九年義務教育全日制初級中學數學《新課程標準》中指出:教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。新課程把數學思想、方法作為基礎知識的重要組成部分,在數學《新課程標準》中明確提出來,這不僅是課標體現義務教育性質的重要表現,也是對學生實施創新教育、培訓創新思維的重要保證。
要達到《數學新課標》的基本要求,教學中應遵循以下幾項原則:
1.滲透“方法”,了解“思想”。由于初中學生數學知識比較貧乏,抽象思維能力也較為薄弱,把數學思想、方法作為一門獨立的課程還缺乏應有的基礎。因而只能將數學知識作為載體,把數學思想和方法的教學滲透到數學知識的教學中。
2.訓練“方法”,理解“思想”。數學思想的內容是相當豐富的,方法也有難有易。因此,必須分層次地進行滲透和教學。
3.掌握“方法”,運用“思想”。數學知識的學習要經過聽講、復習、做習題等才能掌握和鞏固。數學思想、方法的形成同樣有一個循序漸進的過程。只有經過反復訓練才能使學生真正領會。
4.提煉“方法”,完善“思想”。教學中要適時恰當地對數學方法給予提煉和概括,讓學生有明確的印象。由于數學思想、方法分散在各個不同部分,而同一問題又可以用不同的數學思想、方法來解決,所以,教師的概括、分析是十分重要的。教師還要有意識地培養學生自我提煉、揣摩概括數學思想方法的能力,這樣才能把數學思想、方法的教學落在實處。
下面,筆者就初中階段常見的幾種數學思想方法舉例說明。
數形結合思想:數和式是問題的抽象和概括、圖形和圖像是問題的具體和直觀的反映。華羅庚先生說得好:“數缺形時少直觀,形少數時難入微,數形結合百般好。”這句話闡明了數形結合思想的重要意義。
初中代數教材列方程解應用題所選例題多數采用了圖示法,所以,教學過程中要充分利用圖形的直觀性和具體性,引導學生從圖形上發現數量關系找出解決問題的突破口。學生掌握這一思想要比掌握一個公式或一種具體方法更有價值,對解決問題更具有指導意義。
再如在講“圓與圓的位置關系”時,可自制圓形紙板,進行運動實驗,讓學生首先從形的角度認識圓與圓的位置關系,然后可激發學生積極主動探索兩圓的位置關系反映到數上有何特征。這種借助于形通過數的運算推理研究問題的數形結合思想,在教學中要不失時機地滲透;這樣不僅可提高學生的遷移思維能力,還可培養學生的數形轉換能力和多角度思考問題的習慣。
方程思想: 眾所周知,方程思想是初等代數思想方法的主體,應用十分廣泛,可謂數學大廈基石之一,在眾多的數學思想中顯得十分重要。
所謂方程思想,主要是指建立方程(組)解決實際問題的思想方法。教材中大量出現這種思想方法,如列方程解應用題,求函數解析式,利用根的判別式、根與系數關系求字母系數的值等。
教學時,可有意識地引導學生發現等量關系從而建立方程。如講“利用待定系數法確定二次函數解析式”時,可啟發學生去發現確定解析式的關鍵是求出各項系數,可把它們看成三個“未知量”,告訴學生利用方程思想來解決,那學生就會自覺地去找三個等量關系建立方程組。在這里如果單講解題步驟,就會顯得呆板、僵硬,學生只知其然,不知其所以然。與此同時,還要注意滲透其它與方程思想有密切關系的數學思想,諸如換元、消元、降次、函數、化歸、整體、分類等思想,這樣可起到撥亮一盞燈,照亮一大片的作用。
辯證思想:辯證思想是科學世界觀在數學中的體現,是最重要的數學思想之一。自然界中的一切現象和過程都存在著對立統一規律,數學中的有理數和無理數、整式和分式、已知和未知、特殊和一般、常量和變量、整體和局部等同樣蘊涵著這一辯證思想。因此,教學時,應有意識地滲透。如初三《分式方程》一節,就體現了分式方程與整式方程的對立統一思想。教學時,不能只簡單介紹分式方程的概念和解法,而要滲透上述思想。我們可以從復習整式和分式的概念出發,然后依據辯證思想自然引出分式方程,接著帶領學生領會兩個概念的對立性(非此即彼)和統一性(統稱有理方程),再利用未知與已知的轉化思想啟發學生說出分式方程的解題基本思想,從而發現兩種方程在解法上雖有不同,但卻存在內在的必然聯系。這樣,學生在知曉整式方程與分式方程概念和解法的辯證關系后,就能進一步理解和掌握分式方程,收到一種居高臨下、深入淺出的教學效果。因此,抓辯證思想教學,不僅可以培養學生的科學意識,而且可提高學生的探索能力和觀察能力。
教學中那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水、無本之木,學生也難以領略深層知識的真諦。因此數學思想的教學應與整個表層知識的講授融為一體。只要我們執教者課前精心設計,課上精心組織,充分發揮學生的主體作用,多創設情景,多提供機會,堅持不懈,就能達到我們的教學育人目標。