摘要:留數不僅可以用來有效地計算復積分,更能便捷快速地計算某些類型的實積分。本文以用留數計算型實積分為例,說明留數這一應用的優越性。本文主要采取比較教學法對這一問題進行講解:以實際例子,將以往的萬能公式代換法與復變函數的留數法進行對比,從而使學生在比較中切身感受到留數方法的優越性。
關鍵詞:留數;復積分;實積分;比較教學法
中圖分類號:G642.41 文獻標志碼:A 文章編號:1674-9324(2012)11-0094-03
《復變函數》是數學專業的必修課,其主要內容在其他工科專業也有著非常重要的地位。在這一課程的教學過程中,教師往往感覺到學生一開始難以抓住重點,不能及時有效地掌握學習方法。本課程組根據長期的實際教學經驗,以“比較教學法”為教學手段,將本課程的相應內容與《數學分析》和《高等數學》的有關內容進行對比教學,以學生已掌握的“舊知識”帶動本課程的“新知識”的學習。實際教學效果表明,這一方法有著很好的教學效果。
本文以“用留數定理計算實積分”的教學內容為例,采取“比較教學法”進行教學,以兩個具體的例子為載體,以舊的解題方法為引子,導出新方法的計算步驟,使學生在解題的過程中總結出新方法,在不同的解題過程中感受兩種方法的特點,從而自覺地對比出兩種方法的優劣。
一、第一個例子
二、第二個例子
三、結束語
參考文獻:
[1]丁春梅.談留數概念教學[J].讀與寫(教育教學刊),2010.
[2]鐘玉泉.復變函數論[M].北京:高等教育出版社,2003.
[3]金憶丹.復變函數與拉普拉斯變換[M].杭州:浙江大學出版社,2005.
[4]王曉燕.追求有效的數學教學[J].黑龍江教育,2005,(10).
基金項目:本研究得到浙江省自然科學基金資助(Y6100588)
作者簡介:沈進東(1981-),男,安徽六安人,理學博士,主要從事函數逼近論研究。