. Cardiac biomarkers for risk stratification in non-massive pulmonary embolism: a multicenter prospective study [J]. J Thromb Haemost, 2009, 7(3): 391-398.
14 Coutance G, Cauderlier E, Ehtisham J, et al. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis [J]. Crit Care, 2011, 15(2): R103.
15 Coutance G, Le Page O, Lo T, et al. Prognostic value of brain natriuretic peptide in acute pulmonary embolism [J]. Crit Care, 2008, 12(4): R109.
16 Inoue Y, Kawayama T, Iwanaga T, et al. High plasma brain natriuretic peptide levels in stable COPD without pulmonary hypertension or cor pulmonale [J]. Intern Med, 2009, 48(7): 503-512.
17 Gariani K, Delabays A, Perneger TV, et al. Use of brain natriuretic peptide to detect previously unknown left ventricular dysfunction in patients with acute exacerbation of chronic obstructive pulmonary disease [J]. Swiss Med Wkly, 2011, 141: w13298.
18 Gale CP, White JE, Hunter A, et al. Predicting mortality and hospital admission in patients with COPD: significance of NT pro-BNP, clinical and echocardiographic assessment [J]. J Cardiovasc Med (Hagerstown), 2011, 12(9): 613-618.
19 Stolz D, Breidthardt T, Christ-Crain M, et al. Use of B-type natriuretic peptide in the risk stratification of acute exacerbations of COPD [J]. Chest, 2008, 133(5): 1088-1094.
20 Lee MH, Chang CL, Davies AR, et al. Cardiac dysfunction and N-terminal pro-B-type natriuretic peptide in exacerbations of chronic obstructive pulmonary disease [J]. Intern Med J, 2013, 43(5):595-598.
21 Zhang J, Zhao G, Yu X, et al. Intravenous diuretic and vasodilator therapy reduce plasma brain natriuretic peptide levels in acute exacerbation of chronic obstructive pulmonary disease [J]. Respirology, 2012, 17(4): 715-720.
22 Behr J, Ryu JH. Pulmonary hypertension in interstitial lung disease [J]. Eur Respir J, 2008, 31(6): 1357-1367.
23 Leuchte HH, Neurohr C, Baumgartner R, et al. Brain natriuretic peptide and exercise capacity in lung fibrosis and pulmonary hypertension [J]. Am J Respir Crit Care Med, 2004, 170: 360-365.
24 Song JW, Song JK, Kim DS. Echocardiography and brain natriuretic peptide as prognostic indicators in idiopathic pulmonary fibrosis [J]. Respir Med, 2009, 103(2): 180-186.
25 Corte TJ, Wort SJ, Gatzoulis MA, et al. Elevated brain natriuretic peptide predicts mortality in interstitial lung disease [J]. Eur Respir J, 2010, 36(4): 819-825.
26 Karmpaliotis D, Kirtane AJ, Ruisi CP, et al. Diagnostic and prognostic utility of brain natriuretic peptide in subjects admitted to the ICU with hypoxic respiratory failure due to noncardiogenic and cardiogenic pulmonary edema [J]. Chest, 2007, 131(4): 964-971.
27 Komiya K, Ishii H, Teramoto S, et al. Diagnostic utility of C-reactive Protein combined with brain natriuretic peptide in acute pulmonary edema: a cross sectional study [J]. Respir Res, 2011, 12: 83.
28 Noveanu M, Pargger H, Breidthardt T, et al. Use of B-type natriuretic peptide in the management of hypoxaemic respiratory failure [J]. Eur J Heart Fail, 2011, 13(2): 154-162.
29 Park BH, Kim YS, Chang J, et al. N-terminal pro-brain natriuretic peptide as a marker of right ventricular dysfunction after open-lung approach in patients with acute lung injury/acute respiratory distress syndrome [J]. J Crit Care, 2011, 26(3): 241-248.
30 Determann RM, Royakkers AA, Schaefers J, et al. Serum levels of N-terminal proB-type natriuretic peptide in mechanically ventilated critically ill patients-relation to tidal volume size and development of acute respiratory distress syndrome [J]. BMC Pulm Med, 2013, 13: 42.
31 Park BH, Park MS, Kim YS, et al. Prognostic utility of changes in N-terminal pro-brain natriuretic Peptide combined with sequential organ failure assessment scores in patients with acute lung injury/acute respiratory distress syndrome concomitant with septic shock [J]. Shock, 2011, 36(2): 109-114.
32 Porcel JM.Pearls and myths in pleural fluid analysis [J]. Respirology,2011, 16(1): 44-52.
33 McGrath EE, Warriner D, Anderson PB, et al. The use of non-routine pleural fluid analysis in the diagnosis of pleural effusion [J]. Respir Med ,2010,104(8): 1092-1100.
34 Marinho FC, Vargas FS, Fabri J Jr, et al. Clinical usefulness of B-type natriuretic peptide in the diagnosis of pleural effusions due to heart failure [J]. Respirology, 2011, 16(3): 495-499.
35 Porcel JM, Martínez-Alonso M, Cao G, et al. Biomarkers of heart failure in pleural fluid [J]. Chest, 2009, 136(3): 671-677.
36 Long AC, O'Neal HR Jr, Peng S, et al. Comparison of pleural fluid N-terminal pro-brain natriuretic peptide and brain natriuretic-32 peptide levels [J]. Chest, 2010, 137(6): 1369-1374.
37 Janda S, Swiston J.Diagnostic accuracy of pleural fluid NT-pro-BNP for pleural effusions of cardiac origin: a systematic review and meta-analysis [J]. BMC Pulm Med, 2010, 10: 58.
38 Zhou Q, Ye ZJ, Su Y, et al. Diagnostic value of N-terminal pro-brain natriuretic peptide for pleural effusion due to heart failure: a meta-analysis [J]. Heart, 2010, 96(15): 1207-1211.
39 Porcel JM, Pleural effusions from congestive heart failure [J]. Semin Respir Crit Care Med, 2010, 31(6): 689-697.
40 Porcel JM, Chorda J, Cao G, et al. Comparing serum and pleural fluid pro-brain natriuretic peptide (NT-proBNP) levels with pleural-to-serum albumin gradient for the identification of cardiac effusions misclassified by Light′s criteria [J]. Respirology, 2007, 12(5): 654-659.
41 Porcel JM. Utilization of B-type natriuretic peptide and NT-proBNP in the diagnosis of pleural effusions due to heart failure [J]. Curr Opin Pulm Med, 2011, 17(4): 215-219.
42 Christ-Crain M, Breidthardt T, Stolz D, et al. Use of B-type natriuretic peptide in the risk stratification of community-acquired pneumonia [J]. J Intern Med, 2008, 264(2): 166-176.
43 Nowak A, Breidthardt T, Christ-Crain M, et al. Direct comparison of three natriuretic peptides for prediction of short-and long-term mortality in patients with community-acquired pneumonia. Chest, 2012, 141(4): 974-982.
44 Seligman R, Ramos-Lima LF, Oliveira Vdo A, et al. Biomarkers in community-acquired pneumonia: a state-of-the-art review [J]. Clinics (Sao Paulo), 2012, 67(11): 1321-1325.
45 Yetkin O, Hacievliyagil SS, Gunen H. Assessment of B-type natriuretic peptide in patients with pneumonia[J]. Int J Clin Pract, 2008, 62(3): 488-491.
46 Ogawa T, de Bold AJ. Uncoordinated regulation of atrial natriuretic factor and brain natriuretic peptide in lipopolysaccharide-treated rats [J]. Biomarkers, 2012, 17(2): 140-149.
47 Ohsaki Y, Gross AJ, Le PT, et al. Human small cell lung cancer cells produce brain natriuretic peptide [J]. Oncology, 1999, 56(2): 155-159.
48 Masago K, Fujita S, Togashi Y, et al. Association between brain natriuretic peptide and distant metastases in advanced non-small cell lung cancer patients [J]. Oncol Lett, 2011, 2(2): 253-256.
49 Nojiri T, Maeda H, Takeuchi Y, et al. Predictive value of B-type natriuretic peptide for postoperative atrial fibrillation following pulmonary resection for lung cancer [J]. Eur J Cardiothorac Surg, 2010, 37(4): 787-791.
50 Amar D, Zhang H, Shi W, et al. Brain natriuretic peptide and risk of atrial fibrillation after thoracic surgery [J]. J Thorac Cardiovasc Surg, 2012, 144(5): 1249-1253.
51 Usui Y, Tomiyama H, Hashimoto H, et al. Plasma B-type natriuretic peptide level is associated with left ventricular hypertrophy among obstructive sleep apnoea patients [J]. J Hypertens, 2008, 26(1): 117-123.
52 Ljunggren M, Lindahl B, Theorell-Hagl?w J, et al. Association between obstructive sleep apnea and elevated levels of type B natriuretic peptide in a community-based sample of women [J]. Sleep, 2012, 35(11): 1521-1527.