中圖分類號(hào)R965 文獻(xiàn)標(biāo)志碼A 文章編號(hào) 1001-0408(2025)14-1819-06
DOI 10.6039/j.issn.1001-0408.2025.14.23
ABSTRACTOsteoarthritis(OA)isachronicdegenerativediseasecharacterizedprimarilybythedegenerationofarticular cartilage,withitspathogenesisinvolvingamultifactorialinterplayofinflammatoryresponses,chondrocyteapoptosis,and extracelular matrix(ECM)degradation.Non-codingRNA(ncRNA)participatesintheoccurrenceanddevelopment ofOAthrough theirdiverseregulatorypathways,providingnewpotentialtargetsforitstreatment.Thispapersystematicallyelucidatesthe mechanisms of ncRNA[micro ncRNA(miR),circular ncRNA(circR),and long ncRNA(IncR)] in regulating OA,as welas the current research statusoftraditional Chinesemedicine(TCM)intervening inOAbymodulatingncRNA.Itisfoundthat ncRNA participateinthepathologicalprocesssofOAbyconstructingamulti-layeredregulatorynetwork:miRinhibitsthetranslationof keytargetgenesandregulate downstreamsignaling pathways;circRcanactas‘molecularsponges’tocompetitivelyabsorbmRs forindirectregulationaswellasdirectlymodulateprotein functions;IncRpoess both‘molecularsponge’capabilitesandthe abilityto ntervene directlyin pathways.Andrograpolide,Xinfengcapsulesandothers interveneintheOA process byregulating theexpressionof miR,forminga‘TCM-miR-downstreamresponsechain’,whichreduces the expresionof matrix-hydrolyzing enzymesandinibitsthesecretionof inflammatoryfactors;paeoniflorin,Ronginniantongformulaandothers interveneintheOA process byaffectingcircRandlncR,thereby forminga‘TCM-lncR/circR-miR-downstreamresponsechain’topromotechondrocyte proliferation and reduce ECM degradation.
KEYWORDSosteoarthritis;traditional Chinese medicine;compound formula;non-coding RNA;regulatory mechanism
骨關(guān)節(jié)炎(osteoarthritis,OA)是中醫(yī)骨傷科常見病范疇,多因素交互作用使其病因復(fù)雜,病情纏綿難愈。
全球范圍內(nèi)有超過5.9億的OA患者,病例數(shù)增長(zhǎng)超過了130%[1] 。骨關(guān)節(jié)由覆蓋骨端的關(guān)節(jié)軟骨和關(guān)節(jié)囊共同構(gòu)成,內(nèi)部含有滑液,其中關(guān)節(jié)軟骨能夠吸收應(yīng)力,滑液可減少運(yùn)動(dòng)時(shí)的磨損,但由于此結(jié)構(gòu)的特殊性,這一部位容易發(fā)生損傷2。傳統(tǒng)觀點(diǎn)認(rèn)為,OA是一種炎性損傷性疾病,主要表現(xiàn)為進(jìn)行性疼痛、腫脹和關(guān)節(jié)僵硬。近年來研究發(fā)現(xiàn),OA的病理機(jī)制復(fù)雜,涉及軟骨細(xì)胞凋亡、細(xì)胞外基質(zhì)(extracellularmatrix,ECM)降解、自噬穩(wěn)態(tài)失衡等多個(gè)過程,且與年齡、代謝異常、機(jī)械應(yīng)力等密切相關(guān)。為優(yōu)化OA治療策略,研究者不斷深入探究其病理機(jī)制及調(diào)控網(wǎng)絡(luò),目前已揭示若干關(guān)鍵機(jī)制:腸道菌群可通過介導(dǎo)炎癥反應(yīng)影響OA進(jìn)程4,脂肪因子可通過調(diào)控關(guān)節(jié)微環(huán)境從而抑制OA發(fā)展,非編碼RNA(non-codingRNA,ncRNA)可通過抑制炎癥反應(yīng)和減少軟骨細(xì)胞凋亡等延緩OA進(jìn)展。這些多樣化的調(diào)控途徑不僅體現(xiàn)了OA病理機(jī)制的復(fù)雜性,也為開發(fā)新型治療策略提供了思路。其中,ncRNA憑借其復(fù)雜的調(diào)控網(wǎng)絡(luò)和治療潛力,已成為當(dāng)前研究的熱點(diǎn)之一。
ncRNA是一類不具備蛋白質(zhì)編碼功能的RNA,在表觀遺傳調(diào)控中發(fā)揮重要作用。研究表明,ncRNA在OA動(dòng)物模型及患者體內(nèi)均存在特異性表達(dá)譜,其可通過調(diào)控軟骨代謝、炎癥反應(yīng)及細(xì)胞凋亡等過程影響OA進(jìn)展。中藥治療OA具有簡(jiǎn)便易行、成本低廉、效益顯著及多靶點(diǎn)調(diào)控等優(yōu)勢(shì)。研究發(fā)現(xiàn),中藥提取物及其復(fù)方不僅能通過干預(yù)AMP活化的蛋白質(zhì)激酶(AMP-activatedproteinkinase,AMPK)/哺乳動(dòng)物雷帕霉素靶蛋白(mammaliantargetofrapamycin,mTOR)信號(hào)通路調(diào)控OA進(jìn)程,還能特異性調(diào)節(jié)ncRNA的表達(dá),通過減少軟骨細(xì)胞凋亡、減輕炎癥反應(yīng)等方式干預(yù)OA發(fā)展,為OA治療提供了新的研究方向。本文以ncRNA為切人點(diǎn),系統(tǒng)闡述ncRNA調(diào)控OA的作用機(jī)制及中藥通過調(diào)控ncRNA干預(yù)OA的研究進(jìn)展,旨在為OA的臨床治療優(yōu)化及創(chuàng)新藥物研發(fā)提供理論依據(jù)。
T ncRNA的概述
人類基因組中約 80% 的DNA可轉(zhuǎn)錄為RNA,但其中僅有 1.5% 最終翻譯為蛋白質(zhì)。根據(jù)結(jié)構(gòu)與功能特征,ncRNA可分為兩類:(1)傳統(tǒng)類型,包括核糖體RNA和轉(zhuǎn)運(yùn)RNA;(2)新型類型,包括微小ncRNA(micronon-codingRNA,miR)、環(huán)狀ncRNA(circularnon-coding RNA,circR)、長(zhǎng) 鏈 ncRNA(long non-codingRNA,lncR)等。隨著生物信息學(xué)和高通量測(cè)序等技術(shù)的發(fā)展,研究者已鑒定出大量ncRNA,并運(yùn)用基因編輯、交聯(lián)免疫沉淀測(cè)序等技術(shù)證實(shí),其可通過表觀遺傳調(diào)控、轉(zhuǎn)錄后修飾及信號(hào)通路整合等多種機(jī)制參與OA進(jìn)程[7]。
2 ncRNA在OA發(fā)生發(fā)展中的作用
在OA中,ncRNA可通過調(diào)控軟骨細(xì)胞增殖分化、ECM代謝及炎癥因子表達(dá)等關(guān)鍵環(huán)節(jié)影響疾病進(jìn)展。OA根據(jù)病因可分為原發(fā)型(病因未明,多與年齡、性別、遺傳相關(guān))和繼發(fā)型(由創(chuàng)傷、肥胖、感染等病因所致)兩種亞型。雖然這兩種亞型在部分病理機(jī)制和臨床表現(xiàn)上存在重疊,但由于缺乏特異性診斷的生物標(biāo)志物,臨床實(shí)踐中往往難以準(zhǔn)確區(qū)分,導(dǎo)致OA治療策略存在單一局限性[。ncRNA在OA中的多維調(diào)控網(wǎng)絡(luò)為解決這一問題提供了新思路:一方面可針對(duì)共有病理環(huán)節(jié)(如軟骨損傷級(jí)聯(lián)反應(yīng)、炎癥微環(huán)境失衡、關(guān)節(jié)結(jié)構(gòu)破壞等)設(shè)計(jì)廣譜治療策略;另一方面基于ncRNA在OA兩種亞型中表現(xiàn)出的特異性表達(dá)譜,有望建立具有亞型針對(duì)性的診療體系,從而突破傳統(tǒng)療法的局限性。
2.1miR通過抑制基因翻譯機(jī)制干預(yù)OA
miR是一種長(zhǎng)度為 20~25 個(gè)核苷酸的ncRNA,廣泛存在于真核細(xì)胞中,其主要通過不完全互補(bǔ)配對(duì)與靶信使RNA(messengerRNA,mRNA)結(jié)合,抑制靶標(biāo)mRNA翻譯,從而調(diào)控mRNA下游蛋白表達(dá)水平及細(xì)胞功能狀態(tài)。研究發(fā)現(xiàn),miR在OA進(jìn)程中發(fā)揮重要作用,例如,在白細(xì)胞介素1β(lnterleukin-1β,IL-1β)誘導(dǎo)的體外OA軟骨細(xì)胞模型中, miR-98-5p 通過靶向結(jié)合細(xì)胞凋亡關(guān)鍵執(zhí)行蛋白——胱天蛋白酶3(Caspase-3)的mRNA,抑制其翻譯過程,下調(diào)其蛋白的表達(dá),從而有效減少軟骨細(xì)胞凋亡、ECM降解及炎癥反應(yīng),進(jìn)而延緩OA進(jìn)程[10]。部分miR還具有多靶點(diǎn)調(diào)控特性,例如,miR-17可以同時(shí)靶向基質(zhì)金屬蛋白酶3(matrixmetalloproteinase,MMP3)MMP13、血管性血友病因子裂解蛋白酶5(adisintegrin and metalloprotease with a thrombospondintype1motifmember5,ADAMTS5)及一氧化氮合酶2(nitricoxidesynthase2,NOS2)等多種基質(zhì)水解酶相關(guān)mRNA,上調(diào)miR-17可通過抑制基因翻譯的方式降低小鼠OA模型中上述基質(zhì)水解酶的蛋白表達(dá)水平,減輕ECM損傷,從而延緩OA進(jìn)程[]。值得注意的是,外源性遞送miR-17時(shí)上述保護(hù)策略仍然有效。
2.2 miR通過調(diào)控信號(hào)通路干預(yù)OA
基于mRNA翻譯抑制機(jī)制,miR可通過參與包括Wnt、磷脂酰肌醇3激酶(phosphoinositide3-kinase,PI3K)/蛋白激酶B(proteinkinaseB,Akt)/mTOR、核因子κB (nuclearfactor κB,NF-κB 等在內(nèi)的各種信號(hào)通路調(diào)控細(xì)胞凋亡、炎癥反應(yīng)、軟骨降解等OA病理過程。例如,miR-214-3p通過特異性結(jié)合NF- σ?κB 信號(hào)通路的關(guān)鍵調(diào)控因子—核因子 κB 激酶抑制因子β的mRNA,抑制其翻譯過程,減少其蛋白的表達(dá),阻斷NF-
信號(hào)通路的激活,從而減輕ECM降解和軟骨細(xì)胞凋亡,最終延緩OA進(jìn)展[12]。miR-155通過特異性結(jié)合磷酸肌醇3激酶調(diào)節(jié)亞基1的mRNA并抑制其蛋白表達(dá),從而減弱PI3K/Akt/mTOR信號(hào)通路的激活,減少軟骨細(xì)胞凋亡,延緩OA進(jìn)程[3]。miR-1通過靶向卷曲蛋白受體7的mRNA,下調(diào)其蛋白的表達(dá),抑制Wntβ-聯(lián)蛋白0
-catenin)信號(hào)通路激活,進(jìn)而減少軟骨細(xì)胞凋亡及ECM降解,延緩OA發(fā)展[14]
2.3 circR通過調(diào)控miR干預(yù)OA
circR具有共價(jià)閉環(huán)結(jié)構(gòu),不易被RNA外切酶影響,相比于線性RNA,其穩(wěn)定性更強(qiáng)、半衰期更長(zhǎng),在細(xì)胞生理調(diào)控和疾病發(fā)生發(fā)展中展現(xiàn)出重要潛力[15]。circR分子常含有miR結(jié)合位點(diǎn),可作為“分子海綿\"競(jìng)爭(zhēng)性結(jié)合特定miR,從而減少miR與其靶mRNA的結(jié)合,解除miR對(duì)靶基因的翻譯抑制作用,最終通過調(diào)控蛋白的表達(dá)和信號(hào)通路的聯(lián)級(jí)反應(yīng)參與OA進(jìn)程。這種競(jìng)爭(zhēng)性結(jié)合miR產(chǎn)生了調(diào)控作用的機(jī)制被稱為競(jìng)爭(zhēng)性內(nèi)源RNA(competingendogenousRNA,ceRNA)機(jī)制。例如,circR-TBX5可競(jìng)爭(zhēng)性結(jié)合miR-558,阻斷miR-558對(duì)NF- κB 信號(hào)通路關(guān)鍵調(diào)控因子一髓樣分化因子88mRNA的抑制作用,敲低circR-TBX5將增加miR-558的mRNA翻譯抑制作用,下調(diào)髓樣分化因子88蛋白的表達(dá),減弱NF- κB 信號(hào)通路激活引起的軟骨細(xì)胞凋亡、ECM降解及炎癥反應(yīng),從而抑制OA進(jìn)程[16]。
2.4circR通過調(diào)控間充質(zhì)干細(xì)胞干預(yù)OA
間充質(zhì)干細(xì)胞(mesenchymal stemcells,MSC)通過其抗炎作用和組織修復(fù)能力等多重機(jī)制,為OA治療提供了兼具癥狀控制和軟骨組織修復(fù)的治療新策略。研究發(fā)現(xiàn),circR-SERPINE2可以通過增強(qiáng)緊密連接蛋白1與Y盒結(jié)合蛋白3(Y-boxbindingprotein3,YBX3)的相互膠合作用,同時(shí)還可以通過與YBX3堿基配對(duì)結(jié)合,阻止YBX3從MSC細(xì)胞質(zhì)向細(xì)胞核的易位,抑制增殖細(xì)胞核抗原的轉(zhuǎn)錄,同時(shí)干擾細(xì)胞周期抑制蛋白p21的降解,誘導(dǎo)MSC發(fā)生衰老;下調(diào)circR-SERPINE2表達(dá)可有效抑制MSC衰老并恢復(fù)其活力,這為干預(yù)衰老引起的原發(fā)性O(shè)A提供了新的治療思路[1]。炎癥微環(huán)境會(huì)顯著削弱MSC的治療效果,而circR-IRAK3可能成為克服這一限制的關(guān)鍵調(diào)控因子。研究發(fā)現(xiàn),circR-IRAK3一方面可與異質(zhì)核核糖核蛋白結(jié)合,競(jìng)爭(zhēng)性阻斷該蛋白對(duì)IL-1β、腫瘤壞死因子 ∝ (tumornecrosis factor- α ,TNF- σ?α∝ )及IL-6等促炎因子mRNA的保護(hù)作用,從而加速這些mRNA降解以抑制炎癥反應(yīng);另一方面還能促進(jìn)MSC向軟骨細(xì)胞的分化和增殖,低表達(dá)circR-IRAK3會(huì)逆轉(zhuǎn)上述效應(yīng),而上調(diào)circR-IRAK3既可減弱炎癥對(duì)MSC的負(fù)面影響,又能增強(qiáng)軟骨細(xì)胞生成,這種雙重作用機(jī)制有助于恢復(fù)OA中軟骨細(xì)胞凋亡與再生的動(dòng)態(tài)平衡,為OA治療提供新策略[8]。circR-ZCCHC14可作為\"分子海綿\"競(jìng)爭(zhēng)性結(jié)合miR-18la,miR-181a可靶向抗骨形態(tài)發(fā)生蛋白并抑制其表達(dá),而該蛋白會(huì)抑制MSC向成骨方向分化;下調(diào)circR-ZCCHC14可降低其“分子海綿”的吸附作用,上調(diào)miR-181a的表達(dá),從而增強(qiáng)miR-181a對(duì)抗骨形態(tài)發(fā)生蛋白的抑制作用,最終促進(jìn)MSC向成骨方向分化[9]。上述研究證實(shí),circR可通過調(diào)控MSC衰老、炎癥應(yīng)答及分化方向,為優(yōu)化MSC治療OA提供多維度潛在的干預(yù)靶點(diǎn)。
2.5circR經(jīng)靶向關(guān)鍵分子通路干預(yù)OA
circR-ZSWIM6可通過抑制蛋白酶降解途徑增強(qiáng)核糖體蛋白S14的穩(wěn)定性,敲低circR-ZSWIM6可導(dǎo)致核糖體蛋白S14表達(dá)下降,進(jìn)而上調(diào)磷酸烯醇式丙酮酸羧激酶1的表達(dá),激活A(yù)MPK信號(hào)通路促進(jìn)能量代謝平衡,改善軟骨細(xì)胞能量代謝失衡;同時(shí),敲低circR-ZSWIM6可能會(huì)抑制MMP13和ADAMTS5的表達(dá),減輕ECM降解,從而延緩OA進(jìn)程[20]。
circR-ARPC1B通過競(jìng)爭(zhēng)性結(jié)合波形蛋白的泛素化位點(diǎn),阻斷其通過蛋白酶體途徑的降解。在高膽固醇環(huán)境中,波形蛋白對(duì)維持軟骨細(xì)胞骨架完整性具有關(guān)鍵作用,上調(diào)circR-ARPC1B可顯著提升高膽固醇小鼠OA模型中的軟骨細(xì)胞活力并有效減少ECM降解,這為拮抗肥胖風(fēng)險(xiǎn)引起的繼發(fā)型OA提供了新的治療策略[21]。
機(jī)械負(fù)力誘導(dǎo)的ECM降解是OA的致病機(jī)制之一。在機(jī)械應(yīng)激的OA模型中,circR-Strn3的表達(dá)水平顯著降低,而在circR-Strn3低表達(dá)的軟骨細(xì)胞中,II型膠原蛋白合成呈現(xiàn)上升趨勢(shì);此外,下調(diào)circR-Strn3可減少其對(duì) miR-9-5p 的競(jìng)爭(zhēng)性吸附,導(dǎo)致后者表達(dá)增加,進(jìn)而靶向抑制MMP13和ADAMTS5的表達(dá),減少ECM降解[22]。這些發(fā)現(xiàn)提示,在異常機(jī)械應(yīng)激風(fēng)險(xiǎn)引起的繼發(fā)型OA中,circR-Strn3可能通過調(diào)控miR-9-5p/MMP13/ADAMTS5信號(hào)通路發(fā)揮保護(hù)作用。
2.6IncR經(jīng)信號(hào)通路干預(yù)OA
lncR是一類長(zhǎng)度大于等于200個(gè)核苷酸的ncRNA分子,雖無編碼蛋白能力,但在OA中發(fā)揮關(guān)鍵調(diào)控作用。與circR相似,lncR通過“分子海綿\"作用,競(jìng)爭(zhēng)性結(jié)合miR調(diào)控其下游反應(yīng)鏈,參與OA進(jìn)程。例如,上調(diào)lncR-SNHG7將競(jìng)爭(zhēng)性結(jié)合miR-324-3p,解除 miR-324-3p 對(duì)雙特異性磷酸酶1的抑制作用并增加該酶的表達(dá),而該酶是促分裂原活化的蛋白質(zhì)激酶(mitogen-activatedproteinkinase,MAPK)信號(hào)通路的負(fù)向調(diào)控酶,上調(diào)lncR-SNHG7經(jīng)miR-324-3p/MAPK信號(hào)通路減少軟骨細(xì)胞凋亡及減少炎癥反應(yīng),最終延緩OA進(jìn)展23]。此外,lncR還可直接干預(yù)信號(hào)通路傳導(dǎo),例如,上調(diào)lncR-SNHG1可直接激活PI3K/Akt/mTOR信號(hào)通路,抑制軟骨細(xì)胞自噬,顯著促進(jìn)軟骨細(xì)胞活力并抵抗其凋亡,最終延緩OA進(jìn)展[24]
2.7 IncR通過調(diào)控鐵死亡干預(yù)OA
鐵死亡作為一種非經(jīng)典死亡途徑,其誘導(dǎo)的軟骨細(xì)胞損傷可加速OA進(jìn)展。lncR-MEG3可通過上調(diào)miR-885- 5p ,顯著抑制鐵死亡關(guān)鍵調(diào)控因子—溶質(zhì)載體家族7成員11及谷胱甘肽過氧化物酶4的表達(dá),降低脂質(zhì)過氧化物的累積水平,同時(shí)減弱軟骨細(xì)胞對(duì)鐵死亡的敏感性;上述保護(hù)效應(yīng)可被lncR-MEG3敲低逆轉(zhuǎn)[25]。上述發(fā)現(xiàn)證實(shí),上調(diào)IncR-MEG3可拮抗鐵死亡途徑引起的繼發(fā)型OA的軟骨破壞,阻止OA進(jìn)程。
2.8 IncR通過調(diào)控MSC功能干預(yù)OA
lncR可通過雙向調(diào)控MSC功能參與OA的病理進(jìn)程。lncR-LINC00665過表達(dá)可競(jìng)爭(zhēng)性吸附miR-214- 3p 顯著抑制MSC增殖及軟骨分化功能,這種作用在miR214-3p過表達(dá)時(shí)被逆轉(zhuǎn);而敲低lncR-LINC00665則可解除其對(duì)miR-214-3p的抑制作用,增強(qiáng)MSC增殖及軟骨分化功能,從而延緩OA進(jìn)程2。此外,MSC對(duì)lncR存在雙向調(diào)控網(wǎng)絡(luò),MSC來源的外泌體可通過遞送lncR-TUC339至巨噬細(xì)胞,促進(jìn)巨噬細(xì)胞由促炎的M1型向抗炎的M2型極化,然后通過抑制炎癥反應(yīng)、促進(jìn)組織修復(fù)、增強(qiáng)軟骨細(xì)胞活性等途徑改善OA微環(huán)境,延緩OA進(jìn)程[27]。
2.9 IncR通過調(diào)控DNA修復(fù)通路干預(yù)OA
非同源末端連接是修復(fù)DNA雙鏈斷裂的核心機(jī)制之一,研究發(fā)現(xiàn),lncR-ZFHX2過表達(dá)可顯著提升非同源末端連接介導(dǎo)的DNA雙鏈斷裂修復(fù)效率,其機(jī)制是lncR-ZFHX2通過募集Kruppel樣轉(zhuǎn)錄因子4至端粒保護(hù)蛋白的啟動(dòng)子區(qū)域,增強(qiáng)該蛋白的轉(zhuǎn)錄活性,進(jìn)而調(diào)控DNA復(fù)制時(shí)序和DNA雙鏈斷裂修復(fù)的途徑選擇,維持端粒穩(wěn)態(tài);在生理性缺氧環(huán)境下,上調(diào)lncR-ZFHX2可有效修復(fù)軟骨細(xì)胞DNA損傷,維持ECM穩(wěn)態(tài),為拮抗生理性缺氧誘導(dǎo)的繼發(fā)型OA提供治療策略[28]。
綜上研究表明,ncRNA通過構(gòu)建多層次調(diào)控網(wǎng)絡(luò)參與OA的病理進(jìn)程,其作用機(jī)制主要包括miR靶向關(guān)鍵基因的翻譯抑制,調(diào)控下游信號(hào)通路;circR既可作為“分子海綿”競(jìng)爭(zhēng)性吸附miR間接參與調(diào)控,又能直接調(diào)節(jié)蛋白功能;lncR兼具“分子海綿\"作用和直接通路干預(yù)能力。這些ncRNA通過協(xié)同調(diào)控軟骨細(xì)胞功能、炎癥因子、ECM代謝及MSC等關(guān)鍵環(huán)節(jié)參與OA發(fā)生發(fā)展,不僅直接調(diào)控OA病理機(jī)制,還具有拮抗OA風(fēng)險(xiǎn)因素的作用,其機(jī)制的概括圖見圖1。

3中藥通過ncRNA干預(yù)OA
3.1 中藥提取物經(jīng)ncRNA干預(yù)OA
miR以基因翻譯抑制機(jī)制調(diào)控下游反應(yīng)鏈的方式參與OA進(jìn)程,研究發(fā)現(xiàn),中藥可特異性調(diào)節(jié)miR表達(dá),經(jīng)其下游反應(yīng)鏈干預(yù)OA。例如,穿心蓮內(nèi)酯是中藥穿心蓮的提取物,研究發(fā)現(xiàn),在體外人軟骨細(xì)胞OA模型中,穿心蓮內(nèi)酯能特異性上調(diào) miR-27-3p 的表達(dá),而miR-27-3p可通過靶向作用于MMP13并抑制其翻譯,從而降低MMP13的表達(dá)水平,減少ECM降解[29]。由此可見,穿心蓮內(nèi)酯可通過調(diào)控miR-27-3p/MMP13途徑抑制ECM降解,從而干預(yù)OA進(jìn)程。
表沒食子兒茶素-3-O-沒食子酸酯是綠茶葉的提取物,研究發(fā)現(xiàn),在體外人軟骨細(xì)胞OA模型中,表沒食子兒茶素-3-O-沒食子酸酯可通過下調(diào)miR-29b-3p的表達(dá),解除 miR-29b-3p 對(duì)PTEN的翻譯抑制作用,從而上調(diào)PTEN的表達(dá),降低MMP13、IL-6及Caspase-3的水平,抑制軟骨細(xì)胞凋亡、減輕炎癥反應(yīng)并減少ECM降解[30]由此可見,表沒食子兒茶素-3-O-沒食子酸酯可通過調(diào)控miR-29b-3p/PTEN途徑抑制軟骨細(xì)胞凋亡和ECM降解,從而干預(yù)OA進(jìn)程。
黃芩苷是一種從黃芩中提取的黃酮類化合物,研究發(fā)現(xiàn),黃芩苷不僅可上調(diào)miR-766-3p表達(dá),通過miR-766-3p對(duì)線粒體凋亡誘導(dǎo)因子1的mRNA翻譯抑制途徑減少線粒體凋亡誘導(dǎo)因子1蛋白的表達(dá),從而減少軟骨細(xì)胞凋亡、抑制ECM降解并減輕炎癥反應(yīng)[3;其還可在OA環(huán)境下通過下調(diào)miR-126的表達(dá)來抑制NF- σκB 信號(hào)通路激活,進(jìn)而減輕IL-1β誘導(dǎo)的炎癥反應(yīng)和軟骨細(xì)胞凋亡[32]。由此可見,黃芩苷可通過miR介導(dǎo)的多重機(jī)制發(fā)揮軟骨保護(hù)作用,干預(yù)OA進(jìn)程。
芍藥苷是白芍的提取物,研究發(fā)現(xiàn),芍藥苷可下調(diào)circ-PREX1,解除circ-PREX1對(duì) miR-I40-3p 的競(jìng)爭(zhēng)性吸附作用,降低Wnt5B的表達(dá)水平,從而抑制Wnt5B信號(hào)通路的激活[33]。由此可見,芍藥苷通過circ-PREX1/miR-140-3p/Wnt途徑減輕軟骨細(xì)胞調(diào)亡及炎癥反應(yīng),從而干預(yù)OA進(jìn)程。
姜黃素是中藥姜黃的提取物,但其生物利用度低,在人體中的調(diào)控能力有限。研究發(fā)現(xiàn),在人軟骨細(xì)胞OA模型中,經(jīng)姜黃素預(yù)處理MSC分泌的含姜黃素的細(xì)胞外囊泡(簡(jiǎn)稱“姜黃素囊泡\")可上調(diào)miR-126-3p的表達(dá),miR-126-3p通過翻譯抑制途徑,抑制PI3K/Akt/mTOR和MAPK等炎癥信號(hào)通路激活,減輕炎癥反應(yīng),干預(yù)OA進(jìn)程[34]。
3.2 中藥復(fù)方及制劑經(jīng)ncRNA干預(yù)OA
新風(fēng)膠囊由薏苡仁、黃芪、蜈蚣、雷公藤組成,研究發(fā)現(xiàn),在體外人軟骨細(xì)胞OA模型中,新風(fēng)膠囊可顯著下調(diào)miR-23a-3p的表達(dá)水平,從而抑制PI3K/Akt/mTOR信號(hào)通路的激活,進(jìn)而降低IL-1β、IL-6和TNF- ∝ 的表達(dá)[3]。由此可見,新風(fēng)膠囊可通過調(diào)控miR-23a-3p/PI3K/Akt/mTOR信號(hào)通路,減輕炎癥反應(yīng),改善OA進(jìn)程。
榮筋括痛方由牛膝、當(dāng)歸、羌活、獨(dú)活、防風(fēng)、甘草組成,研究發(fā)現(xiàn),榮筋括痛方可下調(diào)IncR-GAS5的表達(dá),解除其作為“分子海綿\"競(jìng)爭(zhēng)性吸附miR-21的作用,從而增加miR-21特異性靶標(biāo)組織金屬蛋白酶抑制因子3的表達(dá),降低MMP3、MMP9、MMP13和ADAMTS5的表達(dá),同時(shí)提升Ⅱ型膠原蛋白和聚集蛋白的表達(dá),最終促進(jìn)大鼠軟骨細(xì)胞OA模型中ECM的合成,減輕其降解[3。此外,榮筋拈痛方還可下調(diào)lncR-NEATI的表達(dá),激活核轉(zhuǎn)錄因子紅系2相關(guān)因子2/抗氧化響應(yīng)元件信號(hào)通路,以增加抗氧化蛋白血紅素加氧酶1及醌氧化還原酶1的表達(dá),最終降低大鼠軟骨細(xì)胞OA模型中軟骨細(xì)胞氧化應(yīng)激損傷引起的軟骨細(xì)胞凋亡及炎癥反應(yīng)[3。這些研究結(jié)果表明,榮筋拈痛方可通過lncR介導(dǎo)的基質(zhì)代謝調(diào)控和抗氧化應(yīng)激雙重機(jī)制發(fā)揮抗OA作用。
蒼熙通痹膠囊由蒼術(shù)、川牛膝、獨(dú)活、草、雞血藤、威靈仙、桑寄生、骨碎補(bǔ)、川續(xù)斷組成。研究發(fā)現(xiàn),蒼熙通痹膠囊以劑量依賴性方式上調(diào)circR-0008365的表達(dá),該circR作為“分子海綿\"競(jìng)爭(zhēng)性結(jié)合miR-1271,從而解除miR-1271對(duì)p38MAPK信號(hào)通路的抑制作用,最終減輕人軟骨細(xì)胞OA模型中ECM的降解[38]。這表明蒼熙通痹膠囊可通過circR-0008365/miR-1271/p38MAPK信號(hào)通路干預(yù)OA進(jìn)程。
4結(jié)語與展望
基于ncRNA對(duì)OA蛋白調(diào)控、信號(hào)通路調(diào)控,中藥通過調(diào)控ncRNA參與OA治療:一方面,穿心蓮內(nèi)酯、新風(fēng)膠囊等通過調(diào)節(jié)miR的表達(dá),形成“中藥-miR-下游反應(yīng)鏈”,以減少基質(zhì)水解酶表達(dá)、抑制炎癥因子分泌等途徑干預(yù)OA進(jìn)程;另一方面,芍藥昔、榮筋拈痛方等通過影響circR和lncR,形成“中藥-lncR/circR-miR-下游反應(yīng)鏈”,以促進(jìn)軟骨細(xì)胞增殖,減少ECM降解等途徑干預(yù)OA進(jìn)程。此外,姜黃素囊泡為中藥干預(yù)OA提供了思路,提示可以通過新型處理加工方式(如細(xì)胞工程化改造、外泌體載藥系統(tǒng))對(duì)中藥成分進(jìn)行功能化修飾,以突破傳統(tǒng)藥物存在的代謝過快、肝臟首關(guān)效應(yīng)過快等難題。
雖然中藥為OA治療開辟了一條極具潛力的新途徑,然而,當(dāng)前研究仍存在若干亟待解決的問題:(1部分ncRNA調(diào)控網(wǎng)絡(luò)的分子機(jī)制尚未完全闡明,特別是風(fēng)險(xiǎn)因素(如機(jī)械應(yīng)力、代謝異常等)介導(dǎo)的OA中ncRNA調(diào)控特征的研究不足;(2)現(xiàn)有研究多基于體外細(xì)胞或動(dòng)物模型,缺乏臨床前體內(nèi)驗(yàn)證;(3)中藥復(fù)方多組分-多靶點(diǎn)的協(xié)同調(diào)控機(jī)制解析不夠深人,且缺乏系統(tǒng)的臨床轉(zhuǎn)化數(shù)據(jù)。針對(duì)上述問題,后續(xù)研究建議運(yùn)用現(xiàn)代篩選技術(shù)(如高通量測(cè)序、交聯(lián)免疫沉淀測(cè)序等)、基因編輯技術(shù)并結(jié)合多學(xué)科交叉研究,系統(tǒng)解析ncRNA調(diào)控網(wǎng)絡(luò),探索新型干預(yù)策略(如MSC療法、靶向遞藥系統(tǒng)等)及其對(duì)OA風(fēng)險(xiǎn)因素的拮抗機(jī)制,發(fā)掘更多具有ncRNA調(diào)控潛力的中藥活性成分;同時(shí),加速基礎(chǔ)研究成果轉(zhuǎn)化,對(duì)已鑒定的中藥候選物開展規(guī)范的臨床試驗(yàn)驗(yàn)證。
參考文獻(xiàn)
[1] GBD 2021 Gout Collaborators.Global,regional,and nationalburdenof gout,1990-2020,and projectionsto 2050: asystematic analysis of the Global Burden of Disease Study2021[J].Lancet Rheumatol,2024,6(8):e507-e517.
[2] LIN W F,KLEINJ. Recent progress in cartilage lubrication[J].AdvMater,2021,33(18):e2005513.
[3] GUANMQ,YUQY,ZHOUGH,etal.Mechanismsof chondrocyte cell death in osteoarthritis:implications for disease progression and treatment[J]. J Orthop Surg Res, 2024,19(1):550.
[4]LONGO U G,LALLI A,BANDINI B,et al. Role of the gut microbiota in osteoarthritis,rheumatoid arthritis,and spondylarthritis: an update on the gut-joint axis[J]. Int J Mol Sci,2024,25(6):3242.
[5]ECONOMOU A,MALLIAI,F(xiàn)IORAVANTI A,et al. The role of adipokines between genders in the pathogenesis of osteoarthritis[J]. Int JMol Sci,2024,25(19):10865.
[6]廖太陽,張力,楊楠,等.基于AMPK/mTOR信號(hào)通路研 究膝痹寧方對(duì)膝骨關(guān)節(jié)炎模型大鼠的改善作用機(jī)制[J]. 中國(guó)藥房,2023,34(1):23-28.
[7]LOGANATHAN T,GEORGE DOSS C. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets[J]. Funct Integr Genomics,2023,23(1):33.
[8]王文濤,陳月琴.非編碼RNA調(diào)控蛋白翻譯與疾病發(fā)生 [J].中國(guó)科學(xué):生命科學(xué),2023,53(11):1527-1545.
[9]COPPOLA C,GRECO M,MUNIR A,et al. Osteoarthritis:insights into diagnosis,pathophysiology,therapeutic avenues,and the potential of natural extracts[J].Curr Issues Mol Biol,2024,46(5) :4063-4105.
[10]LV H,LIU PR,HU H,et al. miR-98-5p plays suppressive effects on IL-1β -induced chondrocyte injury associated with osteoarthritis by targeting CASP3[J]. J Orthop Surg Res,2024,19(1) :239.
[11]ZHANG Y,LI SJ,JINP S,et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis[J].Nat Commun,2022,13 (1) :2447.
[12]CAO Y M,TANG S A,NIE X Y,et al. Decreased miR214-3p activates NF- κB pathway and aggravates osteoarthritis progression[J]. EBioMedicine,2021,65:103283.
[13]FAN Z Y,LIUY H,SHI Z L,et al. miR-155 promotes interleukin- 1β -induced chondrocyte apoptosis and catabolic activity by targeting PIK3R1-mediated PI3K/Akt pathway [J]. J CellMol Med,2020,24(15):8441-8451.
[14]YANG Y,WANG Y W, JIA H B,et al. microRNA-1 modulates chondrocyte phenotype by regulating FZD7 of (20 Wnt/β -catenin signaling pathway[J]. Cartilage,2021,13 (Suppl.2):1019S-1029S.
[15]MISIR S,WU N,YANG B B. Specific expression and functions of circularRNAs[J]. Cell Death Differ,2022,29 (3):481-491.
[16]WEI W,MU HJ,CUIQY,et al. CircTBX5 knockdown modulates the miR-558/MyD88 axis to alleviate IL-1β-induced inflammation,apoptosis and extracellular matrix degradation in chondrocytes via inactivating the NF- κB signaling[J].JOrthop Surg Res,2023,18(1):477.
[17]CHEN F L,WANG S,ZENG C Y,et al. Silencing circSERPINE2 restrains mesenchymal stem cell senescence via the YBX3/PCNA/p21 axis[J]. Cell Mol Life Sci,2023, 80(11):325.
[18]WEN X Z,F(xiàn)ANG G B,LI H Y,et al. CircIRAK3 exerts negative feedback regulation on inflammation by binding to HNRNP U and destabilizing proinflammatory cytokine mRNA in osteoarthritis and chondrogenesis[J]. Int JBiol Macromol,2024,256(Pt2):128453.
[19]]ZHAO D H,CHEN H,ZHONG J,et al. circRNAZCCHC14 affects the chondrogenic differentiation ability of peripheral blood-derived mesenchymal stem cells by regulating GREM1 through miR-18la[J]. Sci Rep,2023, 13(1) :2889.
[20] GONG Z,WANGKF,CHEN JX,et al. CircZSWIM6 mediates dysregulation of ECM and energy homeostasis inageing chondrocytes through RPS14 post-translational modification[J]. Clin Transl Med,2023,13(1):e1158.
[21]LI JR,LI X,ZHOU S J,et al. Circular RNA circARPC1B functions as a stabilisation enhancer of vimentin to prevent high cholesterol-induced articular cartilage degeneration[J]. Clin Transl Med,2023,13(9):e1415.
[22]LIB,DING T,CHENHY,etal. CircStrn3 targeting microRNA-9-5p is involved in the regulation of cartilage degeneration and subchondral bone remodelling in osteoarthritis[J]. Bone Joint Res,2023,12(1):33-45.
[23]SUN HY,LI Z W,LIU NN,et al. Long non-coding RNA SNHG7 suppresses inflammation and apoptosis of chondrocytes through inactivating of p38 MAPK signaling pathway in osteoarthritis[J]. Mol Biotechnol,2024,66 (9):2287-2296.
[24]WANG Q S,YANG J,PAN R,et al. LncRNA SNHG1 overexpression alleviatesosteoarthritis via activating PI3K/Akt signal pathway and suppressing autophagy[J]. Immunobiology,2024,229(3):152799.
[25]ZHU C T,CHEN B,HE X,et al. LncRNA MEG3 suppresses erastin-induced ferroptosis of chondrocytes via regulating miR-885-5p/SLC7A11 axis[J]. Mol Biol Rep, 2024,51(1):139.
[26]CHEN S Y,LIU H,WANG Y,et al. Overexpression of lncRNA LINCO0665 inhibits the proliferation and chondroblast differentiation of bone marrow mesenchymal stem cells by targeting miR-214-3p[J]. J Orthop Surg Res, 2024,19(1):2.
[27]SHEN X,QIN J,WEI Z J,et al. Bone marrow mesenchymal stem cell exosome-derived lncRNA TUC339 influences the progression of osteoarthritis by regulating synovial macrophage polarization and chondrocyte apoptosis[J]. Biomed Pharmacother,2023,167:115488.
[28]NI W Y,ZHANG H T,MEI Z X,et al. An inducible long noncoding RNA,IncZFHX2,facilitates DNA repair to mediate osteoarthritis pathology[J]. Redox Biol,2023,66: 102858.
[29]CHEN S J,LUO Z H,CHEN XG.Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression[J].J Gene Med,2020,22 (8):e3187.
[30]YANG D,CAO G H,BA XR,et al. Epigallocatechin-3-Ogallate promotes extracellular matrix and inhibits inflammation in IL-1β stimulated chondrocytes by the PTEN/ miRNA-29b pathway[J].Pharm Biol,2022,60(1): 589-599.
[31]LIU J,ZHOU H,CHEN J,et al.Baicalin ameliorates cartilage injury in rats with osteoarthritis via modulating miR766-3p/AIFM1axis[J]. Physiol Res,2024,73(4): 633-642.
[32]YANG X R, ZHANG Q, GAO Z M,et al. Baicalin alleviates IL-1β -induced inflammatory injury via downregulating miR-126 in chondrocytes[J]. Biomed Pharmacother,2018,99:184-190.
[33]WU L E,TANG R K,XIONG WB,et al. Paeoniflorin shows chondroprotective effects under IL-1β stressby regulating circ-PREX1/miR-140-3p/WNT5B axis[J].J Orthop Surg Res,2023,18(1):766.
[34]LI S S,STOCKL S,LUKAS C,et al. Curcumin-primed human BMSC-derived extracellular vesiclesreverse IL- ?1β -induced catabolic responses of OA chondrocytes by upregulating miR-126-3p[J]. Stem Cell Res Ther,2021,12 (1):252.
[35]BAO B,LIU J,WANL,et al. Xinfeng capsule inhibits immune inflammation in osteoarthritis by inhibiting the miR-23a-3p/PETN/PI3K/Akt/mTOR pathway[J].J South MedUniv,2021,41(4):483-494.
[36]趙忠勝.從IncRNAGAS5/miR-21調(diào)控軟骨基質(zhì)代謝角 度探討榮筋拈痛方治療膝骨關(guān)節(jié)炎的作用機(jī)制[D].福 州:福建中醫(yī)藥大學(xué),2020.
[37]付長(zhǎng)龍,謝新宇,邱志偉,等.基于LncRNANEAT1與 Nrf2/ARE通路研究榮筋括痛方延緩膝骨關(guān)節(jié)炎軟骨退 變作用機(jī)制[J].康復(fù)學(xué)報(bào),2022,32(4):332-337.
[38]謝文鵬,馬騰,梁延琛,等.蒼膝通痹膠囊調(diào)控circRNA 0008365/miR-1271/p38MAPK通路軸促進(jìn)膝骨關(guān)節(jié)炎 軟骨細(xì)胞自噬的機(jī)制研究[J].中國(guó)中藥雜志,2023,48 (18):4843-4851. (收稿日期:2025-03-20修回日期:2025-07-03)