










摘 要: 旨在探究羊源肺炎克雷伯菌的致病性及其外膜囊泡的提取方法。本研究對伴有咳嗽、腹瀉癥狀死亡的綿羊剖檢并采集肺,肝,空腸等病變器官,采用形態觀察、生化特性鑒定,分子生物學鑒定及測序方法對病原菌進行分離鑒定;通過藥敏試驗、拉絲試驗、毒力基因檢測、致病性試驗及病理組織學觀察分析其致病性和耐藥性;使用改良沉淀法提取其外膜囊泡,通過透射電鏡,納米粒徑測定及SDS-PAGE進行鑒定。結果顯示病原菌經分離純化后鏡下呈現卵圓形革蘭陰性桿菌,結合生化試驗及16S rRNA鑒定結果表明該病原菌為肺炎克雷伯菌;藥敏試驗結果顯示病原菌對阿米卡星,頭孢他啶,亞胺培南,哌拉西林四種藥物敏感;拉絲試驗結果符合陽性特征及毒力基因擴增顯示莢膜多糖基因wzy-K1及代謝基因peg-344為陽性,確定該病原菌為高毒力肺炎克雷伯菌;小鼠致病性試驗結果表明病原菌對小鼠半數致死量(LD 50)濃度為1.8×105 CFU,經病理組織學觀察肝臟、脾臟淤血且有大量炎性細胞浸潤;透射電鏡,納米粒徑測定顯示沉淀物形態結構、粒徑大小均符合細菌外膜囊泡特征,SDS-PAGE顯示存在特征性條帶。本試驗成功從病死綿羊體內分離出高毒力肺炎克雷伯菌并通過沉淀法提取其外膜囊泡,為預防和治療羊源肺炎克雷伯菌病提供參考及肺炎克雷伯菌外膜囊泡的基礎研究提供幫助。
關鍵詞: 綿羊;肺炎克雷伯菌;致病性;外膜囊泡
中圖分類號: S852.612"""" 文獻標志碼:A"""" 文章編號: 0366-6964(2025)01-0353-12
收稿日期:2024-01-26
基金項目:國家自然科學基金項目(32060781);優質肉羊高效安全生產養殖技術示范推廣(482022106)-吉林省畜牧管理局
作者簡介:范 維(2001-),男,黑龍江佳木斯人,碩士生,主要從事動物疫病防控研究,E-mail:253273280@qq.com
*通信作者:孫福亮,主要從事獸醫病理學與生殖生物學研究, E-mail:FLSun@ybu.edu.cn
Isolation and Identification of Klebsiella pneumoniae of Sheep Origin and Establishment
of a Method for the Extraction of Its Outer Membrane Vesicles
FAN" Wei LIU" Xinxin2, ZHAI" Yilu ZHANG" Xinyu WANG" Wei FU" Jiaqi SUN" Fuliang1*
(1.College of Agriculture, Yanbian University, Yanji 133002," Jilin, China;
2.Animal
Husbandry Branch, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100," China)
Abstract: This experiment was conducted to investigate the pathogenicity of highly virulent Klebsiella pneumoniae of sheep origin and the extraction of its outer membrane vesicles. In this study, sheep that died with cough and diarrhea symptoms were dissected and the diseased organs such as lungs, livers, and jejunum were collected. Morphological observation, biochemical characterization, molecular biological identification, and sequencing methods were used to isolate and identify the pathogenic bacteria; the pathogenic bacteria were identified by drug sensitivity test, pulling test, virulence gene test, pathogenicity test, and pathohistological observation, and analyzed for pathogenicity and resistance; and the modified precipitation method was used to Its outer membrane vesicles were extracted and identified by transmission electron microscopy, nanoparticle size determination and SDS-PAGE. The results showed that the pathogen was isolated and purified, and the microscope showed oval-shaped gram-negative bacteria, and the biochemical test and 16S rRNA identification results indicated that the pathogen was Klebsiella pneumoniae; the results of drug sensitivity test showed that the pathogen was sensitive to four drugs, namely, amikacin, ceftazidime, imipenem, and piperacillin; the results of the pulling test showed the positive characteristics, and the virulence gene amplification showed that the pod polysaccharide gene wzy-K1 and the metabolism gene peg-344 were positive; the results of mouse pathogenicity test showed that the pathogen was positive to the LD 50 of mice. metabolic gene peg-344 was positive, the pathogen was identified as highly virulent Klebsiella pneumoniae; the results of the mouse pathogenicity test showed that the pathogen had a concentration of 1.8×105 CFU in the mouse LD 50, and the liver and spleen were bruised with a large number of inflammatory cell infiltration; transmission electron microscopy and nano-particle sizing showed that the morphologic structure of the sediment and the particle size were consistent with the characteristics of the outer membrane vesicles of the bacteria. Transmission electron microscopy, nanoparticle size determination showed that the morphology and structure of the precipitate and the size of the particles were consistent with the characteristics of bacterial outer membrane vesicles, and SDS-PAGE showed the presence of characteristic bands. In this experiment, highly pathogenic Klebsiella pneumoniae was successfully isolated from sick and dead sheep and an improved method of extracting its outer membrane vesicles was established to provide reference for the prevention and treatment of Klebsiella pneumoniae disease of sheep origin and help for basic research on the outer membrane vesicles of Klebsiella pneumoniae.
Key words: goats; Klebsiella pneumoniae; pathogenicity; outer membrane vesicles
*Corresponding author:" SUN Fuliang, E-mail: FLSun@ybu.edu.cn
肺炎克雷伯菌(Klebsiella pneumoniae,KP)是一種革蘭陰性菌,屬于腸桿菌科,通常寄生在人和動物的消化道等部位[1]。作為一種條件性致病菌,動物健康狀態下并不會發病和造成損害,但是當動物機體抵抗力下降或本菌大量增殖時,就會引起動物發病甚至暴發性流行[2]。同時KP是一種人獸共患病原菌[3],可造成人和動物肺炎,腦膜炎,泌尿系統感染發炎[4]。常見肺炎克雷伯菌可分為經典肺炎克雷伯菌(cKP)和高毒力肺炎克雷伯菌(hyperirulent Klebsiella pneumoniae,hvKP),與cKP相比,hvKP可在免疫功能低下的個體中引起侵襲性感染,往往預后較差、致死率較高[5]。目前hvKP的耐藥情況日趨嚴重,碳青霉素烯耐藥克雷伯菌在不同地區高度流行,且難以得到有效控制,已經造成嚴重的安全保健問題[6-7]。所以對于hvKP致病性及耐藥性的研究不僅為畜牧養殖業的安全發展提供保障并且對于維護公共衛生安全也具有重要意義。
細菌外膜囊泡(outer membrane vesicles,OMVs)是細菌在生長過程中分泌出的一種直徑20~250 nm,不具備復制能力且具備高度免疫原性的納米粒子[8],由蛋白質,脂質,核酸以及周質內容物組成,有著重要的生物學功能[9-10]。并且OMVs中含有膜相關蛋白,LPS(脂多糖)以及毒力因子可以誘導細胞發生免疫反應產生相應抗體,具有較強的免疫原性[11]。現如今抗生素耐藥是治療細菌疾病的廣泛熱點問題[12],相比于抗生素,OMVs通過自身病理生理特性刺激機體產生免疫反應,并根據其具有的載體特性可攜帶藥物進入機體內減免某些耐藥反應的發生[13],所以其在疫苗研發方向具有潛在的應用價值。但因其提取困難,產量低且成本高昂無法應用到臨床應用中,通過改良沉淀法提取hvKP外膜囊泡可以提高產量,降低成本,為其應用于高毒力肺炎克雷伯菌病的預防及治療奠定基礎。
1 材料與方法
1.1 試驗病料及試驗動物
試驗病料:延邊地區某規模化羊場伴有咳嗽腹瀉癥狀的病死綿羊;試驗動物:36只6周齡清潔級昆明小鼠,由延邊大學倫理委員會批準(倫理審查受理號為YD20240122001),雌雄各半,體重在18~22 g,由延邊大學動物實驗中心提供,將小鼠分為6組,在常規試驗條件下飼養一周后進行試驗。
1.2 主要試劑
SDS-PAGE蛋白上樣緩沖液,酵母浸粉購自青島海博生物試劑有限公司、胰蛋白胨購自青島海博生物試劑有限公司、NaCl購自青島海博生物試劑有限公司,beyocolor彩色預染蛋白,PEG 10000購自青島海博生物試劑有限公司等。
1.3 病原菌分離及鑒定
無菌條件下剖檢病死綿羊,采集病死綿羊肺、肝、腸等病變器官,接種于LB固體培養基,37 ℃恒溫培養24 h,經反復純化培養后觀察菌落形態并染色鏡檢;將純化后菌株接種于微量生化鑒定管中,37 ℃恒溫培養24 h后參照《常見細菌系統鑒定手冊》進行結果判定[14];根據試劑盒提取病原菌DNA后進行PCR擴增。引物由長春生工合成。引物序列如下:27F:5′-AGAGTTTGATCMTGGCTCAG-3′;1492R:5′-GGTTACCTTGTTACGACTT-3′。反應條件:PCR總擴增體系為25 μL,Taq PCR Mix(2×)12.5 μL,上、下游引物各1 μL,DNA模板1 μL,ddH 2O9.5 μL。PCR程序設置:94 ℃預變性10 min;94 ℃變性30 s,55 ℃ 30 s,72 ℃延伸1 min,35個循環;72 ℃ 10 min,4 ℃保存。PCR產物經1%瓊脂糖凝膠電泳檢測后,送往庫美生物試劑公司進行測序,將測序結果與GenBank中已收錄的菌株進行同源性比對分析,并利用MEGA 7.0構建系統進化樹。
1.4 藥物敏感性試驗
參考美國臨床檢驗標準委員會(CLSI)[15]抗生素藥敏試驗標準,將分離菌株接種于含有藥敏試片的培養基上,37 ℃培養24 h后測量抑菌圈直徑。選取的抗生素紙片:阿米卡星、頭孢他啶、諾氟沙星、強力霉素、氟苯尼考、紅霉素、鏈霉素、四環素、環丙沙星、米諾環素、亞胺培南、頭孢哌酮、慶大霉素、哌拉西林、頭孢曲松、青霉素、氯霉素。
1.5 hvKP篩選(拉絲試驗)及毒力基因檢測
將分離菌株接種于LB固體培養基上,輕輕挑取菌落觀察是否形成黏液絲及黏液絲長度。并參照文獻由長春生工生物工程有限公司合成8類14種毒力基因引物(見表1),檢測分離菌株毒力基因情況。PCR反應體系25 μL,Taq PCR Mix(2×)12.5 μL,上、下游引物各1 μL,DNA模板1 μL,ddH 2O 9.5 μL。PCR反應條件:94 ℃預變性10 min;94 ℃變性30 s,(55~65)℃ 30 s,72延伸℃ 1min,35個循環;72 ℃ 10 min,4 ℃保存。
1.6 分離菌株小鼠致病性試驗及病理組織學觀察
取1 μL凍存菌液接種于6 mL LB液體培養基中,37 ℃恒溫搖箱200 r·min-1培養6 h后進行菌落平板計數,將菌液濃度調整至1.5×106 CFU·mL-1作為試驗原液,根據各組所需濃度稀釋原液。將36只小鼠隨機分為試驗組和對照組,其中1~5組為對照組,6組為試驗組,腹腔注射相應濃度菌液0.2 mL,觀察并記錄小鼠臨床癥狀,統計并計算分離菌株對小鼠的LD 50。將LD 50組小鼠病變器官置于10%的福爾馬林溶液中固定48 h后進行脫水、包埋、石蠟切片及HE染色,封固后分析病變特征。
1.7 肺炎克雷伯菌外膜囊泡分離
按照“1.6”培養分離菌株,吸取培養后菌液接種于LB液體培養基中振蕩培養22 h后向培養基中加入4 mL青霉素-鏈霉素混合溶液充分混勻。將菌液分裝后放入4 ℃高速冷凍離心機,12 000 r·min-1離心30 min,收集上清液除去底部菌體,使用0.22 μm針頭過濾器過濾除去鞭毛,細菌殘片以及殘存菌體,將其與20 g PEG 10 000混勻后于4 ℃冰箱靜置,待囊泡沉降至底部,棄去上清液,吸取無菌PBS重懸沉淀后收集于離心管中,放置于-80 ℃冰箱中保存。
1.8 OMVs透射電鏡(TEM)形態學觀察及粒徑分析
將10 μL OMVs 溶液滴于銅網上,于室溫條件下孵育10 min后,滅菌后的蒸餾水清洗30 s,除去殘存液體后滴加2%醋酸雙氧鈾10 μL于銅網上負染1 min,采用濾紙吸去浮液,熾燈下干燥2 min后在透射電鏡下觀察。
納米顆粒跟蹤分析(NTA)OMVs粒徑分布情況。首先使用110 nm 聚苯乙烯顆粒對儀器進行校準后,使用1× PBS buffer 清洗樣本池;取樣本以1× PBS buffer 12 000倍稀釋,在11個位置記錄且每個位置兩次循環讀數去異常位置經機器軟件優化計算出平均、中位數和直徑尺寸以及樣品的濃度。
1.9 SDS-PAGE分析
取5 μL OMVs溶液或加入15 μL上樣緩沖液,混勻,100 ℃水浴煮沸10 min。選用5% 濃縮膠、10%的分離膠分別以90 V和10 V的恒速進行SDS-PAGE蛋白電泳,考馬斯亮藍染色后觀察試驗結果。
2 結 果
2.1 羊源肺炎克雷伯菌分離鑒定
分離菌株在麥康凱培養基中形成單一紅色濕潤菌落(圖1A),革蘭染色鏡檢下呈現淺紅色卵圓形革蘭陰性桿菌(圖1B);生化鑒定結果顯示分離菌株在葡萄糖酸鹽、枸櫞酸鹽、尿素、葡萄糖產氣、賴氨酸、棉子糖、木糖試驗中表現為陽性(表2);分離菌株在約為1 500 bp處出現單一高亮條帶且與預期的目標條帶大小一致(圖2);對擴增產物進行測序,序列經過NCBI數據庫比對同源性較高,利用MEGA7.0軟件構建系統進化樹(圖3),結果顯示分離菌株與登錄號為CP137144.1的肺炎克雷伯菌相似度為99%,表明該羊感染的菌種為肺炎克雷伯菌。
2.2 分離菌株藥敏試驗結果
經抑菌圈直徑測量結果顯示分離菌株對阿米卡星、頭孢他啶、亞胺培南、哌拉西林四種藥物敏感,對其他藥物少量呈現中性敏感,多數表現為耐藥(表3)。
2.3 拉絲試驗及毒力基因檢測結果
接種環輕觸菌落后形成黏液絲長度目測大于5 mm,符合陽性特征。對分離菌株的14種毒力基因檢測,共檢測出10種毒力基因如圖4。其中分離菌株含有莢膜多糖毒力基因wzy-K1及代謝毒力基因peg-344可作為判斷hvKP的標準之一。綜上所述,表明該菌株為高毒力肺炎克雷伯菌。
2.4 分離菌株對小鼠的致病性
小鼠感染分離菌株后,高濃度組小鼠出現呼吸急促,被毛聳立,低濃度組精神沉郁,飲水減少,24 h后對試驗各組進行統計,最終確定分離菌株對小鼠的LD 50為1.8×105 CFU;對試驗組死亡小鼠進行剖檢,觀察試驗組脾(圖5A)和肝(圖5C)與對照組(圖5B、D)相比有較嚴重淤血,肺部存在充血和點狀出血,其他器官無明顯癥狀。采集死亡小鼠脾、肝、肺及腎,經PCR擴增檢測與圖2A中所示條帶一致(圖6);對病變器官進行病理組織學觀察,試驗組肺(圖7A)呈充血狀態,伴有少量出血和淤血,毛細血管中充斥著大量紅細胞。肝(圖7B)呈現顆粒變性為特點并伴有少量的脂肪變性與空泡化,間質中充斥著大量的紅細胞。脾臟(圖7C)呈現淤血狀態,伴有少量紅細胞聚集。腎(圖7D)充血,腎小球充血伴有少量淤血,腎小管上皮脫落,間質出血。心(圖7E)心肌細胞伴有少量充血,無其他病理變化。
2.5 分離菌株外膜囊泡分離
4 ℃條件下靜置10 d后離心管底部出現乳白色沉淀;對沉淀物進行透射電鏡觀察發現其中存在茶杯狀圓形且具有明顯膜邊界,證明沉淀中存在外膜囊泡;NTA結果顯示囊泡粒徑主要聚集在100~300 nm之間,符合外膜囊泡粒徑特征;通過SDS-PAGE試驗對分離菌株外膜囊泡組分進行鑒定,其中含有多種蛋白,蛋白分子分布于17~75 ku之間,主要范圍集中于17、48、75 ku(圖8)。
3 討 論
近年來隨著羊規模化養殖的興起,以消化道和呼吸道癥狀為主的各種細菌疾病呈現上升趨勢,其中肺炎克雷伯菌可造成感染綿羊上呼吸道炎,腹瀉甚至死亡,現已成為僅次于大腸埃希菌的第二大致病菌[16],給羊養殖業帶來不可估量的經濟損失,并且作為一種人獸共患細菌疾病,廣泛在人與動物中傳播,可能造成更為嚴重的公共安全問題。本試驗通過采集伴有腹瀉及呼吸道癥狀死亡的綿羊肺、肝等病變器官,分離得到疑似病原菌,通過形態觀察、染色鏡檢、生化特性鑒定、分子生物學鑒定與序列分析,確定該菌株為肺炎克雷伯菌。
現如今hvKP廣泛流行,與cKP相比具有病程短,癥狀急,致死率高的特點[17]。研究表明hvKP的致病性與毒力因子關系密切,毒力因子數量越多,hvKP的致病性就越強,其中莢膜多糖和鐵載體及黏附素起到了關鍵作用[18]。本試驗對分離菌株進行拉絲試驗及毒力基因檢測,結果顯示拉絲試驗黏液絲長度符合陽性特征且分離菌株具備10種毒力基因,其中包含莢膜血清型基因Wzy-K1和新型毒力基因Peg-344。Shon等[19]研究表明毒力基因Wzy-K1與K1血清型密切相關,能夠造成莢膜增厚,黏度增加,從而抵抗巨噬細胞的甘露糖/凝集受體的殺傷作用[20];Peg-344雖然功能尚不完全明確但在小鼠模型中是感染肺部必要攜帶的毒力基因,且在進行基因敲除后,敲除菌株侵襲小鼠的死亡率明顯降低[21],現已被許多研究人員作為hvKP的評判標準[22-23],結合臨床癥狀證明分離菌株為hvKP。通過研究毒力因子從而了解其致病機制,這為預防和治療hvKP引起的大規模細菌疾病具有積極意義。
目前hvKP感染小鼠的致病性研究相對較少,本試驗為探究其致病性,根據不同注射濃度將小鼠分為6組(36只小鼠),24 h后高濃度組呼吸急促,被毛聳立,伴有抽搐和嚴重的腹瀉,對小鼠進行解剖觀察,腹腔中有黏液,肺有少量出血,脾腫大,肝淤血,與李華明等[24]的研究相一致,但臨床癥狀及病理變化更加顯著。病理組織學觀察能夠更加清晰準確地判斷組織病變程度,了解致病機理。本試驗中小鼠各組織器官均有顯著病理變化,肝臟淤血,呈現顆粒變性;脾臟淤血,水腫,體積增大;肺充血;腎小管上皮脫落。
隨著抗生素的大量使用,KP由原本對大多數抗生素敏感逐漸轉變為多重耐藥,這為該疾病的治療帶來阻礙。本試驗對分離菌株進行藥敏試驗,發現其僅對少量抗生素敏感,對大多數抗生素不敏感和耐藥,表明該菌株具有較強耐藥性。現今同時具備高毒力和高耐藥性的KP已經在各大地區醫院肆虐,作為一種人獸共患細菌疾病,這可能為我國畜牧養殖以及人獸共患細菌病的預防及治療帶來潛在的威脅[25-26]。
近些年高毒力肺炎克雷伯菌外膜囊泡因其生理生化特性為該疾病預防及治療提供了新的方向。OMVs與細菌具有相似的功能,含有的免疫刺激因子能夠激活免疫系統的同時具有不能夠復制,安全性強的特點[27]。
據張靖[28]研究表明hvKP分泌的外膜囊泡能夠刺激機體細胞產生炎性反應,使促炎因子IL-6、IL-8及TNF-α含量增多,有助于自身免疫性炎癥的傳播,對抗擊感染具有積極作用且不會導致死亡,具有疫苗、疫苗佐劑及優良外源載體的潛力。除自身的免疫功能外,因其與細胞膜結構的相似性,在經過基因過程技術處理后可作為載體搭載藥物,現已被證明可以應用于癌癥及腫瘤的治療[29-30]。現今外膜囊泡的提取方法包括超速離心法、超濾法以及沉淀法等,超速離心法作為外膜囊泡的標準提取方法[31],提取步驟簡單,無需復雜處理但所需實驗成本高且回收率低,不能大量提取[32];超濾法采用將試液通過一定大小孔徑的濾膜后經半透膜濾過完成外膜囊泡富集[33];沉淀法采用將試液與化學試劑融合的方法[34],操作簡便,實驗成本低,但試驗周期長,成功率低且混入試液無法除去會影響后續試驗。因上述提取方法中存在的問題,OMVs一直局限于基礎研究。本試驗首先對試液通過特定蛋白孔徑半透膜濾過后加入PEG 10000溶液加速沉降,最終采用無菌PBS溶液重懸沉淀進行收集,本方法所能夠有效提高OMVs回收率,成本低且高分子量的PEG溶液無毒,不會影響下游試驗,這為其進行臨床應用研究提供幫助。
根據研究顯示對于外膜囊泡的鑒定方法主要包括透射電鏡下形態觀察、納米粒徑跟蹤分析(NTA)和SDS-PAGE檢測。據華雨能[35]研究表明外膜囊泡在透射電鏡下呈現橢圓形和球形,具有典型的杯托狀結構,NTA結果顯示囊泡粒徑主要集中于在80~200 nm之間。本試驗中經透射電鏡觀察外膜囊泡呈現茶杯狀圓形,NTA結果顯示OMVs粒徑峰值在205.9 nm,SDS-PAGE結果顯示目的條帶在17~75 ku之間,均符合外膜囊泡特征。
本試驗通過對病死綿羊病變器官細菌分離純化及鑒定,檢測其所攜帶的毒力基因,分析其致病性和耐藥性并利用改良沉淀法分離其外膜囊泡。結果顯示該菌株為高毒力肺炎克雷伯菌,攜帶多種毒力基因,具有較強致病性且對多種抗生素耐藥,這可能會對公共衛生安全造成潛在威脅,因此需要采用除抗生素外其他方法進行應對。本試驗采用上述方法成功分離其外膜囊泡,希冀借此為研究該病原菌致病機制及預防治療其所引起的細菌病提供幫助。
4 結 論
本試驗從病死綿羊體內分離出高毒力肺炎克雷伯菌,其具有較高致病性及耐藥性并創立新型外膜囊泡提取方法,成功實現hvKP外膜囊泡的分離及鑒定。
參考文獻(References):
[1] 王佳寧, 張自強, 孔德婧, 等. 家兔肺炎克雷伯菌的分離鑒定[J]. 畜牧獸醫學報, 2023, 54(12):5198-5206.
WANG J N, ZHANG Z Q, KONG D J, et al. Isolation and identification of Klebsiella pneumoniae in rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12):5198-5206. (in Chinese)
[2] AHMAD T A, EL-SAYED L H, HAROUN M, et al. Development of immunization trials against Klebsiella pneumoniae[J]. Vaccine, 2012, 30(14):2411-2420.
[3] 徐紅云, 劉春林, 陳 弟, 等. 2010—2016年耐碳青霉烯類肺炎克雷伯菌及大腸埃希菌臨床分布及其耐藥特征[J]. 中國感染控制雜志, 2018, 17(8):688-692.
XU H Y, LIU C L, CHEN D, et al. Distribution and antimicrobial resistance of carbapenem-resistant Klebsiella pneumoniae and Escherichia coli in 2010-2016[J]. Chinese Journal of Infection Control, 2018, 17(8):688-692. (in Chinese)
[4] MAK C Y, HO M, IU L P L, et al. Clinical features and treatment outcomes of endogenous Klebsiella endophthalmitis:a 12-year review[J]. Int J Ophthalmol, 2020, 13(12):1933-1940.
[5] 馬紓薏. 新疆南疆馬鹿肺炎克雷伯菌分子流行病學調查及耐藥特性研究[D]. 阿拉爾:塔里木大學, 2022.
MA S Y. Molecular epidemiological investigation and drug resistance characteristics on Klebsiella pneumoniae of Red deer in southern Xinjiang[D]. Alaer City: Tarim University, 2022. (in Chinese)
[6] LIU Y N, LEUNG S S Y, HUANG Y, et al. Identification of two depolymerases from phage IME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae[J]. Front Microbiol, 2020, 11:218.
[7] BRINK A J. Epidemiology of carbapenem-resistant gram-negative infections globally[J]. Curr Opin Infect Dis, 2019, 32(6):609-616.
[8] 陳 琪, 吳 敏, 白宏震, 等. 細菌外膜囊泡納米載體的制備及其免疫調節作用[J]. 浙江大學學報:醫學版, 2017, 46(2):118-124.
CHEN Q, WU M, BAI H Z, et al. Bacterial outer membrane vesicles as nano carriers to study immunological activities[J]. Journal of Zhejiang University:Medical Sciences, 2017, 46(2):118-124. (in Chinese)
[9] 馮文艷, 張扣興. 革蘭陰性菌外膜囊泡的研究進展[J]. 中國抗生素雜志, 2019, 44(1):32-39.
FENG W Y, ZHANG K X. Research development of outer membrane vesicles in Gram-negative bacteria[J]. Chinese Journal of Antibiotics, 2019, 44(1):32-39. (in Chinese)
[10] 陳橋橋, 涂仕娟, 夏修文, 等. 細菌外膜囊泡發生機制的研究進展[J]. 泰山醫學院學報, 2019, 40(12):980-982.
CHEN Q Q, TU S J, XIA X W, et al. Research progress on the mechanism of bacterial outer membrane vesicle generation[J]. Journal of Taishan Medical College, 2019, 40(12):980-982. (in Chinese)
[11] ELMI A, WATSON E, SANDU P, et al. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells[J]. Infect Immun, 2012, 80(12):4089-4098.
[12] SHEN Y, TORCHIA M L G, LAWSON G W, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection[J]. Cell Host Microbe, 2012, 12(4):509-520.
[13] 喻勝猛. 致羊腹瀉大腸桿菌噬菌體的分離鑒定及其在環境中的殺菌效果評估[D]. 咸陽:西北農林科技大學, 2022.
YU S M. Isolation and identification of Escherichia coli bacteriophages causing sheep diarrhea and evaluation of their bactericidal efficacy in environment[D]. Xianyang: Northwest Aamp;F University, 2022. (in Chinese)
[14] 東秀珠, 蔡妙英. 常見細菌系統鑒定手冊[M]. 北京:科學出版社, 2001.
DONG X Z, CAI M Y. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press, 2001. (in Chinese)
[15] CLSI. Vet01-A4 Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals[S]. 4th ed. Wayne:Clinical and Laboratory Standard Institue, 2013.
[16] 郭良帥. 和田地區羊源肺炎克雷伯菌的分離及生物學特征鑒定[J]. 中南農業科技, 2023, 44(6):74-80.
GUO L S. Isolation and biological characterization of sheep-derived Klebsiella pneumoniae in Hotan[J]. South-Central Agricultural Science and Technology, 2023, 44(6):74-80. (in Chinese)
[17] QIAN Y, WONG C C, LAI S C, et al. Klebsiella pneumoniae invasive liver abscess syndrome with purulent meningitis and septic shock:a case from mainland China[J]. World J Gastroenterol, 2016, 22(9):2861-2866.
[18] 耿 響, 劉希望, 李劍勇. 肺炎克雷伯菌耐藥機制和毒力因子研究進展[J]. 中獸醫醫藥雜志, 2024, 43(1):29-38.
GENG X, LIU X W, LI J Y. Advances in mechanisms of resistance and virulence factors of Klebsiella pneumoniae[J]. Journal of Traditional Chinese Veterinary Medicine, 2024, 43(1):29-38. (in Chinese)
[19] SHON A S, BAJWA R P S, RUSSO T A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae:a new and dangerous breed[J]. Virulence, 2013, 4(2):107-118.
[20] PACZOSA M K, MECSAS J. Klebsiella pneumoniae:going on the offense with a strong defense[J]. Microbiol Mol Biol Rev, 2016, 80(3):629-661.
[21] COMPAIN F, BABOSAN A, BRISSE S, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae[J]. J Clin Microbiol, 2014, 52(12):4377-4380.
[22] BULGER J, MACDONALD U, OLSON R, et al. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge[J]. Infect Immun, 2017, 85(10):e00093-17.
[23] KAKUTA N, NAKANO R, NAKANO A, et al. Molecular characteristics of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Japan:predominance of CTX-M-15 and emergence of hypervirulent clones[J]. Int J Infect Dis, 2020, 98:281-286.
[24] 李華明, 項 維, 盧文兵, 等. 1株豬源ST-35型肺炎克雷伯菌的致病性和藥物敏感性分析[J]. 畜牧獸醫學報, 2022, 53(12):4356-4366.
LI H M, XIANG W, LU W B, et al. Pathogenicity and drug sensitivity analysis of a porcine Klebsiella pneumoniae type ST-35[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12):4356-4366. (in Chinese)
[25] 田李均, 王曉麗, 肖淑珍, 等. 醫院內高黏液性肺炎克雷伯菌的流行分布、毒力基因及臨床特征分析[J]. 上海交通大學學報:醫學版, 2017, 37(1):43-48.
TIAN L J, WANG X L, XIAO S Z, et al. Epidemiological distribution, virulent genes and clinical characteristics of hypermucoviscous Klebsiella pneumonia in a Hospital[J]. Journal of Shanghai Jiaotong University:Medical Science, 2017, 37(1):43-48. (in Chinese)
[26] XU M, FU Y Q, FANG Y H, et al. High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in eastern China[J]. Infect Drug Resist, 2019, 12:641-653.
[27] 姚崧源. 細菌外膜囊泡在疫苗領域的研究進展[J]. 微生物學免疫學進展, 202 49(1):78-82.
YAO S Y. Advances in research on bacterial outer membrane vesicles in vaccine[J]. Progress in Microbiology and Immunology, 202 49(1):78-82. (in Chinese)
[28] 張 靖. 高毒力肺炎克雷伯菌外膜囊泡能夠誘發宿主細胞產生炎性反應[D]. 重慶:重慶醫科大學, 2021.
ZHANG J. Outer membrane vesicles derived from Hypervirulent Klebsiella pneumoniae stimulatr the inflammatory response[D]. Chongqing: Chongqing Medical University, 2021. (in Chinese)
[29] WANG S J, HUANG W W, LI K, et al. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor[J]. Int J Nanomed, 2017, 12:6813-6825.
[30] 邱曉涵, 李泳江, 吳軍勇, 等. 細菌外膜囊泡:疾病治療的新途徑[J]. 藥學學報, 202 56(12):3441-3450.
QIU X H, LI Y J, WU J Y, et al. Bacterial outer membrane vesicles: a new approach to diseases therapy[J]. Acta Pharmaceutica Sinica, 202 56(12):3441-3450. (in Chinese)
[31] DOYLE L M, WANG M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7):727.
[32] FURI I, MOMEN-HERAVI F, SZABO G. Extracellular vesicle isolation: present and future[J]. Ann Transl Med, 2017, 5(12):263.
[33] CASTILLO-ROMERO K F, SANTACRUZ A, GONZ LEZ-VALDEZ J. Production and purification of bacterial membrane vesicles for biotechnology applications: challenges and opportunities[J]. Electrophoresis, 2023, 44(1-2):107-124.
[34] RIDER M A, HURWITZ S N, MECKES D G. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles[J]. Sci Rep, 2016, 6:23978.
[35] 華雨能. 高毒力肺炎克雷伯菌通過外膜囊泡介導毒力因子轉移至耐藥肺炎克雷伯菌及宿主細胞的機制研究[D]. 廣州:南方醫科大學, 2022.
HUA Y N. Outer membrane vesicles from hypervirulent Klebsiella pneumoniae mediate virulence factor transfer to antimicrobial-resistant Klebsiella pneumoniae and host cells[D]. Guangzhou: Southern Medical University, 2022. (in Chinese)
(編輯 白永平)