


















摘" 要: 為了解決大規模的電動汽車無序充電給電網帶來的壓力,提出一種改進蜣螂算法(LBDBO)的電動汽車有序充電方法。首先,建立一個以電網負荷峰谷差和用戶費用最小化的目標函數;其次,針對傳統蜣螂算法存在的收斂精度不足和易陷入局部最優解的問題,利用Logistic混沌映射對種群進行初始化,使蜣螂群體分布更均勻;然后,引入魚鷹優化算法、透鏡成像反向學習策略和局部搜索策略來更新蜣螂的位置,避免在迭代過程中陷入局部最優,同時提高尋優精度;最后,通過與標準蜣螂算法(DBO)、灰狼優化算法(GWO)、北方蒼鷹優化算法(NGO)、鯨魚優化算法(WOA)和基于減法平均的優化器算法(SABO)在基準測試函數中進行性能評估對比,驗證策略改進的有效性。將LBDBO算法應用于電動汽車有序充電問題求解上,結果表明,改進算法可以顯著降低峰谷差和充電成本,進一步驗證了該算法的優越性和實用性。
關鍵詞: 電動汽車; 有序充電; 改進蜣螂算法; Logistic混沌映射; 電網負荷; 充電費用
中圖分類號: TN929.5?34; TM73" " " " " " " " " 文獻標識碼: A" " " " " " " " " " " 文章編號: 1004?373X(2025)02?0115?09
Research on electric vehicles orderly charging based on LBDBO
DU Zhijian1, LIAO Daozheng1, CHENG Jun2, XI Lei1
(1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China;
2. Qiansheng Academy, Beijing 101111, China)
Abstract: A dung beetle optimizer based on Logistic chaotic mapping and backward learning (LBDBO) for orderly charging of electric vehicles is proposed to solve the pressure brought by large?scale disorderly charging of electric vehicles on the power grid. An objective function is established to minimize the peak?to?valley difference in grid load and user costs. In allusion to the problems of insufficient convergence accuracy and susceptibility to local optima in the traditional dung beetle algorithm, Logistic chaotic mapping is used to initialize the population, making the distribution of the dung beetle population more uniform. The osprey optimization algorithm, lens imaging reverse learning strategy, and local search strategy are introduced to update the dung beetle positions, avoiding local optima during iterations and impraing the optimization accuracy. The effectiveness of the strategy improvement was verified by comparing the performance of the standard dung beetle optimizer (DBO), grey wolf optimization (GWO) algorithm, northern goater optimization (NGO) algorithm, whale optimization algorithm (WOA) and subtraction average based optimizer (SABO) in the benchmark testing function. The LBDBO is used to solve the orderly charging problem of electric vehicles. The results indicate that the LBDBO can significantly reduce the peak?to?valley difference and charging costs, further validating the superiority and practicality of the algorithm.
Keywords: electric vehicles; orderly charging; LBDBO; Logistic chaotic mapping; power grid load; charging cost
0" 引" 言
隨著全球人口增長、工業化和城市化的加速,對能源的需求不斷增加,特別是我國石油嚴重依賴進口,成為國家能源安全的隱患,發展新能源汽車技術成為有效緩解化石能源緊缺的主要途徑之一[1]。同時新能源汽車因其零排放特性,成為減少空氣污染和應對氣候變化的有效手段,逐漸成為汽車行業發展的一種趨勢。大規模的電動汽車入網增加了電力系統的負荷,尤其是在充電高峰時段,可能導致電力系統負荷波動增加,嚴重時導致系統癱瘓,因而如何制定有效策略實現電動汽車的優化調度,成為研究的熱點。……