




[摘要] 目的 探究1,25-二羥維生素D3[1,25-dihydroxy vitamin D3,1,25(OH)2D3]在核因子κB(nuclear factor κB,NF-κB)、炎癥細(xì)胞因子介導(dǎo)的腎間質(zhì)纖維化中的作用機制。方法 以轉(zhuǎn)化生長因子β1(transforming growth factor-β1,TGF-β1)誘導(dǎo)的腎間質(zhì)纖維化模型為研究對象,將其分為空白組(HK-2細(xì)胞+完全培養(yǎng)基)、模型組(5ng/ml TGF-β1刺激HK-2細(xì)胞48h)、干預(yù)A組[模型組基礎(chǔ)上加入10-7mol/L 1,25(OH)2D3干預(yù)24h]、干預(yù)B組[模型組基礎(chǔ)上加入10-7mol/L 1,25(OH)2D3干預(yù)48h]和干預(yù)C組[模型組基礎(chǔ)上加入10-7mol/L 1,25(OH)2D3干預(yù)72h]。觀察并比較各組細(xì)胞的形態(tài)、活性、蛋白表達、炎癥因子水平。結(jié)果 模型組細(xì)胞活力顯著低于空白組(Plt;0.05),干預(yù)A、B、C組的細(xì)胞活力均顯著高于模型組(Plt;0.05)。模型組的p-NF-κBp65/NF-κBp65、平滑肌肌動蛋白α(smooth muscle actin α,α-SMA)蛋白表達、白細(xì)胞介素-6(interleukin-6,IL-6)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)水平均顯著高于空白組,E-cadherin蛋白表達顯著低于空白組(Plt;0.05);干預(yù)A、B、C組的p-NF-κBp65/NF-κBp65、α-SMA蛋白表達、IL-6、TNF-α水平均顯著低于模型組,E-cadherin蛋白表達顯著高于模型組(Plt;0.05),其中以干預(yù)A組的變化最為顯著。結(jié)論 1,25(OH)2D3可通過調(diào)節(jié)NF-κB信號通路和炎癥細(xì)胞因子緩解腎間質(zhì)纖維化,24h可能為最佳干預(yù)時間窗。
[關(guān)鍵詞] 核因子κB信號通路;1,25-二羥維生素D3;腎間質(zhì)纖維化;炎癥細(xì)胞因子
[中圖分類號] R-33" """"[文獻標(biāo)識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.25.014
Study on the protective effect of renal interstitial fibrosis by 1,25(OH)2D3 based on NF-κB signaling pathway
GONG Huifeng1, KONG Yijing1, ZHANG Chunjiang1, LIU Dong2, LIN Zhifeng1
1.Department of Nephrology, the First Affiliated Hospital of Shihezi University, Shihezi 832008, Xinjiang, China; 2.Department of Pneumology, the First Affiliated Hospital of Shihezi University, Shihezi 832008, Xinjiang, China
[Abstract] Objective To explore the mechanism of 1,25-dihydroxy vitamin D3 [1,25 (OH)2D3] in renal interstitial fibrosis mediated by nuclear factor κB (NF-κB) and inflammatory cytokines. Methods Taking the renal interstitial fibrosis model induced by transforming growth factor-β1 (TGF-β1) as the research object, they were divided into blank group (HK-2 cells + complete culture medium), model group (5ng/ml TGF-β1 stimulated HK-2 cells for 48 hours), intervention group A [with 10-7mol/L 1,25(OH)2D3 intervention for 24 hours on the basis of model group], intervention group B [with 10-7mol/L 1,25(OH)2D3 intervention for 48 hours on the basis of model group] and intervention group C [with 10-7mol/L 1,25(OH)2D3 intervention for 72 hours on the basis of model group]. The cell morphology, activity, protein expression and inflammatory factor levels of each group were observed and compared. Results The cell viability of model group was significantly lower than that of blank group (Plt;0.05), the cell viability of intervention groups A, B and C was significantly higher than that of model group (Plt;0.05). The protein expressions of p-NF-κBp65/NF-κBp65 and smooth muscle actin α (α-SMA), as well as the levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in model group were significantly higher than those in blank group, while the protein expression of E-cadherin was significantly lower than that in blank group (Plt;0.05). The protein expressions of p-NF-κBp65/NF-κBp65 and α-SMA, as well as the levels of IL-6 and TNF-α in intervention groups A, B and C were significantly lower than those in model group, while protein expression of E-cadherin was significantly higher than that in model group (Plt;0.05). Among them, the change in intervention group A was the most significant. Conclusion 1,25 (OH)?D? can alleviate renal interstitial fibrosis by regulating the NF-κB signaling pathway and inflammatory cytokines, and 24 hours may be the optimal intervention time window.
[Key words] Nuclear factor κB signaling pathway; 1,25-dihydroxy vitamin D3; Renal interstitial fibrosis; Inflammatory cytokine
慢性腎臟病(chronic kidney disease,CKD)患病率高,病情常進展為終末期腎病,患者需依靠血液透析、腎移植維持生命。腎臟纖維化是CKD的關(guān)鍵病理特征,其形成機制復(fù)雜,核因子κB(nuclear factor κB,NF-κB)信號通路在其中發(fā)揮關(guān)鍵作用。NF-κB信號通路激活時,NF-κBp65磷酸化并轉(zhuǎn)移至細(xì)胞核,與炎癥因子基因啟動子區(qū)域的κB位點結(jié)合,啟動轉(zhuǎn)錄,加劇腎臟炎癥損傷,為纖維化創(chuàng)造炎癥微環(huán)境[1-3]。炎癥抑制劑糖皮質(zhì)激素受體復(fù)合物可與NF-κBp65特異性結(jié)合,阻斷炎癥因子表達,抑制炎癥反應(yīng)。表明NF-κBp65是NF-κB信號通路激活的標(biāo)志性蛋白,其狀態(tài)變化可反映通路激活狀態(tài),為研究該通路及開發(fā)新型抗炎藥提供方向[4]。已有研究顯示抑制NF-κB信號通路可緩解腎臟纖維化[5]。1,25-二羥維生素D3[1,25-dihydroxy vitamin D3,1,25(OH)2D3]在CKD防治中備受關(guān)注,它具有抗炎、免疫調(diào)節(jié)和維持鈣磷平衡等作用。然而口服1,25(OH)2D3存在風(fēng)險,可能引發(fā)高鈣、高磷血癥,導(dǎo)致血管鈣化,加重腎功能惡化。既往對1,25(OH)2D3在CKD中的研究多為臨床試驗。但臨床環(huán)境復(fù)雜,個體差異大,難以精準(zhǔn)揭示其在腎間質(zhì)纖維化中的作用機制和最佳干預(yù)策略。體外實驗可控性強,更利于探究藥物作用細(xì)節(jié)。本實驗運用CCK-8試劑盒、蛋白質(zhì)印跡法、酶聯(lián)免疫吸附測定(enzyme-linked immunosorbent assay,ELISA)等技術(shù)探究1,25(OH)2D3在腎間質(zhì)纖維化過程中的最佳干預(yù)時間窗,為1,25(OH)2D3的臨床用藥時機提供一定的理論基礎(chǔ)。
1" 材料與方法
1.1" 實驗材料
人腎皮質(zhì)近曲小管上皮細(xì)胞HK-2細(xì)胞株購自新疆恒朝生物技術(shù)有限公司;CCK-8試劑盒購自新疆鑫瑞寶信生物科技有限公司;1,25(OH)2D3、重組人轉(zhuǎn)化生長因子β1(transforming growth factor-β1,TGF-β1)蛋白均購自新疆鑫瑞寶信生物科技有限公司;平滑肌肌動蛋白α(smooth muscle actin α,α-SMA)抗體、上皮鈣黏素(E-cadherin)均購自博士德生物工程有限公司;NF-κBp65抗體、磷酸化NF-κBp65(p-NF-κBp65)抗體、白細(xì)胞介素-6(interleukin-6,IL-6)ELISA試劑盒、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)ELISA試劑盒均購自賽維爾生物科技有限公司。
1.2" 方法
1.2.1 "單細(xì)胞培養(yǎng)與處理" 將HK-2細(xì)胞接種于T25細(xì)胞培養(yǎng)瓶,置于37℃、5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng),待細(xì)胞匯合至70%~80%后,給予無血清培養(yǎng)基同步化12h后將細(xì)胞接種于96孔板,待細(xì)胞貼壁后,根據(jù)實驗進行分組:空白組(HK-2細(xì)胞+完全培養(yǎng)基)、模型組(5ng/ml TGF-β1刺激HK-2細(xì)胞48h)、干預(yù)A組[模型組基礎(chǔ)上加入10-7mol/L,1,25(OH)2D3干預(yù)24h]、干預(yù)B組[模型組基礎(chǔ)上加入10-7mol/L 1,25(OH)2D3干預(yù)48h]和干預(yù)C組[模型組基礎(chǔ)上加入10-7mol/L 1,25(OH)2D3干預(yù)72h]。
1.2.2 "測定HK-2細(xì)胞活力 "將CCK-8試劑分別加入各組中,用酶標(biāo)儀分別檢測各孔于450nm的吸光度,計算細(xì)胞活力。
1.2.3 "蛋白質(zhì)印跡法 "預(yù)冷磷酸鹽緩沖液洗滌細(xì)胞2次,加入RIPA裂解液,于冰上充分裂解30min后用細(xì)胞刮刀收集各組細(xì)胞,4℃、12 000轉(zhuǎn)/min離心10min,收集上清液,用BCA蛋白濃度測定試劑盒測定蛋白濃度,進行SDS-PAGE電泳,PVDF膜轉(zhuǎn)膜(300mA,轉(zhuǎn)膜30min),5%脫脂奶粉室溫封閉,然后加入一抗,4℃孵育過夜,TBST洗膜,加入二抗,室溫孵育,洗膜,ECL試劑與膜孵育,曝光。測定p-NF-κBp65、NF-κBp65、E-cadherin、α-SMA的相對表達量。
1.2.4 "細(xì)胞炎癥因子檢測 "采用ELISA檢測各組的IL-6、TNF-α含量。離心取細(xì)胞上清液,按照試劑盒說明書操作,使用酶標(biāo)儀檢測炎癥因子IL-6、TNF-α水平。
1.3" 統(tǒng)計學(xué)方法
采用SPSS 25.0軟件進行數(shù)據(jù)分析。計量資料符合正態(tài)分布的以均數(shù)±標(biāo)準(zhǔn)差(")表示,多組間比較采用單因素方差分析,兩組間比較采用t檢驗。數(shù)據(jù)可視化圖形使用Prism10.1.2軟件繪制。Plt;0.05為差異有統(tǒng)計學(xué)意義。
2" 結(jié)果
2.1 "各組HK-2細(xì)胞形態(tài)的變化
倒置顯微鏡觀察發(fā)現(xiàn),空白組腎小管上皮細(xì)胞形態(tài)呈卵圓形,細(xì)胞間連接緊密,貼壁生長;模型組和干預(yù)組腎小管上皮細(xì)胞形態(tài)由卵圓形變?yōu)殚L梭形,細(xì)胞間隙增寬,連接松散,但干預(yù)組細(xì)胞形態(tài)較模型組略有改善,見圖1。
2.2 "各組細(xì)胞活力比較
模型組的細(xì)胞活力顯著低于空白組(Plt;0.05),干預(yù)A、B、C組的細(xì)胞活力均顯著高于模型組(Plt;0.05),見圖2。
2.3" 各組的E-cadherin、α-SMA、p-NF-κBp65/NF- κBp65蛋白表達比較
模型組的p-NF-κBp65/NF-κBp65、α-SMA蛋白表達均顯著高于空白組,E-cadherin蛋白表達顯著低于空白組(Plt;0.05)。干預(yù)A、B、C組的p-NF-κBp65/NF-κBp65、α-SMA蛋白表達均顯著低于模型組,E-cadherin蛋白表達顯著高于模型組(Plt;0.05),其中以干預(yù)A組的變化最為明顯,見圖3、圖4。
2.4 "各組的炎癥因子比較
模型組的IL-6、TNF-α水平均顯著高于空白組
(Plt;0.05),干預(yù)A、B、C組的IL-6、TNF-α水平均顯著低于模型組(Plt;0.05),干預(yù)B、C組的IL-6、TNF-α水平均顯著高于干預(yù)A組(Plt;0.05),見圖5。
3" 討論
CKD的發(fā)病率頗高,常引發(fā)多種嚴(yán)重并發(fā)癥。腎間質(zhì)纖維化作為CKD的典型病理特征,與患者腎功能持續(xù)下降及不良預(yù)后緊密相關(guān)[6]。深入探究腎間質(zhì)纖維化的發(fā)病機制和防治策略,對改善CKD患者臨床結(jié)局意義重大。腎臟纖維化的發(fā)生機制極為復(fù)雜,炎癥反應(yīng)在腎小管損傷和腎間質(zhì)纖維化進程中起主導(dǎo)作用[7]。炎癥信號通路相互交織,NF-κB在其中占據(jù)關(guān)鍵地位,是炎癥調(diào)控的核心樞紐之一[8-9]。NF-κBp65作為NF-κB信號通路的中樞調(diào)節(jié)因子,其活性狀態(tài)決定通路功能[10]。生理狀態(tài)下,NF-κBp65在細(xì)胞質(zhì)中與抑制蛋白形成復(fù)合體而失活。一旦受到外界刺激激活,NF-κBp65可從復(fù)合體解離并迅速轉(zhuǎn)移至細(xì)胞核,與靶蛋白基因啟動子區(qū)域的κB位點特異性結(jié)合,啟動炎癥細(xì)胞因子基因轉(zhuǎn)錄,引發(fā)炎癥級聯(lián)反應(yīng),推動腎臟纖維化進展[11-12]。研究證實TGF-β1是促進腎臟纖維化的關(guān)鍵細(xì)胞因子,可刺激腎小管上皮細(xì)胞發(fā)生上皮-間充質(zhì)轉(zhuǎn)化(epithelial- mesenchymal transition,EMT),而EMT是參與腎間質(zhì)纖維化發(fā)生發(fā)展的重要機制之一,是腎間質(zhì)纖維化的起始階段,該過程伴隨腎小管上皮細(xì)胞形態(tài)改變及α-SMA表達增加[13-14]。α-SMA是肌成纖維細(xì)胞的特征性標(biāo)志物,肌成纖維細(xì)胞持續(xù)大量分泌細(xì)胞外基質(zhì)沉積于腎間質(zhì),是腎間質(zhì)纖維化的重要啟動因素,α-SMA已被廣泛用于腎間質(zhì)纖維化模型的檢測[15]。本研究使用TGF-β1刺激腎小管上皮細(xì)胞后,細(xì)胞形態(tài)由卵圓形變?yōu)殚L梭形,細(xì)胞間隙增寬、連接松散,且E-cadherin表達降低及間充質(zhì)標(biāo)志物α-SMA表達增加,由此推測TGF-β1刺激腎小管上皮細(xì)胞后出現(xiàn)EMT改變,腎臟纖維化初始階段啟動,與此同時,p-NF-κBp65與NF-κBp65比值顯著升高,炎癥細(xì)胞因子TNF-α、IL-6表達增加,細(xì)胞活性降低,這些結(jié)果有力證明NF-κB炎癥通路與細(xì)胞活性調(diào)控、腎間質(zhì)早期纖維化發(fā)生、發(fā)展密切相關(guān),與既往研究結(jié)果相符,凸顯NF-κB信號通路在腎臟纖維化機制研究中的重要性[16-17]。
在探尋腎臟纖維化治療靶點時,已有研究發(fā)現(xiàn)多種干預(yù)措施可通過抑制NF-κB信號通路改善腎臟纖維化。Zhou等[18]以單側(cè)輸尿管梗阻大鼠為模型,證實腎康Ⅶ方注射液抑制NF-κBp65核轉(zhuǎn)位,降低單側(cè)輸尿管梗阻大鼠體內(nèi)的TNF-α、IL-1β和單核細(xì)胞趨化蛋白1等炎癥因子水平,減少α-SMA、E-cadherin、Ⅲ型膠原等腎臟纖維化標(biāo)志蛋白表達,顯著緩解腎間質(zhì)纖維化程度。這為抑制NF-κB信號通路治療腎臟纖維化提供有力的臨床前證據(jù),也為后續(xù)研究提供重要參考。
維生素D經(jīng)肝、腎兩次羥化轉(zhuǎn)化為有生物活性的1,25(OH)2D3[19]。研究表明1,25(OH)2D3在炎癥調(diào)節(jié)和組織保護方面具有重要作用。Elattar等[20]發(fā)現(xiàn)活性維生素D3可抑制炎癥反應(yīng),改善肝酶水平,促進肝細(xì)胞增殖,保護肝臟;Xin等[21]研究發(fā)現(xiàn)PM2.5刺激使人支氣管上皮細(xì)胞NF-κBp65蛋白磷酸化水平升高,激活NF-κB信號通路,導(dǎo)致IL-6、TNF-α水平上升,而1,25(OH)2D3干預(yù)可抑制該通路,減少NF-κBp65蛋白磷酸化和炎癥細(xì)胞因子表達;Wang等[22]研究1,25(OH)2D3對糖尿病肝損傷的保護作用時發(fā)現(xiàn),高劑量1,25(OH)2D3可抑制NF-κB信號通路,下調(diào)Toll樣受體4、NF-κB、IL-6等炎癥因子表達,減輕肝臟炎癥和纖維化程度。
本實驗進一步研究1,25(OH)2D3對腎間質(zhì)纖維化的干預(yù)作用。結(jié)果顯示1,25(OH)2D3干預(yù)后,p-NF-κBp65/NF-κBp65比值和TNF-α、IL-6表達水平降低,且逆轉(zhuǎn)腎間質(zhì)纖維化早期階段時腎小管上皮細(xì)胞的活性抑制,使細(xì)胞形態(tài)逐漸恢復(fù)正常,提示早期腎間質(zhì)纖維化程度得以緩解。其中以干預(yù)24h效果最佳,對NF-κB信號通路抑制最強,炎癥因子下調(diào)幅度最大,對細(xì)胞形態(tài)和功能改善最明顯。表明1,25(OH)2D3可保護腎小管上皮細(xì)胞、抑制NF-κB信號通路激活、減少炎癥因子產(chǎn)生,存在約24h的最佳干預(yù)時間窗。超過這個時間窗,療效可能降低,不良反應(yīng)風(fēng)險增加,與既往研究結(jié)果一致[23]。
然而,活性維生素D?在臨床應(yīng)用中的劑量難以精確把控。長期高劑量服用可引發(fā)腎臟功能惡化、腎結(jié)石形成、血管鈣化等不良反應(yīng),影響患者的生活質(zhì)量,加重病情。因此,臨床應(yīng)用時需謹(jǐn)慎權(quán)衡治療效果和不良反應(yīng)。
綜上,高劑量1,25(OH)2D3干預(yù)24h可顯著抑制NF-κB信號通路激活和炎癥細(xì)胞因子產(chǎn)生,逆轉(zhuǎn)腎小管上皮細(xì)胞損傷,緩解腎間質(zhì)纖維化進程。但細(xì)胞實驗屬于體外實驗,并不能完全反映人體內(nèi)部的生理生化反應(yīng),未來還需要動物實驗及臨床研究進一步觀察驗證。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" HARADA M, SU-HARADA K, KIMURA T, et al. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts[J]. Cell Cycle, 2024, 23(3): 308–327.
[2]"" REN N, WANG W F, ZOU L, et al. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis[J]. Front Pharmacol, 2024, 14: 1335094.
[3]"" ZHANG L, LI Z, XING C, et al. Folate reverses NF-κB p65/Rela/IL-6 level induced by hyperhomocysteinemia in spontaneously hypertensive rats[J]. Front Pharmacol, 2021, 12: 651582.
[4]"" WANG P, WU P, SIEGEL M I, et al. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms[J]. J Biol Chem, 1995, 270(16): 9558–9563.
[5]"" ZHAO K, WEN L B. DMF attenuates cisplatin-induced kidney injury via activating Nrf2 signaling pathway and inhibiting NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(24): 8924–8931.
[6]"" VILLARREAL J Z, PéREZ-ANKER J, PUIG S, et al. Ex vivo confocal microscopy detects basic patterns of acute and chronic lesions using fresh kidney samples[J]. Clin Kidney J, 2023, 16(6): 1005–1013.
[7]"" BLACK L M, LEVER J M, AGARWAL A. Renal inflammation and fibrosis: A double-edged sword[J]. J Histochem Cytochem, 2019, 67(9): 663–681.
[8]"" ANILKUMAR S, WRIGHT-JIN E. NF-κB as an inducible regulator of inflammation in the central nervous system[J]. Cells, 2024, 13(6): 485.
[9]"" ARGANO C, MIRARCHI L, AMODEO S, et al. The role of vitamin D and its molecular bases in insulin resistance, diabetes, metabolic syndrome, and cardiovascular disease: State of the art[J]. Int J Mol Sci, 2023, 24(20): 15485.
[10] YU H, LIN L, ZHANG Z, et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209.
[11] DONADELLI R, ABBATE M, ZANCHI C, et al. Protein traffic activates NF-κB gene signaling and promotes MCP-1-dependent interstitial inflammation[J]. Am J Kidney Dis, 2000, 36(6): 1226–1241.
[12] KOLESNICHENKO M, MIKUDA N, H?PKEN U E, "et al. Transcriptional repression of NFKBIA triggers constitutive IKK- and proteasome-independent p65/RelA activation in senescence[J]. EMBO J, 2021, 40(6): e104296.
[13] ZOU J, ZHOU X, MA Y, et al. Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad[J]. Biomed Pharmacother, 2022, 149: 112931.
[14] QIU D, SONG S, CHEN N, et al. NQO1 alleviates renal fibrosis by inhibiting the TLR4/NF-κB and TGF-β/Smad signaling pathways in diabetic nephropathy[J]. Cell Signal, 2023, 108: 110712.
[15] 李鵬, 周霖, 王肖輝, 等. 腎康注射液對慢性腎衰竭大鼠腎間質(zhì)纖維化、內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)和線粒體氧化損傷的影響[J]. 現(xiàn)代藥物與臨床, 2024, 39(5): 1107–1114.
[16] SHEN J, DAI Z, LI Y, et al. TLR9 regulates NLRP3 inflammasome activation via the NF-κB signaling pathway in diabetic nephropathy[J]. Diabetol Metab Syndr, 2022, 14(1): 26.
[17] KIM E S, KIM S Y, MOON A. C-reactive protein signaling pathways in tumor progression[J]. Biomol Ther (Seoul), 2023, 31(5): 473–483.
[18] ZHOU S S, AI Z Z, LI W N, et al. Shenkang Ⅶ recipe attenuates unilateral ureteral obstruction-induced renal fibrosis via TGF-β/Smad, NF-κB and SHH signaling pathway[J]. Curr Med Sci, 2020, 40(5): 917–930.
[19] WIMALAWANSA S J. Physiology of vitamin D-focusing on disease prevention[J]. Nutrients, 2024, 16(11): 1666.
[20] ELATTAR S, ESTAPHAN S, MOHAMED E A, et al. The protective effect of 1alpha, 25-dihydroxyvitamin D3 and metformin on liver in type 2 diabetic rats[J]. J Steroid Biochem Mol Biol, 2017, 173: 235–244.
[21] XIN L, CHE B, ZHAI B, et al. 1, 25-dihydroxy vitamin D3 attenuates the oxidative stress-mediated inflammation induced by PM2. 5via the p38/NF-κB/NLRP3 pathway[J]. Inflammation, 2019, 42(2): 702–713.
[22] WANG H, ZHANG Q, CHAI Y, et al. 1, 25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflam- matory pathway and ameliorates liver injury in diabetic rats[J]. J Endocrinol Invest, 2015, 38(10): 1083–1091.
[23] 樊效菊, 李錚, 韓睿. 維生素D及其受體調(diào)控NF-kB信號通路對糖尿病腎病保護機制的研究進展[J]. 實用糖尿病雜志, 2018, 14(6): 72, 前插1.
(收稿日期:2025–01–07)
(修回日期:2025–07–25)
通信作者:林智峰,電子信箱:15199382836@163.com