999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

也談利用柯西不等式及其推論證明不等式

2008-12-09 03:32:30陳唐明
中學(xué)數(shù)學(xué)研究 2008年10期
關(guān)鍵詞:解題

陳唐明

文[1]在分析文[2]解題過(guò)程后,從柯西不等式出發(fā),推導(dǎo)出兩個(gè)推論(推論1和推論2),并通過(guò)舉例試圖說(shuō)明利用這兩個(gè)推論可方便迅速地解決很多不等式證明問(wèn)題.筆者仔細(xì)研讀后,發(fā)現(xiàn)文[1]中給出的方法比文[2]的方法方便得多;但同時(shí)也發(fā)現(xiàn)文[1]對(duì)柯西不等式表達(dá)不夠嚴(yán)謹(jǐn),給出的兩個(gè)推論過(guò)于特殊化(受條件∑ni=1ai=1的限制),制約了解題效益的提高.筆者發(fā)現(xiàn)通過(guò)配湊直接使用柯西不等式或利用柯西不等式的變式將會(huì)使文[1]中所舉兩個(gè)例題的證明變得更加簡(jiǎn)潔明晰.

下面讓我們先回顧一下柯西不等式:

(∑ni=1x2i)(∑ni=1y2i)≥(∑ni=1xiyi)2,其中xi,yi∈R,i=1,2,…,n(1),當(dāng)且僅當(dāng)x1=x2=…=xn=0或yi=kxi(k為常數(shù),i=1,2,…,n)時(shí)等號(hào)成立.

文[1]中此處遺漏了x1=x2=…=xn=0,是不夠嚴(yán)謹(jǐn)?shù)?,因?yàn)楫?dāng)y1,y2,…,yn不全為零且x1=x2=…=xn=0時(shí)等號(hào)亦成立.(筆者查閱了大量的報(bào)刊雜志和數(shù)學(xué)競(jìng)賽輔導(dǎo)書(shū)籍,幾乎全是這樣的寫(xiě)法,可見(jiàn)此謬流傳久矣!)

例1(文[1]中例2)已知正數(shù)a,b,c滿足a+b+c=1.求證:a3+b3+c3≥a2+b2+c23.

分析:條件a+b+c=1正好適合文[1]中推論1的條件∑ni=1ai=1,故文[1]采用推論1證明,筆者下面給出通過(guò)配湊直接運(yùn)用柯西不等式證明,亦顯簡(jiǎn)潔明晰.

證明:由條件,左邊=(a+b+c)(a3+b3+c3)=[(a)2+(b)2+(c)2]?[(a3)2+(b3)2+(c3)2](*)≥(a?a3+b?b3+c?c3)2,即左邊≥(a2+b2+c2)2.

下面只需證明(a2+b2+c2)2≥a2+b2+c23,即需證3(a2+b2+c2)≥1.而3(a2+b2+c2)=(12+12+12)(a2+b2+c2)(**)≥(a+b+c)2=1,知原不等式成立.當(dāng)且僅當(dāng)aa3=bb3=cc3,即a=b=c時(shí)(*)處等號(hào)成立;當(dāng)且僅當(dāng)1a=1b=1c,即a=b=c時(shí)(**)處等號(hào)成立.所以,知a=b=c時(shí)原不等式等號(hào)成立.

在(1)式中令x2i=a2ibi,y2i=bi(ai∈R,bi∈R+),即得推論:

柯西變式 ∑ni=1a2ibi≥(∑ni=1ai)2∑ni=1bi,當(dāng)且僅當(dāng)a1b1=a2b2=…= anbn時(shí)等號(hào)成立.

例2 (文[1]中例1)求證:a2b+c-a+b2c+a-b+c2a+b-c≥a+b+c,其中a,b,c為△ABC三邊.

分析:文[1]為了能利用推論1的條件∑ni=1ai=1費(fèi)了不少周折湊出常數(shù)“1”,過(guò)于繁瑣,而直接運(yùn)用柯西變式,證明將非常簡(jiǎn)潔.

證明:由柯西變式知左邊≥(a+b+c)2(b+c-a)+(c+a-b)+(a+b-c)=a+b+c,即原不等式成立.當(dāng)且僅當(dāng)ab+c-a=bc+a-b=ca+b-c,即a=b=c時(shí)等號(hào)成立.

注:本題亦可通過(guò)配湊直接運(yùn)用柯西不等式,證明如下:

由[(b+c-a)+(c+a-b)+(a+b-c)]?(a2b+c-a+b2c+a-b+c2a+b-c)=[(b+c-a)2+(c+a-b)2+(a+b-c)2]?[(ab+c-a)2+(bc+a-b)2+(ca+b-c)2]≥(a+b+c)2,整理即得.

需要說(shuō)明的是,柯西變式在解決分式不等式證明問(wèn)題時(shí)非常實(shí)用,特別是含n的分式不等式問(wèn)題,下面舉例說(shuō)明.

例3 設(shè)a1,a2,…,an是正數(shù),且∑ni=1ai=p(p為常數(shù)),試證明:a21a1+a2+a22a2+a3+a2n-1猘n-1+an+a2nan+a1≥p2.

證明:由柯西變式,左邊≥

(a1+a2+…+an)2(a1+a2)+(a2+a3)+…+(an-1+an)+(an+a1),

即左邊≥p22p=p2.

例4 設(shè)ai,bi∈R(i=1,2,…,n),且∑ni=1ai=∑ni=1bi,求證:∑ni=1a2iai+bi≥12∑ni=1ai.

證明:由柯西變式,左邊≥(∑ni=1ai)2∑ni=1(ai+bi)=(∑ni=1ai)2∑ni=1ai+∑ni=1bi=(∑ni=1ai)2∑ni=1ai+∑ni=1ai=12∑ni=1ai,即原不等式成立.

參考文獻(xiàn)

[1]徐國(guó)平.柯西不等式的兩個(gè)推論及其應(yīng)用.中學(xué)數(shù)學(xué)研究(江西師大),2006(8).

[2]王勝林,衛(wèi)賽平.證明不等式的幾種特殊方法.數(shù)學(xué)通訊,2004(11).

猜你喜歡
解題
用“同樣多”解題
設(shè)而不求巧解題
用“同樣多”解題
巧用平面幾何知識(shí)妙解題
巧旋轉(zhuǎn) 妙解題
根據(jù)和的變化規(guī)律來(lái)解題
例談?dòng)行г鲈O(shè)解題
拼接解題真簡(jiǎn)單
解題勿忘我
也談構(gòu)造等比數(shù)列巧解題
主站蜘蛛池模板: 久久国产黑丝袜视频| 亚洲香蕉在线| 日韩小视频在线播放| 成人午夜天| 四虎永久免费地址在线网站| 1024国产在线| 亚洲无码高清一区二区| 亚洲第一在线播放| 日韩大片免费观看视频播放| 成人在线观看一区| 国产激情在线视频| 久久a毛片| 欧美亚洲综合免费精品高清在线观看| 色综合a怡红院怡红院首页| 免费Aⅴ片在线观看蜜芽Tⅴ | 欧美日韩免费在线视频| 91精品aⅴ无码中文字字幕蜜桃 | 韩国福利一区| 亚洲三级网站| 噜噜噜综合亚洲| 国产尤物在线播放| 免费a在线观看播放| 免费看a毛片| 国产日韩欧美成人| 欧美视频在线播放观看免费福利资源 | 日韩a在线观看免费观看| 久久成人18免费| 日韩高清在线观看不卡一区二区| 找国产毛片看| 色综合天天综合| 久久久久国产一级毛片高清板| 日本欧美成人免费| 国语少妇高潮| 免费国产小视频在线观看| 国产浮力第一页永久地址| 五月婷婷欧美| 日韩av电影一区二区三区四区 | 国产欧美精品午夜在线播放| 国产精品高清国产三级囯产AV| 亚洲视频免费在线看| 尤物午夜福利视频| 在线毛片免费| 日本少妇又色又爽又高潮| 丰满人妻中出白浆| 日韩毛片免费观看| 国产一级毛片在线| 尤物成AV人片在线观看| 欧美α片免费观看| swag国产精品| 国内精自视频品线一二区| 欧美亚洲日韩中文| 日韩欧美国产三级| 午夜视频www| 日韩小视频网站hq| 国产精品刺激对白在线| 欧美成人一级| 亚洲 成人国产| 久久精品无码国产一区二区三区| 免费国产小视频在线观看| 国产极品美女在线观看| 免费女人18毛片a级毛片视频| 免费毛片视频| 国产黄网永久免费| 亚洲第一区欧美国产综合| 狠狠五月天中文字幕| 欧美一级大片在线观看| 欧美综合中文字幕久久| 国产爽妇精品| 免费无码AV片在线观看中文| 久久人与动人物A级毛片| 成人免费黄色小视频| 日韩欧美中文字幕在线韩免费| 久久免费成人| 欧美在线伊人| 在线欧美日韩国产| 欧美激情视频一区| 呦视频在线一区二区三区| 无码AV动漫| 国模私拍一区二区| 精品少妇人妻一区二区| 久热re国产手机在线观看| 亚洲香蕉伊综合在人在线|