999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

消毒劑促進細(xì)菌抗菌藥物耐受性/耐藥性產(chǎn)生和傳播機制研究進展

2025-03-21 00:00:00崔潤博陳渺渺洪守強李嘉豪楊瓊趙西林
中國抗生素雜志 2025年2期

摘要:消毒劑有效地幫助人類殺滅有害微生物,在防止新型冠狀病毒(Corona Virus Disease 2019,COVID-19)傳染過程中,消毒劑的使用量激增。消毒劑的過量使用不僅會對環(huán)境造成破壞與污染,更為隱蔽的一個后果是促進細(xì)菌抗菌藥物耐受性/耐藥性的產(chǎn)生和傳播,將成為全球公共衛(wèi)生的又一大挑戰(zhàn)。目前的研究證明,基因突變與水平轉(zhuǎn)移、外排泵編碼基因表達上調(diào)和孔蛋白編碼基因表達下調(diào)、生物膜和應(yīng)激反應(yīng)是消毒劑促進細(xì)菌抗菌藥物耐受性/耐藥性的主要機制。本文總結(jié)了近些年的研究成果,闡述了主要的消毒劑促進病原菌耐藥機制,并列出了幾點建議,希望以此來延緩消毒劑介導(dǎo)的細(xì)菌抗菌藥物耐受性/耐藥性的產(chǎn)生和傳播,為更好地進行臨床抗感染治療提供借鑒與指導(dǎo)。

關(guān)鍵詞:消毒劑;抗菌藥物耐受性;抗菌藥物耐藥性;促進機制

中圖分類號:R978.1 文獻標(biāo)志碼:A

Advancements on mechanisms of bacterial antibiotic tolerance/resistance promoted by disinfectants

Cui Runbo, Chen Miaomiao, Hong Shouqiang, Li Jiahao, Yang Qiong, and Zhao Xilin

(State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102)

Abstract Disinfectants effectively help humans fight against harmful microorganisms. During the COVID-19 pandemic, the use of disinfectants has surged extensively. The excessive use of disinfectants may not only cause damage and contamination to the environment, but it may also promote the development and spread of bacterial antibiotic tolerance/resistance, which could become another major challenge for global public health. Current studies showed that genetic mutation, horizontal gene transfer, up-regulated expression of efflux pump-coding genes and down-regulated expression of porin-coding genes, biofilm formation, and stress response were the main mechanisms by which disinfectants promote bacterial antibiotic tolerance/resistance. This article summarized recent research results, described these main mechanisms by which disinfectants promote pathogen resistance, and offered some advice and suggestions with the goal of helping delay the emergence and spread of bacterial antibiotic tolerance/resistance. This work was expected to provide references and guidance for better control and treatment of clinical infections.

Key words Disinfectants; Antibiotic drug tolerance; Antibiotic resistance; Promotion mechanism

消毒劑是用于殺滅傳播媒介上的有害微生物使其達消毒或滅菌要求的制劑。常見的消毒劑分為含氯消毒劑、醇類消毒劑、酚類消毒劑、過氧化物類消毒劑、季銨鹽類消毒劑、胍類消毒劑和重金屬類消毒劑等[1-2]。廣義上的消毒還包括物理消毒方式,比如紫外消毒、高壓消毒、輻射、超聲波、過濾、低溫和光催化等(表1)。為防止新型冠狀病毒的傳染,消毒劑使用量大幅度增加,全球銷售總額比前一年增長超30%,高達45億美元[3]。在幫助人類殺滅有害微生物的同時,消毒劑廣泛使用和濫用會促進細(xì)菌產(chǎn)生對消毒劑適應(yīng)性的耐受(tolerance)或耐藥(resistance)[1,4]使得消毒效果變差,從而對公共醫(yī)療、食品加工、農(nóng)業(yè)生產(chǎn)等領(lǐng)域帶來嚴(yán)峻的挑戰(zhàn)。

消毒劑的使用還會促進抗菌藥物耐受性/耐藥性產(chǎn)生和傳播[6]。抗菌藥物的耐受性是指細(xì)菌最小抑菌濃度(minimum inhibitory concentration, MIC)無明顯變化,而殺死99%細(xì)胞的最短時間(minimum duration to kill 99% of the population, MDK99)增加的現(xiàn)象[7];抗菌藥物的耐藥性則是細(xì)菌的MIC升高,在致命濃度抗菌藥物下仍然保持正常生長遺傳復(fù)制能力的現(xiàn)象[7-9]。1996年,Russell等[10]就已提出消毒劑耐藥性和抗菌藥物耐藥性之間可能存在某種關(guān)聯(lián),隨后Russell等[1]更新了自己的觀點,認(rèn)為消毒劑和抗菌藥物在作用機制上確有相似之處(表2)。2020年,世界衛(wèi)生組織抗微生物藥物耐藥性全球協(xié)調(diào)和伙伴關(guān)系司指出需要重視消毒劑對細(xì)菌抗菌藥物耐受耐藥性的影響,合理選擇消毒方式,盡可能選用選擇壓力小的消毒劑[11]。2021年,Lu等[12]在《Science》期刊上發(fā)表了一封信函,再次強調(diào)消毒劑促進細(xì)菌獲得抗菌藥物耐受耐藥性可能是僅次于新型冠狀病毒肺炎大流行的全球最大衛(wèi)生挑戰(zhàn)。

科學(xué)家們已經(jīng)先后證明消毒劑可以通過基因突變、外排泵、基因水平轉(zhuǎn)移、生物膜、應(yīng)激反應(yīng)等機制促進抗菌藥物耐受性/耐藥性[6,16-18]。闡明消毒劑促進細(xì)菌抗菌藥物耐受性/耐藥性的機制將有助于人類更全面地認(rèn)識到消毒劑濫用導(dǎo)致的不良后果,促進消毒劑的合理化使用,進而遏制抗菌藥物耐藥細(xì)菌的產(chǎn)生和傳播。本文旨在總結(jié)近年有關(guān)消毒劑促進細(xì)菌獲得性耐藥機制研究成果,討論基于目前的研究如何通過科學(xué)的使用消毒劑以減少抗菌藥物耐受性/耐藥性的產(chǎn)生。

1 基因突變

基因突變?yōu)檫M化提供了原始的遺傳基礎(chǔ),而自然選擇是進化的動力[19-20]。使用消毒劑短期處理細(xì)菌,會引發(fā)細(xì)菌內(nèi)部信號通路改變,導(dǎo)致某些相關(guān)基因的表達發(fā)生變化[21]。反復(fù)使用消毒劑處理,消毒劑會對發(fā)生突變的細(xì)菌進行選擇作用[22],使得有利基因突變亞群逐漸在種群中獲得競爭優(yōu)勢[23]。

1.1 中心碳代謝系統(tǒng)

Zeng等[24]使用消毒劑苯酚多輪富集處理大腸埃希菌(Escherichia coli),獲得了消毒劑泛耐受突變體,經(jīng)過全基因組測序驗證ptsI基因突變(I393S)是導(dǎo)致細(xì)菌消毒劑耐受性的原因,突變體對包括β-內(nèi)酰胺類、喹諾酮類和氨基糖苷類等多種抗菌藥物同樣具有廣譜耐受性。ptsI基因編碼磷酸轉(zhuǎn)移酶系統(tǒng) (phosphotransferase system, PTS)中的酶I(EI),其介導(dǎo)糖類的磷酸化轉(zhuǎn)運,參與細(xì)菌中心碳代謝,證明ptsI突變?nèi)笔?dǎo)致環(huán)腺苷酸(cAMP)合成減少,cAMP水平的降低進一步使細(xì)菌代謝通路從三羧酸循環(huán)轉(zhuǎn)向磷酸戊糖途徑和糖酵解,從而降低ATP的產(chǎn)生和有氧呼吸代謝副產(chǎn)物活性氧(reactive oxygen species, ROS)的積累,最終導(dǎo)致對抗菌藥物的耐受性。此項研究表明,消毒劑可以發(fā)揮選擇作用,有效選擇同時產(chǎn)生對消毒劑和抗菌藥物泛耐受基因突變的靶點,使得基因突變體在消毒劑與抗菌藥物環(huán)境中都獲得存活優(yōu)勢。

1.2 編碼外排泵基因

細(xì)菌外排泵由轉(zhuǎn)運蛋白構(gòu)成,是一種功能性的轉(zhuǎn)運體,能將藥物等有毒物質(zhì)外排出細(xì)胞,降低胞內(nèi)有毒物質(zhì)濃度,進而保護細(xì)胞免受傷害。根據(jù)結(jié)構(gòu)和能量來源主要分為6種類型:耐藥結(jié)節(jié)和細(xì)胞分裂(resistance nodulation and cell division, RND)超家族,小多重藥耐藥(small multidrug resistance, SMR)超家族,ATP結(jié)合盒(ATP-Binding cassette, ABC)超家族,主要促進因子超家族(major facilitator superfamily, MFS),多藥和有毒化合物外排(multidrug and toxic compound extrusion, MATE)超家族和變形菌抗菌化合物外排(proteobacterial antimicrobial compound efflux, PACE)超家族[25-26]。外排泵還可以根據(jù)底物特異性分為兩大類,一是藥物特異性外排,通常由可移動的遺傳元件編碼,這些遺傳元件可賦予細(xì)菌中產(chǎn)生相應(yīng)的耐藥性;二是多藥外排機制,通常是染色體編碼的,它們的表達是基因調(diào)控的結(jié)果[27-29]。外排泵編碼基因表達上調(diào)是導(dǎo)致細(xì)菌抗菌藥物耐藥性產(chǎn)生的一個主要因素[30-33]。

RND超家族的AcrAB-TolC是腸桿菌目細(xì)菌中的最典型的多藥外排泵之一。細(xì)菌中AcrAB-TolC上游調(diào)節(jié)基因的突變會改變外排泵的活性,Jia等[34]使用苯扎氯銨和雙癸基二甲基氯化銨對大腸埃希菌進行60 d的傳代培養(yǎng),獲得多個對利福平耐藥的突變菌株,部分突變株中acrAB表達抑制基因soxR(L95S),marR(V45E)的突變解除了對外排泵表達的抑制;另一部分突變株中acrAB表達上游激活基因lon(K35E) 突變則增強了外排泵基因的表達。與此類似,氯己定處理肺炎克雷伯菌會導(dǎo)致ramA抑制因子ramR提前終止,ramA被激活后進一步促進外排泵AcrAB-TolC 表達,使得細(xì)菌對環(huán)丙沙星、頭孢噻肟、多西環(huán)素和氯霉素的MIC大幅升高[35]。同樣在沙門菌中,苯扎氯銨處理導(dǎo)致多個ramR點突變 (T18P, G42E, A37V) 或移碼突變,引發(fā)AcrAB-TolC外排泵基因的過表達,使細(xì)菌獲得對環(huán)丙沙星等多種抗菌藥物的耐藥性[36-37]。使用新型陽離子消毒劑奧替尼啶處理腸桿菌屬和檸檬酸桿菌屬細(xì)菌,導(dǎo)致外排泵抑制因子基因marR或ramR突變解除了對外排泵激活基因marA或ramA的抑制,使得AcrAB-TolC外排泵活性增加,降低了對奧替尼啶的敏感性,并且腸桿菌屬突變株會獲得對環(huán)丙沙星的耐藥性,檸檬酸桿菌屬突變株會同時產(chǎn)生對β-內(nèi)酰胺類抗菌藥物和環(huán)丙沙星的耐藥性[38]。

除此之外,其他外排泵也發(fā)揮了類似的作用。Zhang等[39]對氯己定連續(xù)處理獲得的肺炎克雷伯菌突變菌株進行分析,發(fā)現(xiàn)突變菌株中外膜脂多糖修飾相關(guān)基因pmrB中發(fā)生突變(L82R)并且外排泵編碼基因cepA表達上調(diào),導(dǎo)致細(xì)菌產(chǎn)生對多黏菌素的耐藥性。從廢水中分離出苯扎氯胺耐藥的銅綠假單胞菌(Pseudomonas aeruginosa)中,Amsalu等[40]發(fā)現(xiàn)分離株中促旋酶gyrA(T83I, D87N)突變,外排泵調(diào)節(jié)基因nalC(G71E, S209R, E153Q)和mexR(V126E)突變引起RND超家族MexAB-OprM多藥外排泵的表達量增加,共同導(dǎo)致對氟喹諾酮類抗菌藥物的耐藥性。Douarre等[41]則利用苯扎氯銨和二癸基二甲基氯化銨處理單核細(xì)胞增多性李斯特菌,編碼氟喹諾酮外排泵抑制因子的fepR基因突變(F19L, T22I, I27T, S37Y, D44Y, D46G)解除了對下游基因表達的抑制,增強了MATE超家族外排泵FepA基因的表達,導(dǎo)致細(xì)菌產(chǎn)生對環(huán)丙沙星的耐藥性。

1.3 編碼孔蛋白基因

孔蛋白是一種位于細(xì)胞外膜上的β-桶狀蛋白,負(fù)責(zé)物質(zhì)的輸入,是革蘭陰性菌外膜上含量最多的蛋白質(zhì)[42-44]。根據(jù)功能和結(jié)構(gòu)可分為:一般非特異性通道,如OmpF和OmpC;底物特定通道,如PhoE和LamB;小β桶通道,如OmpA和OmpX[15]。由于孔蛋白介導(dǎo)某些抗菌藥物進入細(xì)菌胞內(nèi)的被動擴散,所以它們與革蘭陰性細(xì)菌的抗菌藥物耐藥性密切相關(guān)[45-48]。

Pereira等[49]在芐氯酚存在條件下對大腸埃希菌進行25 d的傳代培養(yǎng),獲得的突變菌株中,編碼孔蛋白雙組份調(diào)控系統(tǒng)的envZ和ompR基因產(chǎn)生點突變(envZ R55L, ompR R15S)會抑制下游孔蛋白OmpF表達,從而導(dǎo)致細(xì)菌獲得對氨芐西林、氯霉素和諾氟沙星的耐藥性。Bore等[50]觀察到苯扎溴銨耐受的大腸埃希菌對抗菌藥物敏感性降低,通過轉(zhuǎn)錄組和蛋白質(zhì)組學(xué)分析發(fā)現(xiàn)其外排泵編碼基因的表達增加,且多個外膜孔蛋白OmpA,OmpF和OmpT的表達下調(diào)。沙門菌中也具有相似的機制,在使用3種廣泛使用的農(nóng)場消毒劑對血清型鼠傷寒沙門菌進行長時間處理后,突變菌株均表現(xiàn)出對抗菌藥物氨芐西林、氯霉素、環(huán)丙沙星、萘啶酸和四環(huán)素的敏感性降低,它們的外排泵表達增加而外膜孔蛋白OmpC和OmpF表達降低[51]。在鮑曼不動桿菌(Acinetobacter baumannii) 之中,使用二葡萄糖酸氯己定和苯扎氯銨等消毒劑對鮑曼不動桿菌進行傳代培養(yǎng),觀察到對消毒劑的敏感性降低與對抗菌藥物的耐藥性之間存在統(tǒng)計學(xué)上的顯著相關(guān)性。通過轉(zhuǎn)錄組分析發(fā)現(xiàn),外排泵基因amvA、adeB和aceI表達上調(diào),而孔蛋白基因ompA或carO的表達則降低[52]。在果園被廣泛應(yīng)用的含銅消毒劑也被證明可以促進細(xì)菌對氯霉素和四環(huán)素的耐藥性,耐藥菌株的多藥外排泵表達上調(diào),而外膜孔蛋白OmpC和OmpF基因表達下調(diào)[53]。

孔蛋白在消毒劑誘導(dǎo)抗菌藥物耐藥性的過程中發(fā)揮著重要作用[54-55],而且孔蛋白編碼基因的表達下調(diào)往往伴隨著外排泵編碼基因的表達上調(diào)[56-57]。這兩個過程可能在很多情況下是相互偶聯(lián)的,因為消毒劑的殺滅細(xì)菌的靶點并不唯一,可能會導(dǎo)致細(xì)菌采取多種策略來抵御消毒劑的攻擊。而外排泵和孔蛋白都位于細(xì)菌細(xì)胞膜上,二者相互協(xié)調(diào)控制抗菌藥物的攝入和排出[58],共同表達改變以增強細(xì)菌的膜適應(yīng)性從而抵御消毒劑同時抵御抗菌藥物對細(xì)菌的殺傷。

2 基因水平轉(zhuǎn)移

基因水平轉(zhuǎn)移主要通過質(zhì)粒(plasmid)、轉(zhuǎn)座子 (transposon)、整合子(integron)和噬菌體(phage)等4種方式實現(xiàn)抗菌藥物抗性基因(antibiotic resistance genes, ARGs)的轉(zhuǎn)移,是抗菌藥物耐藥性傳播的一條重要途徑[59-60]。消毒劑的使用會加速ARGs 的發(fā)生率、豐度、多樣性和移動性[61]。因為,消毒劑首先作用于細(xì)菌外膜與膜表面的磷脂和蛋白質(zhì)進行相互作用,從而破壞外膜穩(wěn)定性,導(dǎo)致膜的破裂,使細(xì)胞內(nèi)容物流出,這其中可能包含大量的ARGs。這些攜帶ARGs的可移動元件會轉(zhuǎn)移至其他細(xì)菌,并整合到染色體或質(zhì)粒DNA 中,從而賦予細(xì)菌抗菌藥物耐藥性[54, 62]。

含氯消毒劑被廣泛應(yīng)用于污廢水處理過程。次氯酸鈉的大量使用會導(dǎo)致余氯的殘留和大量消毒副產(chǎn)物的產(chǎn)生,它們會導(dǎo)致ARGs的富集,促進基因水平傳播。Zhang等[63]分析了下水道污水中余氯對ARGs基因水平轉(zhuǎn)移的影響,研究發(fā)現(xiàn)在長期余氯壓力下細(xì)菌外排泵相關(guān)的基因最易受到富集。其中以evgS基因的豐度最高,evgS是雙組分調(diào)控系統(tǒng)EvgS/EvgA的感應(yīng)器,其豐度的增加直接導(dǎo)致evgA的過表達,會激活多重多藥外排泵操縱子的大量表達,從而引起細(xì)菌對抗菌藥物的多重耐藥性。Rolbiecki等[64]則對氯消毒后的醫(yī)院廢水進行了分析,其中編碼氨基糖苷類、磺胺類和β-內(nèi)酰胺類抗菌藥物的高遷移潛力抗性基因大量存在,氯消毒則進一步促進了ARGs的移動性。此外,使用三氯生處理活性污泥51 d,顯著提高ARGs和可移動遺傳元件的總豐度,其中四環(huán)素和多藥耐藥基因的豐度提高幅度最大[65]。季銨鹽類消毒劑也會促進細(xì)菌抗菌藥物耐藥基因產(chǎn)生[66],苯扎溴銨處理會導(dǎo)致大環(huán)內(nèi)酯、林可酰胺、鏈霉素(macrolide lincosamide streptogramin B, MLSB)抗菌藥物耐藥基因和氨基糖苷類抗菌藥物耐藥基因豐度的增加和水平轉(zhuǎn)移,導(dǎo)致土壤微生物群落中抗菌藥物耐藥基因的傳播[67]。在農(nóng)業(yè)生產(chǎn)中,通過對丹麥、法國和中國的農(nóng)場中豬的腸道菌群進行宏基因組分析發(fā)現(xiàn),重金屬銅、鋅和酸性消毒劑可以作為選擇壓力通過維持可移動遺傳元件促進抗菌藥物耐藥性[68]。

大量證據(jù)表明,基因水平轉(zhuǎn)移是消毒劑促進細(xì)菌抗菌藥物耐受性和耐藥性產(chǎn)生和傳播的最主要途徑之一,這一機制已經(jīng)在人類生產(chǎn)生活的多個方面得到驗證。

3 生物膜形成

生物膜是單一或多物種細(xì)菌群體的聚集體。當(dāng)生物膜黏附在組織細(xì)胞繁殖時會產(chǎn)生胞外聚合物(extracellular polymeric substance, EPS)基質(zhì),主要由水、多糖、蛋白質(zhì)和細(xì)胞外DNA等組成[69-70]。無論是革蘭陰性菌還是革蘭陽性菌都會形成生物膜,其中銅綠假單胞菌、大腸埃希菌、表皮葡萄球菌(Staphylococcus epidermidis)和金黃色葡萄球菌

(S. aureus)是最常見的,而這些細(xì)菌通常也是造成持續(xù)性感染的罪魁禍?zhǔn)譡71-72]。生物膜內(nèi)部形成了既缺乏營養(yǎng)又缺乏氧氣的微環(huán)境,導(dǎo)致細(xì)菌生長緩慢,代謝降低,抑制了抗菌藥物殺菌的效率,并且由于基質(zhì)的存在會導(dǎo)致抗菌藥物分子難以滲透進入到細(xì)菌細(xì)胞,從而使得生物膜獲得對抗菌藥物的耐受性和耐藥性[73-74]。

重金屬類消毒劑會通過影響生物膜穩(wěn)定性來使細(xì)菌獲得抗菌藥物耐藥性。浮游狀態(tài)下的細(xì)菌在金屬離子存在下會產(chǎn)生EPS,從而誘導(dǎo)生物膜形成。金屬離子在生物膜內(nèi)會促進EPS分子上羧基的連接,有利于生物膜基質(zhì)的穩(wěn)定,進一步導(dǎo)致對抗菌藥物的耐藥性[75]。此外,Tabak等[76]使用三氯生處理沙門菌發(fā)現(xiàn),生物膜狀態(tài)中細(xì)菌外排泵基因acrAB和其激活基因marA,以及胞外多糖合成基因bcsA, bcsE過表達,有利于對抗菌藥物產(chǎn)生耐藥性。在食品工業(yè)中,Capita等[77]發(fā)現(xiàn),應(yīng)用于生產(chǎn)設(shè)備消毒的亞硝酸鈉和次氯酸鈉會導(dǎo)致大腸埃希菌細(xì)胞表面疏水性增加從而增強生物膜的形成能力,同時,這些細(xì)菌對氨基糖苷類和頭孢菌素類抗菌藥物敏感性降低。尿道致病性大腸埃希菌(uropathogenic Escherichia coli, UPEC)是導(dǎo)致尿路感染的重要病原細(xì)菌,Henly等[78]發(fā)現(xiàn),使用三氯生、聚六亞甲基雙胍、苯扎氯銨和硝酸銀等反復(fù)處理尿道致病性大腸埃希菌會導(dǎo)致細(xì)菌生物膜形成的顯著增加,從而產(chǎn)生對慶大霉素、呋喃妥因和環(huán)丙沙星的耐藥性。

目前的研究表明,生物膜是消毒劑促進細(xì)菌獲得抗菌藥物耐藥性的重要原因之一,主要通過形成增加、穩(wěn)定性增強和生物膜內(nèi)基因表達改變等途徑來賦予細(xì)菌抗菌藥物耐藥性,但詳細(xì)分子機制仍有待進一步探究。

4 應(yīng)激反應(yīng)

4.1 SOS反應(yīng)

SOS反應(yīng)是指當(dāng)細(xì)菌DNA雙螺旋受到嚴(yán)重?fù)p傷,正常的復(fù)制和修復(fù)系統(tǒng)無法完成DNA的復(fù)制時,細(xì)胞做出復(fù)雜的應(yīng)激反應(yīng)[79]。SOS反應(yīng)是1種可誘導(dǎo)的DNA損傷修復(fù)體系,當(dāng)暴露于氧化應(yīng)激、消毒劑、抗菌藥物和紫外線等壓力下時,會導(dǎo)致細(xì)菌DNA損傷,產(chǎn)生單鏈DNA,激活RecA蛋白,促進LexA阻遏蛋白的自裂解,導(dǎo)致SOS相關(guān)調(diào)控基因的去阻遏,各種參與同源重組和修復(fù)的蛋白基因高表達來修復(fù)DNA損傷[80-81]。

紫外消毒作為一種常見的消毒方式,也會促進細(xì)菌產(chǎn)生抗菌藥物耐藥性。Cirz等[82]使用紫外處理金黃色葡萄球菌誘導(dǎo)DNA損傷,進而誘發(fā)SOS介導(dǎo)的DNA修復(fù),SOS應(yīng)答過程中DNA轉(zhuǎn)錄或蛋白質(zhì)合成的抑制導(dǎo)致細(xì)菌對鏈霉素和利福平產(chǎn)生耐藥性。高壓作為食品工業(yè)中常見的一種消毒方式,也被證明會誘導(dǎo)SOS反應(yīng),高壓會引發(fā)內(nèi)源限制性內(nèi)切酶Mrr的激活,導(dǎo)致雙鏈DNA斷裂并誘導(dǎo)SOS反應(yīng),因此,高壓下也可能會使細(xì)菌激活SOS壓力應(yīng)答,使其對抗菌藥物敏感性降低[83-84]。此外, Li等[85]則發(fā)現(xiàn)低濃度消毒副產(chǎn)物亞氯酸鹽和碘乙酸增強了大腸埃希菌對阿莫西林和環(huán)丙沙星的耐藥性。通過轉(zhuǎn)錄組分析,發(fā)現(xiàn)細(xì)菌內(nèi)氧化應(yīng)激反應(yīng)相關(guān)基因(soxR, soxS, marR, sodC)和SOS反應(yīng)相關(guān)基因(recA, lexA)的高表達,表明亞氯酸鹽和碘乙酸通過對DNA的氧化損傷引發(fā)SOS反應(yīng),提高了細(xì)菌耐藥性突變頻率,增加了對抗菌藥物的耐藥性。

4.2 一般應(yīng)激反應(yīng)

一般應(yīng)激反應(yīng)是細(xì)菌在受到各種外界壓力時,通常由σ因子(RpoS)介導(dǎo)產(chǎn)生的應(yīng)激反應(yīng)[86-87]。在給定的壓力誘導(dǎo)下,會引發(fā)胞內(nèi)一般應(yīng)激反應(yīng),使細(xì)菌不僅對這種給定的壓力產(chǎn)生抵抗,而且對后續(xù)其他不相關(guān)壓力同樣具有非特異性抵抗力,這與特異性應(yīng)激反應(yīng)僅針對某種壓力產(chǎn)生應(yīng)答的機制的方式不同[88]。

氯己定、二癸基二甲基氯化銨、含銅消毒劑增加了大腸埃希菌的突變率,這是由于消毒劑激活了rpoS介導(dǎo)的一般應(yīng)激,通過進一步激活SOS系統(tǒng)增加了耐藥突變頻率促進了細(xì)菌抗菌藥物耐藥性的進化[89]。光催化作為一種極端的氧化刺激,常用于廢水消毒處理。在光催化過程中,rpoS基因表達上調(diào),導(dǎo)致細(xì)菌對環(huán)丙沙星和四環(huán)素等抗菌藥物耐受性發(fā)生了明顯的變化。僅經(jīng)過一個周期的光催化誘導(dǎo),MDK99大幅度延長。值得注意的是,這些細(xì)菌中rpoS表達的累積導(dǎo)致氧化應(yīng)激反應(yīng)、外排泵相關(guān)基因的表達等也發(fā)生了上調(diào),這表明細(xì)菌胞內(nèi)應(yīng)激反應(yīng)基因可能作為一個整體反應(yīng)幫助細(xì)菌生存[90]。Mette等[91]則使用三氯生對鼠傷寒沙門菌通過連續(xù)傳代培養(yǎng),獲得的突變菌株表現(xiàn)為三氯生耐受,并對抗菌藥物恩諾沙星、磺胺甲惡唑和甲氧芐啶的敏感性降低。通過全基因組測序發(fā)現(xiàn)突變菌株的fabI、rpoS和rpoD發(fā)生點突變,rpoS發(fā)生突變導(dǎo)致外排泵表達增加從而使得細(xì)菌對抗菌藥物敏感性降低。

4.3 嚴(yán)謹(jǐn)反應(yīng)

當(dāng)營養(yǎng)物質(zhì)缺乏時,細(xì)菌會進入饑餓狀態(tài)并通過誘導(dǎo)鳥苷四磷酸[(p)ppGpp]合成來激活嚴(yán)謹(jǐn)反應(yīng)[92],

嚴(yán)謹(jǐn)反應(yīng)的激活會導(dǎo)致細(xì)菌對抗菌藥物的耐受

性[93-95],并且嚴(yán)謹(jǐn)反應(yīng)是細(xì)菌抵抗消毒劑和抗菌藥物共同途徑[96-97]。

Malika等[98]的研究表明嚴(yán)謹(jǐn)反應(yīng)可以調(diào)節(jié)過氧化氫酶,保護細(xì)菌免受過氧化氫和抗菌藥物介導(dǎo)的殺傷。更為直接的證據(jù)還有,Corey等[99]證明了三氯生導(dǎo)致的抗菌藥物耐受性需要(p)ppGpp合成,研究者使用三氯生預(yù)處理野生型大腸埃希菌菌株和胞內(nèi)不含(p) ppGpp的突變菌株,發(fā)現(xiàn)野生型對卡那霉素、鏈霉素、氨芐西林和環(huán)丙沙星耐受性比突變菌株高100余倍。同樣,Dean等[100]也在金黃色葡萄球菌中發(fā)現(xiàn)了類似的現(xiàn)象,三氯生預(yù)處理野生型和胞內(nèi)不含(p)ppGpp的突變菌株,發(fā)現(xiàn)野生型對環(huán)丙沙星和萬古霉素耐受性高于突變菌株。這表明三氯生引發(fā) (p)ppGpp介導(dǎo)的嚴(yán)謹(jǐn)反應(yīng),使細(xì)菌免受后續(xù)抗菌藥物壓力的殺傷。但由于目前相關(guān)文獻研究數(shù)量仍較少,消毒劑通過嚴(yán)謹(jǐn)反應(yīng)促進抗菌藥物耐受性的機制仍需進一步探究。

4.4 ROS與氧化應(yīng)激反應(yīng)

ROS是有氧呼吸的副產(chǎn)物,包括超氧化物、過氧化氫和羥基自由基等[101-103]。ROS對細(xì)胞會造成不可逆的損傷,導(dǎo)致對DNA和RNA的損傷、多不飽和脂肪酸的脂質(zhì)過氧化以及蛋白質(zhì)的氧化等。當(dāng)過量的ROS產(chǎn)生時,會引發(fā)細(xì)菌的氧化應(yīng)激反應(yīng)[104]。

Zeng等[24]使用消毒劑苯酚富集得到的耐受突變體對各類抗菌藥物的敏感性也會降低,細(xì)菌胞內(nèi)ROS積累的減少是導(dǎo)致突變株對消毒劑和抗菌藥物的廣泛耐受的主要原因之一。Lu等[105]的研究也表明,三氯生可以通過氧化應(yīng)激反應(yīng)導(dǎo)致基因 (fabI, frdD, marR, acrR和soxR)的突變,獲得對多種抗菌藥物的耐藥性,并且突變體中抗氧化編碼基因的表達上調(diào),ROS水平顯著降低。重金屬類消毒劑納米銀則被證明可以通過誘導(dǎo)細(xì)胞內(nèi)ROS產(chǎn)生,導(dǎo)致氧化應(yīng)激基因上調(diào),使細(xì)菌提前獲得對氧化損傷的抵抗性,進而增強大腸埃希菌和金黃色葡萄球菌對氨芐西林和鏈霉素的耐藥性[106]。

細(xì)菌在消毒劑環(huán)境下會誘發(fā)多種應(yīng)激反應(yīng),從而促進抗菌藥物耐受性和耐藥性,這些應(yīng)激反應(yīng)往往不單獨起作用,而是通過復(fù)雜的調(diào)節(jié)信號網(wǎng)絡(luò),相互關(guān)聯(lián)共同發(fā)揮作用以保證細(xì)菌最大程度地應(yīng)對傷害。

5 總結(jié)和展望

消毒劑給予人類生產(chǎn)生活帶來極大的便利,幫助人類在對抗有害微生物的過程中起到了至關(guān)重要的作用。但隨著消毒劑使用量的大幅度提升,其弊端也會將逐步顯現(xiàn)。特別是在新冠肺炎全球大流行期間,人們對于病毒的恐慌導(dǎo)致消毒劑的使用更加不受節(jié)制。個人衛(wèi)生習(xí)慣的提升有利于防控新冠肺炎并改善人類公共衛(wèi)生整體情況,但濫用消毒劑會帶來一系列的問題。

越來越多的證據(jù)表明消毒劑可以通過多種機制來促進細(xì)菌獲得對抗菌藥物的耐受性/耐藥性。本文將消毒劑(包括物理消毒方式)促進細(xì)菌抗菌藥物耐受性和耐藥性機制進行較為系統(tǒng)的總結(jié),包括基因突變、外排泵編碼基因表達上調(diào)和孔蛋白編碼基因表達下調(diào)、耐藥基因的水平轉(zhuǎn)移、生物膜增加、細(xì)菌應(yīng)激反應(yīng)等(圖1)。

根據(jù)現(xiàn)已闡明的機制,本文提出以下4點建議來合理化使用消毒劑。第一,嚴(yán)格控制消毒劑的使用劑量,在非必要的條件下不大規(guī)模使用消毒劑。第二,科學(xué)選擇消毒劑,盡量使用對細(xì)菌沒有選擇壓力或選擇壓力小的消毒劑,以延緩進化過程。第三,開發(fā)新型消毒劑或改進現(xiàn)有消毒劑,從源頭上改善消毒劑性能。例如,根據(jù)基因水平轉(zhuǎn)移機制可以研發(fā)新型消毒方法控制抗性基因在環(huán)境中的傳播,根據(jù)生物膜形成增加機制可以研發(fā)生物膜透過性強的消毒劑。第四,探究消毒劑聯(lián)合使用的可能性,以減少抗菌藥物耐受性/耐藥性的產(chǎn)生風(fēng)險。

希望以上建議可以幫助消毒劑的合理化使用,延緩消毒劑對細(xì)菌抗菌藥物耐受性/耐藥性進化的促進作用。我們呼吁相關(guān)機構(gòu)加強對消毒劑的管控,加大研究成果轉(zhuǎn)化支持力度,使消毒劑更好地為人類生產(chǎn)生活服務(wù)。

參 考 文 獻

Russell A D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations[J]. Lancet Infect Dis, 2003, 3(12): 794-803.

羅歡, 王煒捷, 李瑋瑋, 等. 細(xì)菌生物膜抵抗消毒劑的研究進展[J]. 中國抗生素雜志, 2023, 48(2): 133-143.

Lewis D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning?[J]. Nature, 2021, 590(7844): 26-28.

Kode D, Nannapaneni R, Bansal M, et al. Low-level tolerance to fluoroquinolone antibiotic ciprofloxacin in QAC-adapted subpopulations of Listeria monocytogenes[J]. Microorganisms, 2021, 9(5): 1052.

Maillard J Y, Pascoe M. Disinfectants and antiseptics: Mechanisms of action and resistance[J]. Nat Rev Microbiol, 2024, 22(1): 4-17.

Chen B, Han J, Dai H, et al. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? [J]. Environ Pollut, 2021, 283: 117074.

Brauner A, Fridman O, Gefen O, et al. Distinguishing between resistance, tolerance and persistence to antibiotic treatment[J]. Nat Rev Microbiol, 2016, 14(5): 320-330.

Balaban N Q, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7): 441-448.

Levin-Reisman I, Brauner A, Ronin I, et al. Epistasis between antibiotic tolerance, persistence, and resistance mutations[J]. Proc Natl Acad Sci USA, 2019, 116(29): 14734-14739.

Russell A D, Day M J. Antibiotic and biocide resistance in bacteria[J]. Microbios, 1996, 85(342): 45-65.

Getahun H, Smith I, Trivedi K, et al. Tackling antimicrobial resistance in the COVID-19 pandemic[J]. Bull World Health Organ, 2020, 98(7): 442-442a.

Sills J, Lu J, Guo J. Disinfection spreads antimicrobial resistance[J]. Science, 2021, 371(6528): 474.

Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes[J]. Biocontrol Sci, 2006, 11(4): 147-157.

Maillard J Y. Bacterial target sites for biocide action[J]. J Appl Microbiol, 2002, 92: 16S-27S.

Darby E M, Trampari E, Siasat P, et al. Molecular mechanisms of antibiotic resistance revisited[J]. Nat Rev Microbiol, 2023, 21(5): 280-295.

Li X Y, Gu A Z, Zhang Y, et al. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis[J]. J Hazard Mater, 2019, 369: 9-16.

Allaion J R, Barrionuevo K G, Burgos M J G, et al. Staphylococcus aureus from Minas artisanal cheeses: Biocide tolerance, antibiotic resistance and enterotoxin genes[J]. Appl Sci-Basel, 2022, 12(3): 1019.

Li L G, Zhang T. Plasmid-mediated antibiotic resistance gene transfer under environmental stresses: Insights from laboratory-based studies[J]. Sci Total Environ, 2023, 887: 163870.

Nei M. The new mutation theory of phenotypic evolution[J]. Proc Natl Acad Sci USA, 2007, 104(30): 12235-12242.

Ho W C, Ohya Y, Zhang J Z. Testing the neutral hypothesis of phenotypic evolution[J]. Proc Natl Acad Sci USA, 2017, 114(46): 12219-12224.

Pereira B M P, Wang X K, Tagkopoulos I. Short- and long-term transcriptomic responses of Escherichia coli to biocides: A systems analysis[J]. Appl Environ Microbiol, 2020, 86(14): e00708-20.

Gadea R, Fuentes M A F, Pulido R P, et al. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods[J]. Food Microbiol, 2017, 63: 58-71.

Oniciuc E A, Likotrafiti E, Alvarez-Molina A, et al. Food processing as a risk factor for antimicrobial resistance spread along the food chain[J]. Curr Opin Food Sci, 2019, 30: 21-26.

Zeng J, Hong Y Z, Zhao N Q, et al. A broadly applicable, stress-mediated bacterial death pathway regulated by the phosphotransferase system(PTS) and the cAMP-Crp cascade [J]. Proc Natl Acad Sci USA, 2022, 119(23): e2118566119.

Basaran S N, ?ksüz L. The role of efflux pumps in antibiotic resistance of gram negative rods[J]. Arch Microbiol, 2023, 205(5): 192.

Huang L L, Wu C R, Gao H J, et al. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview[J]. Antibiotics-Basel, 2022, 11(4): 520.

Plé C, Tam H K, Da Cruz A V, et al. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps[J]. Nat Commun, 2022, 13(1): 115.

Moseng M A, Lyu M N, Pipatpolkai T, et al. Cryo-EM structures of CusA reveal a mechanism of metal-ion export[J]. Mbio, 2021, 12(2): e00452-21.

Sharma S, Kaushik V, Kulshrestha M, et al. Different efflux pump systems in Acinetobacter baumannii and their role in multidrug resistance[J]. Adv Exp Med "Biol, 2023, 1370: 155-168.

Wand M E, Sutton J M. Efflux-mediated tolerance to cationic biocides, a cause for concern[J]. Microbiology-Sgm, 2022, 168(11): 001263.

Leus I V, Adamiak J, Chandar B, et al. Functional diversity of Gram-negative permeability barriers reflected in antibacterial activities and intracellular accumulation of antibiotics[J]. Antimicrob Agents Chemother, 2023, 67(2): e0137722.

Whittle E E, McNeil H E, Trampari E, et al. Efflux impacts intracellular accumulation only in actively growing bacterial cells[J]. Mbio, 2021, 12(5): e0260821.

Yamasaki S, Yoneda T, Ikawa S, et al. Investigating multidrug efflux pumps associated with fatty acid salt resistance in Escherichia coli[J]. Front Microbiol, 2023, 14: 954304.

Jia Y, Lu H J, Zhu L Z. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds[J]. Sci Total Environ, 2022, 832: 155090.

Wand M E, Darby E M, Blair J M A, et al. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp[J]. J Med Microbiol, 2022, 71(3): 001496.

Wu-Chen R A, Feng J, Elhadidy M, et al. Benzalkonium chloride forces selective evolution of resistance towards antibiotics in Salmonella enterica serovar typhimurium[J]. J Infect Public Heal, 2023, 16(Suppl 1): 225-235.

Wu-Chen R A, Feng J S, Elhadidy M, et al. Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar Typhimurium strains with different antibiograms and sequence types[J]. Antimicrob Resist In, 2023, 12(1): 145.

Garratt I, Aranega-Bou P, Sutton J M, et al. Long-term exposure to octenidine in a simulated sinktrap environment results in selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter isolates with mutations in efflux pump regulators[J]. Appl Environ Microbiol, 2021, 87(10): e00210-21.

Zhang Y Z, Zhao Y J, Xu C Q, et al. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin[J]. Int J Antimicrob Agents, 2019, 53(6): 864-867.

Amsalu A, Sapula S A, De Barros Lopes M, et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: A case study in the development of multidrug resistance in environmental hotspots[J]. Microorganisms, 2020, 8(11): 1647.

Douarre P E, Sevellec Y, Le Grandois P, et al. fepR as a central genetic target in the adaptation to quaternary ammonium compounds and cross-resistance to ciprofloxacin in Listeria monocytogenes[J]. Front Microbiol, 2022, 13: 864576.

Maher C, Maharjan R, Sullivan G, et al. Breaching the barrier: Genome-wide investigation into the role of a primary amine in promoting E.coli outer-membrane passage and growth inhibition by ampicillin[J]. Microbiol Spectrum, 2022, 10(6): e0359322.

Gregorchuk B S J, Reimer S L, Slipski C J, et al. Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps[J]. Sci Rep, 2022, 12(1): 12149.

Pagès J M, James C E, Winterhalter M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria[J]. Nat Rev Microbiol, 2008, 6(12): 893-903.

Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and food-related stresses as selective factors for antibiotic resistance along the farm to fork continuum[J]. Antibiotics-Basel, 2021, 10(6): 671.

Ko D, Choi S H. Mechanistic understanding of antibiotic resistance mediated by EnvZ/OmpR two-component system in Salmonella enterica serovar Enteritidis[J]. J Antimicrob Chemother, 2022, 77(9): 2419-2428.

Rodrigues I C, Rodrigues S C, Duarte F, et al. The role of outer membrane proteins in UPEC antimicrobial resistance: A systematic review[J]. Membranes, 2022, 12(10): 981.

Acharya A, Ghai I, Piselli C, et al. Conformational dynamics of loop L3 in OmpF: Implications toward antibiotic translocation and voltage gating[J]. J Chem Inf Model, 2023, 63(3): 910-927.

Pereira B M P, Wang X K, Tagkopoulos I. Biocide-induced emergence of antibiotic resistance in Escherichia coli[J]. Front Microbiol, 2021, 12: 640923.

Bore E, Hébraud M, Chafsey I, et al. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses[J]. Microbiology-Sgm, 2007, 153: 935-946.

Karatzas K A G, Randall L P, Webber M, et al. Phenotypic and proteomic characterization of multiply antibiotic-resistant variants of Salmonella entetica serovar typhimurium selected following exposure to disinfectants[J]. Appl Environ Microbiol, 2008, 74(5): 1508-1516.

Fernández-Cuenca F, Tomás M, Caballero-Moyano F J, et al. Reduced susceptibility to biocides in Acinetobacter baumannii: Association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps[J]. J Antimicrob Chemother, 2015, 70(12): 3222-3229.

Yu S M, Wang Y N, Shen F, et al. Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli[J]. Sci Total Environ, 2022, 815: 152885.

Paul D, Chakraborty R, Mandal S M. Biocides and health-care agents are more than just antibiotics: Inducing cross to co-resistance in microbes[J]. Ecotox Environ Safe, 2019, 174: 601-610.

Fox L J, Kelly P P, Humphreys G J, et al. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches[J]. J Ind Microbiol Biotechnol, 2022, 49(1): kuab074.

Kurenbach B, Marjoshi D, Ambile-Cuevas C F, et al. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar typhimurium[J]. Mbio, 2015, 6(2): e00009-15.

Adkin P, Hitchcock A, Smith L J, et al. Priming with biocides: A pathway to antibiotic resistance? [J]. J Appl Microbiol, 2022, 133(2): 830-841.

Masi M, Réfregiers M, Pos K M, et al. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria[J]. Nat Microbiol, 2017, 2(3): 17001.

Beaber J W, Hochhut B, Waldor M K. SOS response promotes horizontal dissemination of antibiotic resistance genes[J]. Nature, 2004, 427(6969): 72-74.

Kampf G. Biocidal agents used for disinfection can enhance antibiotic resistance in Gram-negative species[J]. Antibiotics-Basel, 2018, 7(4): 110.

Zhao F Z, Yu Q M, Zhang X X, et al. A mini-review of antibiotic resistance drivers in urban wastewater treatment plants: Environmental concentrations, mechanism and perspectives[J]. Water, 2023, 15(17): 3165.

Ochman H, Lawrence J G, Groisman E A. Lateral gene transfer and the nature of bacterial innovation[J]. Nature, 2000, 405(6784): 299-304.

Zhang J Y, Xu Z X, Chu W H, et al. Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems[J]. Water Res, 2023, 245: 120635.

Rolbiecki D, Paukszto L, Krawczyk K, et al. Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater-A nanopore long-read metagenomic approach[J]. J Hazard Mater, 2023, 459: 132298.

Tan Q Y, Chen J M, Chu Y F, et al. Triclosan weakens the nitrification process of activated sludge and increases the risk of the spread of antibiotic resistance genes[J]. J Hazard Mater, 2021, 416: 126085.

Zhao M Y, Gao J F, Zhang H R, et al. Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes[J]. J Hazard Mater, 2023, 445: 130464.

Zeng J Y, Li Y Y, Jin G P, et al. Short-term benzalkonium chloride (C12) exposure induced the occurrence of wide-spectrum antibiotic resistance in agricultural soils[J]. Environ Sci Technol, 2022, 56(21): 15054-15063.

Li X J, Rensing C, Vestergaard G, et al. Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs[J]. Environ Int, 2022, 158: 106899.

Jakubovics N S, Goodman S D, Mashburn-Warren L, et al. The dental plaque biofilm matrix[J]. Periodontology 2000, 2021, 86(1): 32-56.

Potapova A, Garvey W, Dahl P, et al. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly[J]. Mbio, 2024, 15(2): e0330423.

Hassan R M, El-Maksoud M S A, Ghannam I A Y, et al. Synthetic non-toxic anti-biofilm agents as a strategy in combating bacterial resistance[J]. Eur J Med Chem, 2023, 262: 115867.

Balducci E, Papi F, Capialbi D E, et al. Polysaccharides' structures and functions in biofilmarchitecture of antimicrobial-resistant(AMR) pathogens[J]. Int J Mol Sci, 2023, 24(4): 4030.

Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, et al. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models[J]. Iscience, 2021, 24(5): 102443.

Ciofu O, Moser C, Jensen P O, et al. Tolerance and resistance of microbial biofilms[J]. Nat Rev Microbiol, 2022, 20(10): 621-635.

Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: An emergent form of bacterial life[J]. Nat Rev Microbiol, 2016, 14(9): 563-575.

Tabak M, Scher K, Hartog E, et al. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms[J]. FEMS Microbiol Lett, 2007, 267(2): 200-206.

Capita R, Riesco-Pelaez F, Alonso-Hernando A, et al. Exposure of Escherichia coli ATCC12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure[J]. Appl Environ Microbiol, 2014, 80(4): 1268-1280.

Henly E L, Dowling J A R, Maingay J B, et al. Biocide exposure induces changes in susceptibility, pathogenicity, and biofilm formation in uropathogenic Escherichia coli[J]. Antimicrob Agents Chemother, 2019, 63(3): e01892-18.

Little J W, Mount D W. The sos regulatory system of Escherichia coli[J]. Cell, 1982, 29(1): 11-22.

Jaramillo Riveri S, Broughton J, McVey A, et al. Growth-dependent heterogeneity in the DNA damage response in Escherichia coli[J]. Mol Syst Biol, 2022, 18(5): e10441.

Feliciello I, Dermic E, Malovic H, et al. Regulation of ssb gene expression in Escherichia coli[J]. Int J Mol Sci, 2022, 23(18): 10917.

Cirz R T, Jones M B, Gingles N A, et al. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin[J]. J Bacteriol, 2007, 189(2): 531-539.

Aertsen A, Michiels C W. Mrr instigates the SOS response after high pressure stress in Escherichia coli[J]. Mol Microbiol, 2005, 58(5): 1381-1391.

Liao X Y, Ma Y N, Daliri E B M, et al. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens[J]. Trends Food Sci Tech, 2020, 95: 97-106.

Li D, Zeng S Y, He M, et al. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena[J]. Environ Sci Technol, 2016, 50(6): 3193-3201.

Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria[J]. J Biol Chem, 2019, 294(31): 11685-11700.

Schellhorn H E. Function, evolution, and composition of the RpoS regulon in Escherichia coli[J]. Front Microbiol, 2020, 11: 560099.

Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli[J]. Annu Rev Microbiol, 2011, 65: 189-213.

Schmidt S B I, Rodriguez-Rojas A, Rolff J, et al. Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria[J]. J Hazard Mater, 2022, 437: 129280.

Yin H L, Li G Y, Chen X F, et al. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation[J]. Appl Catal B-Environ, 2020, 269: 118829.

Gantzhorn M R, Olsen J E, Thomsen L E. Importance of sigma factor mutations in increased triclosan resistance in Salmonella typhimurium[J]. BMC Microbiol, 2015, 15: 105.

Pausch P, Abdelshahid M, Steinchen W, et al. Structural basis for regulation of the opposing (p)ppGpp synthetase and hydrolase within the stringent response orchestrator rel[J]. Cell Rep, 2020, 32(11): 108157.

Brown A, Fernández I S, Gordiyenko Y, et al. Ribosome-dependent activation of stringent control[J]. Nature, 2016, 534(7606): 277-280.

Verstraeten N, Knapen W J, Kint C I, et al. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance[J]. Mol Cell, 2015, 59(1): 9-21.

Nguyen D, Joshi-Datar A, Lepine F, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria[J]. Science, 2011, 334(6058): 982-986.

Greenway D L A, England R R. The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and σs[J]. Lett Appl Microbiol, 1999, 29(5): 323-326.

Patacq C, Chaudet N, Létisse F. Crucial role of ppGpp in the resilience of Escherichia coli to growth disruption[J]. mSphere, 2020, 5(6): e01132-20.

Khakimova M, Ahlgren H G, Harrison J J, et al. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance[J]. J Bacteriol, 2013, 195(9): 2011-2020.

Westfall C, Flores-Mireles A L, Robinson J I, et al. The widely used antimicrobial triclosan induces high levels of antibiotic tolerance In Vitro and reduces antibiotic efficacy up to 100-Fold in vivo[J]. Antimicrob Agents Chemother, 2019, 63(5): e02312-18.

Dean W, Andrea S, Christiane W, et al. The biocide triclosan induces (p)ppGpp dependent antibiotic tolerance and alters SarA dependent biofilm structures in Staphylococcus aureus [J]. Bio Rxiv, 2023:.525840.

Vatansever F, de Melo W, Avci P, et al. Antimicrobial strategies centered around reactive oxygen species- bactericidal antibiotics, photodynamic therapy, and beyond[J]. FEMS Microbiol Rev, 2013, 37(6): 955-989.

Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria[J]. Trends Microbiol, 2017, 25(6): 456-466.

李夢婷, 曾潔, 劉小東, 等. ROS清除劑在細(xì)菌抗生素耐受中的作用研究進展[J]. 中國抗生素雜志, 2019, 44(10): 1132-1139.

Juan C A, Pérez de la Lastra J M, Plou F J, et al. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules(DNA, Lipids and Proteins) and induced pathologies[J]. Int J Mol Sci, 2021, 22(9): 4642.

Lu J, Jin M, Nguyen S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation[J]. Environ Int, 2018, 118: 257-265.

Kaweeteerawat C, Ubol P N, Sangmuang S, et al. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles[J]. J Toxicol Env Heal A, 2017, 80(23-24): 1276-1289.

主站蜘蛛池模板: 四虎永久免费地址| 国产精品毛片一区视频播| 99国产在线视频| 国产剧情国内精品原创| a欧美在线| 毛片免费视频| 伊人久久大香线蕉aⅴ色| 久久精品国产91久久综合麻豆自制| 午夜精品一区二区蜜桃| 99在线观看精品视频| 国产区成人精品视频| 黄色成年视频| 日本精品视频一区二区| 四虎在线高清无码| 国产成人综合日韩精品无码不卡| 亚洲人成电影在线播放| 国产一级裸网站| av在线5g无码天天| 日本在线国产| 尤物视频一区| 亚洲欧美一区二区三区蜜芽| 免费在线一区| 91久久国产热精品免费| 亚洲人成影视在线观看| 国内精自视频品线一二区| 亚洲A∨无码精品午夜在线观看| 在线日韩日本国产亚洲| 五月婷婷亚洲综合| 国产精品极品美女自在线网站| 国产日韩欧美成人| 国产精品亚洲综合久久小说| 中文字幕人成人乱码亚洲电影| 毛片网站在线看| 噜噜噜久久| 欧美激情视频一区二区三区免费| 无遮挡国产高潮视频免费观看| 国产女人在线视频| 99尹人香蕉国产免费天天拍| 69av免费视频| 欧美日韩一区二区三| 久久综合伊人77777| 97超爽成人免费视频在线播放| 国产精品永久免费嫩草研究院| 日韩第一页在线| 在线欧美一区| 国产成人AV综合久久| 99999久久久久久亚洲| 国产亚洲欧美在线中文bt天堂| 日韩色图在线观看| 2021最新国产精品网站| 免费中文字幕一级毛片| 99热国产在线精品99| 一本大道香蕉高清久久| 亚洲视频免费在线看| 亚洲AV无码乱码在线观看代蜜桃| 精品国产香蕉在线播出| 丁香婷婷综合激情| 免费观看精品视频999| 亚洲综合色区在线播放2019 | 免费高清毛片| 亚欧成人无码AV在线播放| 91在线高清视频| 久久精品免费国产大片| 欧美国产日韩一区二区三区精品影视| 免费国产无遮挡又黄又爽| 中美日韩在线网免费毛片视频| 国产成人精品18| 波多野结衣无码AV在线| 天天综合网色| 2020国产精品视频| 精品免费在线视频| 任我操在线视频| 亚洲视频在线网| 国产女人在线视频| 国产在线麻豆波多野结衣| 四虎成人免费毛片| 一级爱做片免费观看久久| 在线国产毛片| 久久无码免费束人妻| 黄色三级网站免费| 国产91无码福利在线| 国产成人av一区二区三区|