[摘要]目的 探討曲拉通法聯(lián)合丹參酚酸B處理對(duì)豬心臟瓣膜形態(tài)學(xué)及生物力學(xué)的影響,為組織工程提供理論支持。方法 新鮮的豬主動(dòng)脈瓣葉,采用兩種不同方法脫細(xì)胞處理,應(yīng)用光鏡、電鏡進(jìn)行形態(tài)學(xué)觀察,厚度儀測(cè)量組織厚度,行拉力測(cè)試觀察生物力學(xué)的差異。結(jié)果 兩種方法處理后組織厚度差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),曲拉通-丹參酚酸B法較好地保留心臟瓣膜原有的三維空間,且生物力學(xué)測(cè)試優(yōu)于傳統(tǒng)曲拉通法(P<0.05)。結(jié)論 曲拉通聯(lián)合丹參酚酸B處理可以制備基質(zhì)成分保留充分、生物力學(xué)性能優(yōu)良的心臟瓣膜支架,顯示了可觀的臨床應(yīng)用前景。
[關(guān)鍵詞] 丹參酚酸B;后處理;組織工程;心臟瓣膜;形態(tài)學(xué);生物力學(xué)
[中圖分類(lèi)號(hào)] R318.08 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)]1673-9701(2011)22-13- 02
Effect of Salviaolic Acid B Postconditioning on Morphology and Biomechanics in Decellularized Porcine Aortic Valve
TAO Rancen GUO Guangwei
Department of Cardiothorocic Surgery,the Second Affiliated Hospital of Shanxi Medical University,Taiyuan 030001,China
[Abstract] Objective To observe the effect of salviaolic acid B postconditioning on morphology and biomechanics of decellularized pocine aortic valve,providing theoretical support for tissue engineering. Methods Porcine aortic valve leaflets were theated by two different proticols. Control group1 involved treatment with Triton-x100,sodium deoxycholate,DNase and RNase. And group 2 were treated by Triton-x100,sodium deoxycholate,DNase and RNase, then using salviaolic acid B post-processing. Eath samples were observered by microscopy and scanning electron microscope; Biomechanics characteristics measured by biomechanics properties-maximum deflection,elongation rate and max tensile stress. Statistical analysis was performed to compare the thickness. Results There was no significant difference in tissue thickness was found between two methods,Tx-sal method can protect the heart valve three-dimensional structure,biomechanics properties-maximum deflection , max load and elongation rate were increased significantly in the group with salviaolic acid B. Conclusion Salviaolic acid B post-processing can effectively protect the collagen and elastic fibers and improve the biomechanical properties of decellularized pocine aortic valve.
[Key words] Salviaolic acid B; Postconditioning;Tissue engineering;Heart valves; Morphology;Biomechanics
理想的組織工程異種生物瓣膜支架應(yīng)徹底去除細(xì)胞成分、最大限度地保存彈性纖維和膠原纖維,才能最大程度地減低免疫原性,較好地保留細(xì)胞黏附所需的三維微環(huán)境,進(jìn)而更好地避免在瓣膜置換術(shù)后瓣膜的鈣化和腐敗,提高瓣膜耐久性[1-2]。目前,國(guó)內(nèi)外所采用的酶或/和去垢劑脫細(xì)胞豬心臟瓣膜仍存在血栓形成、力學(xué)和免疫反應(yīng)等方面的問(wèn)題。因此本研究通過(guò)建立傳統(tǒng)的曲拉通法脫細(xì)胞模型、應(yīng)用丹參酚酸B后處理的方法,比較兩組瓣膜形態(tài)學(xué)及生物力學(xué)性能的差別,探討其在組織工程心臟瓣膜(TEHV)的應(yīng)用前景。
1 材料與方法
1.1 實(shí)驗(yàn)材料
豬心購(gòu)自太原屠宰場(chǎng),選取6~7月齡的豬宰殺后取出心臟,PBS液沖洗后,放入無(wú)菌袋中立即運(yùn)回實(shí)驗(yàn)室,在處死1h內(nèi)取主動(dòng)脈瓣膜。
1.2 藥品、試劑和儀器
丹參酚酸B(四川廣漢市本草植化有限公司)、脫氧膽酸鈉、Triton-x100、EDTA、核糖核酸酶(RNaseⅠ)和脫氧核糖核酸酶(DNaseⅠ)購(gòu)自美國(guó)Sigma公司;水浴恒溫震蕩儀,Olympus雙目顯微鏡,掃描電子顯微鏡(H-8000),HD-10型厚度儀(中國(guó)鄭州),拉力試驗(yàn)機(jī)(Instron Company,SE08-292,USA)。
1.3 實(shí)驗(yàn)分組及試驗(yàn)方法
按隨機(jī)數(shù)字法,將120片瓣葉隨機(jī)分為三組:曲拉通組、曲拉通-丹參酚酸B組和正常組(新鮮豬主動(dòng)脈瓣葉)。每組40片,曲拉通-丹參酚酸B作為實(shí)驗(yàn)組,曲拉通和正常組作為對(duì)照。
①曲拉通(Triton-x100,Tx)組[3]:消毒處理好的瓣葉,PBS液反復(fù)沖洗后置入含0.25%的脫氧膽酸鈉(sodium deoxycholate)、0.25%Triton-x100、0.02%的DNA酶、RNA酶和EDTA溶液恒溫37℃持續(xù)震蕩48h,用PBS液洗滌至清澈,后在4℃Hanks液中保存。②曲拉通-丹參酚酸B(Triton-x100 +salvianolic-acid B,Tx-sal)組:消毒處理好的瓣葉,PBS液反復(fù)沖洗后置入含0.25%的脫氧膽酸鈉、0.25%Triton-x100、0.02%的DNA酶、RNA酶和EDTA溶液恒溫37℃持續(xù)震蕩48h,后置于0.5%的丹參酚酸B溶液中4℃恒溫震蕩48h,用PBS液洗滌至清澈,后在4℃Hanks液中保存。
1.4 觀察指標(biāo)
1.4.1 光學(xué)顯微鏡和電子顯微鏡觀察 取各組瓣葉,常規(guī)4%甲醛固定,石蠟包埋,切片,從各組取5張石蠟切片, 二甲苯脫蠟,HE染色、Masson染色,光學(xué)顯微鏡下觀察。分別觀察脫細(xì)胞程度、兩組對(duì)膠原纖維的影響。兩組各取5片瓣葉,用3%戊二醛預(yù)固定,用1%的四氧化鋨再固定,乙醇梯度脫水,離子濺射噴金,掃描電鏡觀察。
1.4.2 組織厚度 每組各取10片瓣葉,分別應(yīng)用 HD-10型厚度儀測(cè)量瓣膜組織厚度。
1.4.3 生物力學(xué)特性 用拉力試驗(yàn)機(jī)(Instron Company,SE08-292,USA)將瓣葉沿瓣膜長(zhǎng)軸進(jìn)行拉伸實(shí)驗(yàn),標(biāo)距為20mm,以10 mm/ min速度牽拉瓣葉至斷裂,計(jì)算拉伸強(qiáng)度、最大變形量、斷裂伸長(zhǎng)比。
1.5 統(tǒng)計(jì)學(xué)處理
所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(χ±s)表示,應(yīng)用SPSS16.0統(tǒng)計(jì)軟件。組間差異性判斷應(yīng)用單因素方差分析,兩兩比較采用t檢驗(yàn),P < 0.05 為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 標(biāo)本觀察結(jié)果
新鮮組瓣葉呈淡紅色,基本保持正常形態(tài)結(jié)構(gòu)。經(jīng)曲拉通脫細(xì)胞處理后瓣葉呈白色半透明,實(shí)驗(yàn)組經(jīng)丹參酚酸B處理后瓣葉為乳白色。三組瓣葉均柔軟,富有彈性。
2.2 光鏡觀察結(jié)果
HE染色顯示,正常組可見(jiàn)大量間質(zhì)細(xì)胞和藍(lán)染的內(nèi)皮細(xì)胞核,瓣膜結(jié)構(gòu)緊密,Tx組和Tx-sal組脫細(xì)胞較完全,內(nèi)皮細(xì)胞無(wú)殘留,見(jiàn)封三圖1、2、3。Masson染色顯示,正常組膠原纖維排列整齊、無(wú)斷裂現(xiàn)象。Tx組膠原纖維結(jié)構(gòu)改變明顯,纖維走向模糊,排列松散,波浪狀結(jié)構(gòu)消失;Tx-sal組膠原纖維三維網(wǎng)狀結(jié)構(gòu)完整存在,波浪狀規(guī)則排列,纖維走向自然清晰,見(jiàn)封三圖4、5、6。
2.3 電鏡觀察結(jié)果
掃描電鏡顯示兩組去細(xì)胞瓣膜內(nèi)皮細(xì)胞、間質(zhì)細(xì)胞清除徹底,無(wú)殘留。Tx組可見(jiàn)瓣膜支架結(jié)構(gòu)明顯改變,膠原纖維輕度斷裂,形成深淺不一的溝。相比之下,Tx-sal組瓣膜三維網(wǎng)狀結(jié)構(gòu)規(guī)則、清晰,超微結(jié)構(gòu)改變不明顯。
2.4 組織厚度
組織厚度Tx組與加Tx-sal組分別為(0.73±0.03)mm和(0.75±0.05)mm,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05 )。
2.5 生物力學(xué)性能測(cè)定
Tx-sal組心臟瓣膜的抗拉強(qiáng)度、最大變形量、斷裂伸長(zhǎng)比明顯高于Tx組(P<0.05)。見(jiàn)表1。
表1 各組生物力學(xué)性能測(cè)定結(jié)果(χ±s, n=10)
組別 抗拉強(qiáng)度(MPa)最大變形量(mm) 斷裂伸長(zhǎng)比(λ)
正常組 2.32±0.34 7.89±0.24 1.66±0.33
Tx組 2.21±0.37 8.15±0.77 1.25±0.18
3 討論
近年來(lái),隨著組織工程學(xué)科的發(fā)展,組織工程心臟瓣膜(TEHV)能更好地解決人工瓣膜置換術(shù)后諸多的并發(fā)癥,已成為目前瓣膜領(lǐng)域研究的熱點(diǎn)[4,5]。理想的去細(xì)胞方法要求完全去除瓣膜細(xì)胞,降低免疫原性,又能保留天然瓣膜的膠原纖維、彈力纖維等細(xì)胞外基質(zhì)成分,保持足夠的機(jī)械強(qiáng)度以滿(mǎn)足心臟瓣膜的功能需求[6,7]。Bodnar[8]用Triton-x100和脫氧膽酸鈉去細(xì)胞法處理瓣膜較為理想,細(xì)胞去除徹底,血液相容性好,是兩種良好的組織工程瓣膜支架的制作方法。但是兩者都存在鈣化和衰敗以及黏附較為困難的問(wèn)題。有研究表明[9],機(jī)械應(yīng)力變化是直接引起異種生物瓣膜腐敗的重要因素之一,且承受應(yīng)力大的部位也最容易發(fā)生鈣化,長(zhǎng)期的機(jī)械應(yīng)力不僅導(dǎo)致瓣膜膠原纖維機(jī)械性損毀,還可使瓣膜變形產(chǎn)生間隙,大量的離子和血漿進(jìn)入組織間隙聚集引起血栓發(fā)生,導(dǎo)致瓣膜衰敗。因此,研究如何提高支架機(jī)械性能、減低移植物免疫原性、減少瓣葉鈣化,具有重要臨床意義。
丹參酚酸B(Salviaolic acid B)是丹參提取物的重要組成成分,為一種縮酚酸多羥基化合物,由一分子咖啡酸與三分子丹參素縮合而成,分子式C36H30O16。大量研究表明,salB能捕捉超氧陰離子;清除氧自由基;減低內(nèi)皮細(xì)胞間黏附因子(ICAM-1)的表達(dá),減少白細(xì)胞浸潤(rùn);還可避免細(xì)胞內(nèi)的鈣超載,降低鈣化[10]。本研究結(jié)果顯示,經(jīng)丹參酚酸B改性處理脫細(xì)胞豬心臟瓣膜的彈性纖維、膠原纖維等細(xì)胞外基質(zhì)的三維網(wǎng)狀結(jié)構(gòu)明顯優(yōu)于傳統(tǒng)的曲拉通法,此外,拉力力學(xué)檢測(cè)結(jié)果表明,實(shí)驗(yàn)組脫細(xì)胞豬心臟瓣膜抗拉強(qiáng)度、最大變形量、斷裂伸長(zhǎng)比明顯高于對(duì)照組,顯示了優(yōu)良機(jī)械性能,提高瓣膜抗疲勞性,有助于延長(zhǎng)置換術(shù)后瓣膜的使用壽命。
綜上所述,經(jīng)丹參酚酸B后處理的心臟瓣膜內(nèi)皮細(xì)胞去除徹底,膠原纖維保存完整,機(jī)械性能較為穩(wěn)定,是制備組織工程心臟瓣膜支架的優(yōu)良方法,并顯示可觀的臨床應(yīng)用前景。
[參考文獻(xiàn)]
[1] Knight RL,Wilcox HE, Korossis SA. The use of acellular matrices for the tissue engineering of cardiac valves[J]. Proc Inst Mech Eng H,2008,222(1):129-143 .
[2] Kim WG,Park JK,Lee WY. Tissue engineered heart valve leaflets: an effective method of obtaining acellularized valve xenografts[J]. Int J Artif Organs,2002,25 :791 - 797.
[3] Iop L,Renier V,Naso F,et al. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds[J]. Biomaterials,2009,30(25): 4104-4116.
[4] Filová E,Straka F,Mirejovsky T,et al. Tissue-engineered heart valves[J].Physiol,2009, 58 Suppl 2: S141-158.
[5] Rieder E,Seebacher G,Kasimir MT,et al. Tissue engineering of heart valves : decellularized porcine and human valvescaffolds differ importantly in residual potential to attract monocytic cells[J]. Circulation, 2005,111 (21) :2792
[6] Migneco F,Hollister SJ,Birla RKTissue-engineered heart valve prostheses: 'state of the heart'[J]. Regen Med,2008,3(3): 399-419.
[7] Sant S,Khademhosseini A. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications[J]. Conf Proc IEEE Eng Med Biol Soc,2010,35:46-48.
[8] Bodnar E,Olsen EG,F(xiàn)lorio R. Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecylsulphate[J]. Thorac cardiovasc surg,1986,34(2):82-85.
[9] Balguid A,Rubbens MP,Mol A,et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets--relevance for tissue engineering[J]. Tissue Eng,2007,3(7): 1501-1511
[10] Zhao GR;Zhang HM;Ye TX,et al. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B[J]. Food Chem Toxicol,2008, 46(1): 73-81 .
(收稿日期:2011-06-21)