999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Directive Emission Derived from A Meta-surface with Complete Bandgap of Surface Resonances

2013-07-25 06:37:28CAOYangLIUYuanyunYUXingWUBinghengGUHaoFENGHongquanLIHongqiang
發光學報 2013年12期
關鍵詞:工程

CAO Yang ,LIU Yuan-yun,YU Xing,WU Bing-heng,GU Hao,FENG Hong-quan,LI Hong-qiang

(1.Shanghai Radio Equipment Institute,Shanghai 200090,China;2.Shanghai Key Laboratory of Electromagnetic Environmental Effects for Aerospace Vehicle,Shanghai 200090,China;3.School of Physics Science and Engineering,Tongji University,Shanghai 200092,China)*Corresponding Author,E-mail:caoyang85@163.com

1 Introduction

Structured metal surfaces support electromagnetic surface modes bound to the metal/dielectric interface,giving rise to remarkable optical phenomena including extraordinary optical transmission(EOT)through subwavelength hole arrays[1-6].These modes are called surface plasmon polaritons(SPPs)[7]at visible and near-infrared frequencies,and characterized by strongly enhanced local field at the interface.In the microwave regime,metals can be treated as plasmon-free perfect conductors.However,with the assistance of localized surface resonances,a structured perfect metal surface can support mimicking surface plasmons and design artificial ones with almost arbitrary dispersion in frequency and in space[8-10]. With these plasmon-like local resonances,there still exists EOT in terahertz[11]and microwave region[12].

Surface mode bandgap engineering is very crucial to light manipulation by plasmonic materials and metamaterials.It has been recently reported that a metal plate perforated with a triangular array of air holes possesses complete bandgap of surface resonances and presents beam collimation effect in a certain frequency range covering the bandgap[13].As the complete surface resonances bandgap suppresses any surface resonances with nonzero in-plane wave vectors,it can be utilized to design directional antennas.

In this paper,we theoretically and experimentally investigate the microwave EOT through a thin aluminum plate perforated with a triangular array of air holes.Modal expansion method(MEM)[14-16]is employed to calculate the transmission spectra under plane wave incidence and extract the dispersion of surface resonances on the meta-surface.A complete bandgap is found at 10.20 ~10.94 GHz for all polarizations and all in-plane wave vectors.It is verified by parametric study of holes size that the triangular lattice is predominant to the formation of the complete bandgap.A dipole antenna positioned near the meta-surface radiates directionally at low band edge and other frequencies within the bandgap,which can be applied to realize a new kind of surface wave antenna with high directivity.

2 Model Description

As shown in Fig.1(a),the sample is fabricated on an aluminum plate with a thickness oft=2 mm and a lateral size of 1 000 mm×1 000 mm.The lattice constant of the triangular array isp=30 mm.The diameter of holes isd=15 mm.The front surface of the sample plate and the irreducible Brillouin zone of the triangular lattice are schematically illustrated in Fig.1(b)and Fig.1(c).

Fig.1 Schematic of the model system.(a)A photo of the experimental setup.(b)The front surface of the sample plate.(c)The irreducible Brillouin zone of the triangular lattice.

Angle-dependent transmission spectra and radiation patterns are measured in microwave chamber with Agilent 8722ES network analyzer.The sample plate is on a rotary table which is controlled by computer with a finest angular resolution of 0.1°.

3 Complete Bandgap ofSurface Resonances

Transmission spectra under different incident angles are calculated by MEM.Fig.2 shows the dispersion of surface resonances extracted from transmission spectra by tracing the peak frequencies as a function of in-plane wave vector[1].The even-mode surface resonances are marked by circular dots,while the odd-mode surface resonances are represented by gray dashed lines.It is noted that the evenmode surface resonances possess abandgap at 10.20 ~11.52 GHz for TM polarization,which fully covers the TE polarization bandgap at 10.20 ~10.94 GHz.Thus the complete bandgap for all polarizations and all in-plane wave vectors has a width of 740 MHz,which is marked by the shadowed region in Fig.2.

Fig.2 Dispersion diagrams for TE(a)and TM(b)polarized surface resonances for the sample with a triangular array in evenmode(circular dots)and odd-mode(dashed lines).The complete bandgap is marked by the shadowed region.

Fig.3 Dispersion diagrams for TE polarized surface resonances along ΓΚ direction for different holes size.(a)d=11 mm.(b)d=13 mm.(c)d=15 mm.(d)d=17 mm.(e)d=19 mm.(f)d=21 mm.

4 Directive Emission from The Meta-surface

To demonstrate the directive emission from the meta-surface,we adopt a dipole antenna working at 10 GHz for the measurements.It is positioned along thexdirection and 2 mm apart from the surface of perforated aluminum plate.

Directive emission is attainable within the frequency range of 10.20 ~ 10.94 GHz inside the bandgap.The measured half power bandwidths are 5.6°inE-plane and 6.2°inH-plane with an optimal return loss about-10 dB at the lower band edge 10.20 GHz.Blue and green circular dots in Fig.4 present the measured polar charts at 10.20 GHz.For verification,we perform FDTD simulations to calculate the radiation patterns from a dipole close to a model plate with a lateral size of 300 mm×260 mm.The calculated half power bandwidths are 6.8°inE-plane and 7.1°inH-plane,shown as red and black lines in Fig.4,which coincide with the measurements.

5 Conclusion

In summary,we find that a complete bandgap of surface resonances exists on a meta-surface arranged with a triangular array of air holes.It is proved that the triangular lattice is predominant to the formation of the complete bandgap,and the bandgap always exists during the variation of holes size.Directive emission from a dipole antenna positioned near the meta-surface,with half power beamwidth of 5.6°inE-plane and 6.2°inH-plane,is observed in the complete bandgap.The findings are helpful in realizing beam collimator and high directive antennas with ultra thin structure.

[1]Ebbesen T W,Lezec H J,Ghaemi H F,et al.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(6668):667-669.

[2]Ghaemi H F,Thio T,Grupp D E,et al.Surface plasmons enhance optical transmission through subwavelength holes[J].Phys.Rev.B,1998,58(11):6779-6782.

[3]Martin-Moreno L,Garcia-Vidal F J,Lezec H J,et al.Theory of extraordinary optical transmission through subwavelength hole arrays[J].Phys.Rev.Lett.,2001,86(6):1114-1117.

[4]Liu J,Chen B X,Yang H M.Ion-exchange single-mode stripe waveguide for excitation of surface plasma wave[J].Opt.Precision Eng.(光學 精密工程),2011,19(10):2342-2348(in Chinese).

[5]Gay G,Alloschery O,De Lesegno B V,et al.The optical response of nanostructured surfaces and the composite diffracted evanescent wave model[J].Nat.Phys.,2006,2(4):262-267.

[6]Li W,Wang G Z,Yang F,et al.3-D finite element simulation for measurement of micro-torque of dental implant by SAW devices[J].Opt.Precision Eng.(光學 精密工程),2013,21(7):1713-1718(in Chinese).

[7]Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].Berlin:Springer-Verlag,1988.

[8]Pendry J B,Martin-Moreno L,Garcia-Vidal F J.Mimicking surface plasmons with structured surfaces[J].Science,2004,305(5685):847-848.

[9]De Abajo F J G,Saenz J J.Electromagnetic surface modes in structured perfect-conductor surfaces[J].Phys.Rev.Lett.,2005,95(23):233901-1-4.

[10]Hibbins A P,Evans B R,Sambles J R.Experimental verification of designer surface plasmons[J].Science,2005,308(5722):670-672.

[11]Qu D X,Grischkowsky D,Zhang W L.Terahertz transmission properties of thin,subwavelength metallic hole arrays[J].Opt.Lett.,2004,29(8):896-898.

[12]Beruete M,Sorolla M,Campillo I,et al.Enhanced millimeter-wave transmission through subwavelength hole arrays[J].Opt.Lett.,2004,29(21):2500-2502.

[13]Cao Y,Wei Z Y,Wu C,et al.Collimation effect inside complete bandgap of electromagnetic surface resonance states on a metal plate perforated with a triangular array of air holes[J].Opt.Exp.,2012,20(23):25520-25529.

[14]Sheng P,Stepleman R S,Sanda P N.Exact eigenfunctions for square-wave gratings:Application to diffraction and surfaceplasmon calculations[J].Phys.Rev.B,1982,26(6):2907-2916.

[15]Lalanne P,Hugonin J P,Astilean S,et al.One-mode model and Airy-like formulae for one-dimensional metallic gratings[J].J.Opt.A:Pure Appl.Opt.,2000,2(1):48-51.

[16]Wei Z,Fu J,Cao Y,et al.The impact of local resonance on the enhanced transmission and dispersion of surface resonances[J].Photon.Nanostruct.,2010,8(2):94-101.

猜你喜歡
工程
《工程爆破》》征稿征訂
工程爆破(2022年3期)2022-07-26 01:58:56
《工程爆破》征稿簡則
工程爆破(2022年2期)2022-06-17 14:13:56
子午工程
太空探索(2016年6期)2016-07-10 12:09:06
工程
工程
工程
工程
工程
工程
工程
主站蜘蛛池模板: 亚洲欧美成人综合| 精品国产电影久久九九| 久久婷婷六月| 精品黑人一区二区三区| 97一区二区在线播放| 久久成人免费| 亚洲国产清纯| 国产日韩久久久久无码精品| 91人妻在线视频| 一级香蕉人体视频| 中文字幕有乳无码| 看av免费毛片手机播放| 98超碰在线观看| 国产成年女人特黄特色毛片免| 久久精品国产91久久综合麻豆自制| 国产真实乱子伦精品视手机观看| 欧美区一区二区三| 91久久偷偷做嫩草影院精品| 97免费在线观看视频| 久久青草免费91观看| 亚洲第一黄片大全| 亚洲视频一区| 97在线碰| 69国产精品视频免费| 毛片网站观看| 国产免费久久精品99re不卡| 亚瑟天堂久久一区二区影院| 中国国产A一级毛片| 永久在线播放| 亚洲国产精品无码AV| 国产电话自拍伊人| 91蝌蚪视频在线观看| 色天堂无毒不卡| 91精品久久久久久无码人妻| 美女高潮全身流白浆福利区| AV天堂资源福利在线观看| 无码AV日韩一二三区| 国模粉嫩小泬视频在线观看 | 午夜免费小视频| 天堂va亚洲va欧美va国产| 国产欧美日韩另类| 亚洲中久无码永久在线观看软件| 97综合久久| 福利国产微拍广场一区视频在线| 日本高清免费一本在线观看| AV无码一区二区三区四区| 呦系列视频一区二区三区| 亚洲第一色视频| 国产一区二区三区精品久久呦| 国产精品福利社| 欧美国产成人在线| 欧美成在线视频| 重口调教一区二区视频| 亚洲精品桃花岛av在线| 亚洲欧美日本国产专区一区| 国产麻豆永久视频| 国产亚洲欧美在线人成aaaa| 午夜啪啪福利| 成人蜜桃网| 日韩大片免费观看视频播放| 极品国产一区二区三区| 日本亚洲国产一区二区三区| 国产日韩AV高潮在线| 高潮爽到爆的喷水女主播视频| 国产无码制服丝袜| 国产主播在线一区| 国产91无码福利在线| 美女无遮挡免费视频网站| 91成人在线免费观看| 色哟哟国产精品| 国产经典免费播放视频| 亚洲人成影视在线观看| 人人看人人鲁狠狠高清| AV色爱天堂网| 四虎成人精品| 国产麻豆精品久久一二三| 99精品影院| 91亚洲精品国产自在现线| 亚洲色图综合在线| 黄色不卡视频| 九九免费观看全部免费视频| 四虎永久免费地址|