閔新文, 汪引芳, 錢 航, 任永生, 趙黎丙, 張 鵬,, 馬業新, 陳華茜△
(1華中科技大學同濟醫學院附屬同濟醫院心內科,湖北武漢430030;湖北醫藥學院2附屬東風醫院心內科,3生理學教研室,湖北十堰442008)
胰島素抵抗是代謝綜合征的重要組分,是2型 糖尿病產生的主要病因。胰島素抵抗發生的確切分子機制仍然不是十分明了?,F在已知,胰島素靶器官,如脂肪組織、骨骼肌組織和肝臟組織,對胰島素是否敏感決定了胰島素抵抗發生與否及抵抗的程度[1,2]。許多研究表明超重和肥胖與胰島素抵抗有密切關聯,脂肪組織尤其是內臟脂肪組織在胰島素抵抗發生和發展中起重要作用[3,4]。
研究發現絲、蘇氨酸蛋白激酶參與調節脂肪細胞分化及代謝的多個環節,從而影響脂肪生成[5]。Pim家族是一類新發現的絲/蘇氨酸蛋白激酶,包括Pim-1、Pim-2、Pim-3三種亞型,研究提示Pim-3蛋白在胰腺癌、肝癌、結腸癌等高表達,其抗凋亡作用可能是多種腫瘤發生的分子機制之一[6-9]。非轉化細胞的相關研究發現,Pim-3可能涉及調節心肌損傷后的細胞保護作用及影響血管內皮細胞的遷移、增殖、血管生成的過程[10]。最近研究還發現Pim-3參與調節胚胎干細胞的自我更新[11]。我們運用RT-PCR技術檢測Pim-3 mRNA在大鼠全身組織分布,發現Pim-3 mRNA在脂肪組織中具有較高水平的表達,而其在脂肪組織中的生物學作用尚無報道。本研究旨在觀察Pim-3在脂肪中的表達,并探討其在脂肪的胰島素抵抗發生過程中的作用。
試劑DMEM培養基及胎牛血清(Gibco);胰蛋白酶、DEPC、胰島素(Sigma);Trizol(Invitrogen);RT 試劑盒(Fermentas);Taq聚合酶、dNTP(TaKaRa);羊抗Pim-3抗體(Santa Cruz Biotechnology);TRITC及FITC標記的驢抗羊IgG(Proteintech Group);引物由上海Generay Biotech公司合成。
2.1 胰島素抵抗大鼠動物模型的制備 胰島素抵抗大鼠動物模型依照參考文獻制備[12],取12周齡、體重160-200 g、健康的SD雄性大鼠15只,分為正常組(7只)和胰島素抵抗組(8只),模型組用含有66%果糖、22%酪蛋白、12%豬油的高糖高脂飼料喂養12周,用OGTT法反映葡萄糖耐量。
2.2 口服糖耐量實驗及胰島素敏感指標的檢測造模后,大鼠饑餓12 h,用40%葡萄糖溶液灌胃(1 g/kg),分別在不同時點取尾靜脈血,用羅康全優血糖儀(Roche)檢測血糖水平。采用放射免疫試劑盒(rat insulin RIA kit,Linco)測定空腹胰島素水平。
2.3 大鼠骨髓間充質干細胞的培養及誘導分化為脂肪細胞 取1只SD大鼠的股骨,用DMEM沖洗骨髓腔,1 200 r/min離心5 mim,棄漂浮脂肪層,用20%FBS的DMEM生長液重懸置37℃、5%CO2條件下培養。當貼壁的單層細胞培養至覆蓋率90%時,用含0.125%胰酶和0.2%EDTA的消化液將細胞調到1×106/L后種在6孔板各孔內,然后給予分化液(地塞米松1 μmol/L,豬胰島素 10 mg/L,碘甲烷100 μmol/L,IBMX 0.25 mol/L)誘導脂肪細胞的分化。分化14 d后在相差顯微鏡下照相,并加入臨時配置的油紅O稀釋液染色10 min,70%異丙醇分色,鏡下觀察脂肪細胞的分化效率。
2.4 半定量及熒光實時定量RT-PCR檢測Pim-3 mRNA表達 參照試劑盒說明書采用Trizol一步法抽提組織和細胞總RNA。采用Fermentas公司RT試劑盒逆轉錄合成cDNA。引物根據NCBI基因序列(NM_022602)設計,大鼠Pim-3引物序列為:上游引物5'- TGTGCCCTGGATACTGATGA -3',下游引物5'- AAGGCACTCAAAGCAAAGGA -3',產物片段 227 bp;以β-actin為內參照。瓊脂糖凝膠上電泳,凝膠成像掃描系統分析基因?;虿捎脽晒鈱崟r定量 RT-PCR,以SYBR Green I與雙鏈DNA分子結合,發光指示擴增產物的增加。
2.5 免疫熒光化學方法檢測脂肪組織及細胞中Pim-3蛋白的表達 細胞或組織經4%多聚甲醛固定,將組織用 OCT 包埋進行冰凍切片(7 μm),0.3%H2O2浸泡15 min,PBS清洗3次后加0.1%Triton浸泡15 min,,PBS清洗3次后加入3%BSA 37℃封閉1 h,接著以羊抗Pim-3抗體 (1∶100稀釋)37℃孵育1h,PBS清洗3次后以TRITC標記的兔抗羊IgG(1∶200稀釋)37℃孵育1h最后以Hoechst 33258做細胞核染色,免疫熒光顯微鏡下照相,用TRITC標記的對應抗體顯示陽性著色。
RT-PCR技術檢測發現Pim-3 mRNA表達于脂肪組織中,見圖1A,而未經逆轉錄RNA為模板的陰性對照組未見Pim-3 mRNA表達。免疫熒光化學法發現Pim-3蛋白高表達于正常SD大鼠脂肪組織中,而IgG陰性對照組無陽性著色,見圖1B。

Figure 1.Pim -3 was expressed in adipose.The red soleus(SL),white extensor digitorum longus(EDL)muscle and epididymis fat were removed from rats.A:the Pim - 3 mRNA expression was examined by RT - PCR analysis.B:epididymis fat was removed.lmmunofluorescent assay was performed with anti- Pim - 3 antibody.Nuclei were counterstained with Hoechst 33258.The negative control were stained with normal goat lgG only.Representative images were presented.圖1 Pim-3 mRNA和蛋白在正常大鼠內臟脂肪組織表達
分離培養骨髓間充質干細胞并誘導分化為脂肪細胞,油紅O染色結果顯示誘導分化14 d后90%以上的細胞為分化成熟的脂肪細胞,見圖2A。RT-PCR分析表明,與未分化的細胞相比,成熟的脂肪細胞Pim-3 mRNA的水平明顯增高,見圖2B。Pim-3定位表達于骨髓間充質干細胞和骨髓間充質干細胞分化成熟的脂肪細胞的胞質,見圖2C。

Figure 2.Analysis of Pim -3 mRNA expression in adipocytes.The isolated mesenchymal stem cells(MSCs)from rats were differentiated into adipocytes.A:oil red O staining was performed to confirm the differentiated adipocytes;B:the Pim -3 mRNA expression in MSCs and MSC-derived adipocytes were examined by RT-PCR analysis;C:MSCs and MSCs derived adipocytes were fixed and stained with anti-Pim-3 antibody followed by FITC-or TRITC-conjugated anti-goat secondary antibody.圖2 骨髓間充質干細胞來源的脂肪細胞Pim-3mRNA表達
口服糖耐量實驗的結果表明,在造模后第12周高脂飲食的大鼠糖耐量明顯異常,見圖3A,空腹胰島素水平明顯高于實驗大鼠對照組[(31.98±4.41)mU/L vs(15.12 ±5.22)mU/L,P <0.01],見圖 3B,表明胰島素抵抗大鼠模型制備成功。運用實時熒光定量PCR方法檢測胰島素抵抗大鼠與對照組附睪脂肪、腎周脂肪中Pim-3 mRNA表達差異,結果表明胰島素抵抗組附睪和腎周脂肪Pim-3 mRNA水平明顯降低,見圖3C。

Figure 3.Pim -3 expression in visceral fat from rats with insulin resistance.Glucose tolerance tests were performed by intraperitoneal injection of D -glucose at 2 g·kg-1body weight into rats.A:the OGTT curve of groups fed with either high -fat(HF)diet(n=10;squares)or control diet(n=8;triangles);B:fasting serum insulin levels also increased significantly in the rats fed with HF diet;C:Pim -3 mRNA level in visceral fats was determined by real- time RT - PCR method.*P <0.05,**P <0.01 vs control.圖3 正常對照組和胰島素抵抗組大鼠內臟脂肪組織Pim-3 mRNA表達
用100 nmol/L胰島素處理誘導分化的脂肪細胞,結果顯示胰島素可以抑制脂肪細胞Pim-3 mRNA表達,見圖4。

Figure 4.The MSC-derived adipocytes were low-serum starved for 12 h before insulin(100 nmol/L)treatment for indicated time Expression of Pim-3 was analyzed by real-time two-step RT-PCR.*P<0.05,**P <0.01 vs 0 h.圖4 胰島素抑制脂肪細胞Pim-3 mRNA表達
脂肪組織是脂質代謝和胰島素反應性糖攝取的一個重要部位。脂肪組織可分泌瘦素、TNF-α、PAI-1、抵抗素、脂聯素、IL-6、游離脂肪酸等物質,參與了2型糖尿病的胰島素抵抗發病過程。另外脂肪細胞功能障礙所導致的脂毒性也會增高血糖。這些發現表明脂肪組織在肥胖相關性胰島素抵抗和代謝功能障礙中的重要地位。
Pim-3激酶較廣泛地表達于多種組織細胞中,前期研究表明其表達的增強與腫瘤發生、發展有密切聯系。我們發現Pim-3 mRNA和蛋白水平表達于附睪脂肪組織、紅色的比目魚肌和白色的趾長伸肌等胰島素敏感組織中。研究表明Pim激酶家族成員蛋白只含有激酶結構域,而缺乏調節結構域,其活性大小不依賴于磷酸化調節,而決定于其組織表達量的多少[13]。Pim-3在脂肪組織中的高表達提示其可能在脂肪中具有重要作用。但是,最近有研究顯示,Pim蛋白的一些絲氨酸或蘇氨酸殘基也能夠發生磷酸化調節,從而改變其激酶活性[14,15]。
脂肪細胞凋亡在調節脂肪組織穩定過程中起到重要作用。在人類和嚙齒類動物,肥胖的特點是白色脂肪組織過多。有報道惡性腫瘤患者和糖尿病大鼠的脂肪組織退化[16,17]。最近,瘦素和 TNF - α 已被證明能夠抑制脂肪細胞的增殖并引發細胞凋亡進程[18,19]。以前的研究發現,生長因子缺失、輕度熱損傷,可以降低脂肪細胞Bcl-2/Bax比值,誘導細胞凋亡。而在嚙齒類動物,Bcl-2表達水平高的白色脂肪細胞比棕色脂肪細胞不容易受到凋亡刺激[20]。Pim-3被認為能磷酸化Bad蛋白并且促進Bad蛋白的14-3-3 鏈接和阻止其與 Bcl-xL 的關聯[21,22]。所以,Pim-3蛋白的存在表明其具有預防脂肪細胞凋亡的潛在保護作用。
Pim-1和Pim-3也參與控制小鼠胚胎干(ES)細胞的增殖與分化。據報道,Pim-1和Pim-3在小鼠ES細胞的自我更新中發揮重要作用。ES細胞分化為內皮細胞和平滑肌細胞時需要Pim-1的參與[11,23]。我們觀察到,在分化為脂肪細胞時 Pim -3的表達上調,提示終末分化的脂肪細胞不進行進一步的有絲分裂,Pim-3可能并不具有調節細胞增殖的功能。因此,進一步確定Pim-3是否是脂肪細胞分化所需尤為重要。最近的研究表明,Pim-3是尤文氏肉瘤/禽類逆轉錄病毒-E26(Ewing's sarcoma/E-twenty six,EWS/ETS)的靶基因,在 EWS/ETS介導的腫瘤發生過程中發揮了重要作用[24]。細胞表達EWS/FLI1顯著增加葡萄糖的利用和乳酸的產生。研究發現另一個Pim家庭成員Pim-2可促進例如葡萄糖的營養物質的吸收[25]。有報道,pim-3敲除小鼠并不表現出嚴重的表型變異[26]。因此,Pim-3在胰島素敏感組織中的病理生理作用仍需進一步探討。
[1]Petersen KF,Dufour S,Savage DB,et al.The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome[J].Proc Natl Acad Sci USA,2007,104(31):12587-12594.
[2]Weyer C,Foley JE,Bogardus C,et al.Enlarged subcutaneous abdominal adipocyte size,but not obesity itself,predicts type II diabetes independent of insulin resistance[J].Diabetologia,2000,43(12):1498 -1506.
[3]Guilherme A,Virbasius JV,Puri V,et al.Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J].Nat Rev Mol Cell Biol,2008,9(5):367 -377.
[4]Rieusset J,Bouzakri K,Chevillotte E,et al.Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients[J].Diabetes,2004,53(9):2232 -2241.
[5]Bost F,Aouadi M,Caron L,et al.The role of MAPKs in adipocyte differentiation and obesity[J].Biochimie,2005,87(1):51-56.
[6]Fujii C,Nakamoto Y,Lu P,et al.Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines[J].Int J Cancer,2005,114(2):209-218.
[7]Li YY,Popivanova BK,Nagai Y,et al.Pim-3,a proto-oncogene with serine/threonine kinase activity,is aberrantly expressed in human pancreatic cancer and phosphorylates Bad to block Bad-mediated apoptosis in human pancreatic cancer cell lines[J].Cancer Res,2006,66(13):6741-6747.
[8]Popivanova BK,Li YY,Zheng H,et al.Proto-oncogene,Pim -3 with serine/threonine kinase activity,is aberrantly expressed in human colon cancer cells and can prevent Bad - mediated apoptosis[J].Cancer Sci,2007,98(3):321-328.
[9]Zheng HC,Tsuneyama K,Takahashi H,et al.Aberrant Pim-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression[J].J Cancer Res Clin Oncol,2008,134(4):481 -488.
[10]Zhang P,Wang H,Min X,et al.Pim -3 is expressed in endothelial cells and promotes vascular tube formation[J].J Cell Physiol,2009,220(1):82 -90.
[11]Aksoy I,Sakabedoyan C,Bourillot PY,et al.Self- renewal of murine embryonic stem cells is supported by the serine/threonine kinases PIM-1 and Pim -3[J].Stem Cells,2007,25(12):2996 -3004.
[12]Pochampally RR,Neville BT,Schwarz EJ,et al.Rat adult stem cells(marrow stromal cells)engraft and differentiate in chick embryos without evidence of cell fusion[J].Proc Natl Acad Sci USA,2004,101(25):9282-9285.
[13]Qian KC,Wang L,Hickey ER,et al.Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim -1 kinase[J].J Biol Chem,2005,280(7):6130-6137.
[14]Palaty CK,Clark-Lewis I,Leung D,et al.Phosphorylation site substrate specificity determinants for the PIM-1 protooncogene - encoded protein kinase[J].Biochem Cell Biol,1997,75(2):153 -162.
[15]Palaty CK,Kalmar G,Tai G,et al.Identification of the autophosphorylation sites of the Xenopus laevis Pim-1 proto- oncogene - encoded protein kinase[J].J Biol Chem,1997,272(16):10514-10521.
[16]Prins JB,Walker NI,Winterford CM,et al.Human adipocyte apoptosis occurs in malignancy[J].Biochem Biophys Res Commun,1994,205(1):625-630.
[17]Magun R,Gagnon A,Yaraghi Z,et al.Expression and regulation of neuronal apoptosis inhibitory protein during adipocyte differentiation[J].Diabetes,1998,47(12):1948-1952.
[18]Della-Fera MA,Qian H,Baile CA.Adipocyte apoptosis in the regulation of body fat mass by leptin[J].Diabetes Obes Metab,2001,3(5):299 -310.
[19]Qian H,Hausman DB,Compton MM,et al.TNFα induces and insulin inhibits caspase 3-dependent adipocyte apoptosis[J].Biochem Biophys Res Commun,2001,284(5):1176-1183.
[20]Nisoli E,Briscini L,Giordano A,et al.Tumor necrosis factor alpha mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity[J].Proc Natl Acad Sci USA,2000,97(14):8033-8038.
[21]Macdonald A,Campbell DG,Toth R,et al.Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl- XL[J].BMC Cell Biol,2006,7:1.
[22]Wood NT,Meek DW,Mackintosh C.14-3-3 Binding to Pim-phosphorylated Ser166 and Ser186 of human Mdm2-Potential interplay with the PKB/Akt pathway and p14ARF[J].FEBS Lett,2009,583(4):615 -620.
[23]Zippo A,De Robertis A,Bardelli M,et al.Identification of Flk-1 target genes in vasculogenesis:Pim-1 is required for endothelial and mural cell differentiation in vitro[J].Blood,2004,103(12):4536-4544.
[24]Deneen B,Welford SM,Ho T,et al.PIM3 proto-oncogene kinase is a common transcriptional target of divergent EWS/ETS oncoproteins[J].Mol Cell Biol,2003,23(11):3897-3908.
[25]Fox CJ,Hammerman PS,Cinalli RM,et al.The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor[J].Genes Dev,2003,17,(15):1841-1854.
[26]Mikkers H,Nawijn M,Allen J,et al.Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors[J].Mol Cell Biol,2004,24(13):6104-6115.