覃慧婷 康恒 付帆 薛佩佩 曹曉燕
摘要:角鯊烯是一種含有6個(gè)異戊二烯的萜類化合物,廣泛存在于動(dòng)物、植物和微生物體中,因其抗腫瘤、抗氧化、抗炎和調(diào)節(jié)脂質(zhì)代謝等生物活性而被廣泛應(yīng)用于醫(yī)藥、食品和畜牧業(yè)等領(lǐng)域。文章綜述了近年來有關(guān)角鯊烯來源、生物活性,及其在醫(yī)藥、食品、畜牧業(yè)等領(lǐng)域應(yīng)用的相關(guān)研究進(jìn)展,并展望了利用生物技術(shù)開發(fā)和生產(chǎn)非動(dòng)物性角鯊烯的廣闊前景,以期為角鯊烯的研究與開發(fā)提供參考。
關(guān)鍵詞:角鯊烯;來源;生物活性;應(yīng)用
中圖分類號(hào):Q541 文獻(xiàn)標(biāo)志碼:A DOI:10.16465/j.gste.cn431252ts.20240121
Research progress on the source and bioactivity of squalene
Qin Huiting1, Kang Heng1, Fu Fan1, Xue Peipei2, Cao Xiaoyan1
(1. National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xian, Shaanxi 710119; 2. Xian Shangdan Health Management Co., Ltd., Xian, Shaanxi 710077)
Abstract: Squalene is a terpenoid compound containing six isoprene compounds, widely present in animals, plants, and microorganisms. It is widely used in fields such as medicine, food, and animal husbandry due to its biological activities such as anti-tumor, antioxidant, anti-inflammatory, and lipid metabolism regulation. The article reviews the research progress on the sources, biological activities, and applications of squalene in fields such as medicine, food, and animal husbandry in recent years, and looks forward to the broad prospects of using biotechnology to develop and produce non animal squalene for the research and development of squalene.
Key words: squalene; source; bioactivity; application
角鯊烯是一種含有6個(gè)異戊二烯的天然有機(jī)萜類化合物,分子式為C30H50,其3D結(jié)構(gòu)如圖1所示。角鯊烯普遍存在于動(dòng)物、植物、微生物等多種生物體內(nèi),是人體內(nèi)維生素D、膽固醇和類固醇激素等各種重要生物活性分子合成的前體物質(zhì)。迄今為止,角鯊烯已被證明具有多種生物活性,被廣泛應(yīng)用于醫(yī)療、制藥、食品、化妝品和畜牧業(yè)等領(lǐng)域。2019年角鯊烯市場(chǎng)總值1.4億美元,預(yù)計(jì)在2024年增長(zhǎng)至2.4億美元,年均復(fù)合增長(zhǎng)率為7.8%[1]。本文綜述了角鯊烯的來源、生物活性和相關(guān)應(yīng)用,以期為角鯊烯的研究與開發(fā)提供參考。
1 角鯊烯來源
1.1 動(dòng)物體
角鯊烯主要來源于鯊魚肝油(其中角鯊烯含量高達(dá)95%),而鯊魚肝油占深海鯊魚肝臟質(zhì)量的83%以上[2]。一些淡水魚的肌肉和內(nèi)臟脂肪中也含有微量角鯊烯,但其含量遠(yuǎn)低于深海鯊魚[3]。因此,每年都有大量的深海鯊魚被捕殺,以滿足不斷增長(zhǎng)的角鯊烯需求,這嚴(yán)重危害了海洋生態(tài)環(huán)境和生物多樣性。所以尋找更合適的角鯊烯來源替代物具有重要意義。
1.2 植物體
已有許多植物和植物油被報(bào)道含有角鯊烯,如莧菜籽、橄欖油、南瓜籽油、灰毛豆油和茶樹葉片。其中,莧菜(Amaranthus tailtus L.)種子的角鯊烯含量最高[4-5]。對(duì)莧菜籽進(jìn)行熱處理(爆裂)后再榨油可以進(jìn)一步增加莧菜籽油中角鯊烯的含量,以莧菜籽生粒和爆裂粒榨取的莧菜籽油中角鯊烯含量分別為7.66%和8.12%[4]。此外,以熱處理(爆裂)莧菜籽破碎后分離出的麩皮組分為榨油原料也能夠增加莧菜籽油中角鯊烯的含量,從麩皮組分中榨取的莧菜籽油角鯊烯含量高達(dá)14.38 g/100 g[5]。
在食用植物油中,橄欖油和南瓜籽油中也被報(bào)道含有角鯊烯,橄欖油的角鯊烯含量達(dá)0.591~0.83 g/100 g[6-7],其中南瓜籽油的角鯊烯含量達(dá)0.444 6 g/100 g[8]。
灰毛豆(Tephrosia apollinea)是一種富含黃酮類化合物的豆科植物,原產(chǎn)于亞洲西南部和非洲東北部,灰毛豆種子油中角鯊烯含量可達(dá)1.103 8 g/100 g[9]。
角鯊烯還被證明存在于綠茶(Camellia sinensis)葉片中[10]。茶樹葉片中角鯊烯含量隨著茶樹葉片成熟度的增加而增加,老葉的正己烷提取物中角鯊烯濃度比嫩葉正己烷提取物中大得多,達(dá)2.92 g/100 g[11]。因此,在制茶過程中未被利用的茶樹老葉和修剪后的凋落葉片,可用于提取天然角鯊烯,從而提高茶樹產(chǎn)業(yè)的附加值。
1.3 微生物
微藻、細(xì)菌和酵母等微生物體內(nèi)都可以合成角鯊烯,而且微生物具有生長(zhǎng)速度快和代謝水平高的特點(diǎn),利用微生物發(fā)酵生產(chǎn)角鯊烯成為當(dāng)前的研究熱點(diǎn)。
微藻細(xì)胞內(nèi)具有合成角鯊烯的天然合成途徑,是一種有潛力且可持續(xù)的角鯊烯來源。在培養(yǎng)基中施加特比萘芬可以提高衣藻(Chlamydomonas)中角鯊烯含量[12]。提取角鯊烯后殘余的微藻生物質(zhì)含有較高含量的碳水化合物和蛋白質(zhì),可以用于生產(chǎn)生物汽油、沼氣和動(dòng)物飼料[13-14]。
除微藻外,酵母(Saccharomyces cerevisiae)因其在工程生產(chǎn)中的安全性、內(nèi)在甲羥戊酸(MVA)途徑(圖2)的穩(wěn)定性和遺傳操作的簡(jiǎn)易性,成為角鯊烯生產(chǎn)的主要候選來源。ERG1(編碼角鯊烯環(huán)氧酶)和ERG11(編碼羊毛甾醇14-α-去甲基化酶)是酵母細(xì)胞中限制角鯊烯積累的關(guān)鍵酶基因,利用大腸桿菌mar操縱子的順式作用元件mar O設(shè)計(jì)的工程啟動(dòng)子PERG1(M5)或PERG11(M3)下調(diào)酵母ERG1和ERG11的表達(dá),可以將角鯊烯生物合成量提高4.9倍[15]。
由于酵母細(xì)胞線粒體可以提供充足的乙酰輔酶A和氧化還原當(dāng)量,利用酵母線粒體合成角鯊烯是一種有前途的方法。然而,MVA途徑的磷酸化中間體(尤其是甲羥戊酸-5-P和甲羥戊酸-5-PP)會(huì)轉(zhuǎn)化為ATP類似物,抑制氧化呼吸等ATP相關(guān)的生化反應(yīng),導(dǎo)致酵母細(xì)胞生長(zhǎng)狀態(tài)不佳,這顯著削弱了利用線粒體合成角鯊烯的潛在優(yōu)勢(shì)。據(jù)此,研究人員提出了胞質(zhì)工程和線粒體工程的組合策略,即在線粒體中引入從乙酰輔酶A到甲羥戊酸的部分MVA途徑,在細(xì)胞質(zhì)中增加甲羥戊酸的合成,該策略成功展示了對(duì)角鯊烯生產(chǎn)的疊加效應(yīng),將培養(yǎng)物中角鯊烯產(chǎn)量提高到了21.1 g/L[16]。
產(chǎn)油酵母解脂雅羅酵母(Yarrowia lipolytica)已被改造為工程菌并應(yīng)用于角鯊烯的工業(yè)化生產(chǎn),通過優(yōu)化乙酸鹽、檸檬酸鹽和特比萘芬的添加濃度,在工程菌SQ-1的培養(yǎng)產(chǎn)物中角鯊烯含量達(dá)731.18 mg/L[17]。
沼澤紅假單胞菌(Rhodopseudomonas palustris)已被證明具有生產(chǎn)角鯊烯的潛力,在阻斷類胡蘿卜素合成途徑和過表達(dá)角鯊烯合成途徑限速酶的情況下,角鯊烯產(chǎn)量達(dá)到23.3 mg/g DCW(細(xì)胞干重),和原始菌株相比提高約178倍[18]。
目前,微生物來源的角鯊烯產(chǎn)量還不足以滿足全球?qū)酋徬┑男枨螅瑹o法替代鯊魚肝油來源的角鯊烯。為了提高微生物源角鯊烯產(chǎn)量,還需要進(jìn)行更加廣泛和深入的研究以獲得高產(chǎn)、遺傳穩(wěn)定、適合工業(yè)化生產(chǎn)的微生物菌株以及尋找廉價(jià)的生產(chǎn)原料。
2 角鯊烯的生物活性
2.1 抗腫瘤
角鯊烯可以輔助治療多種癌癥,能夠保護(hù)正常細(xì)胞免受化療藥物毒性,促進(jìn)化療藥物對(duì)腫瘤細(xì)胞的毒害[19]。
角鯊烯具有很好的抗胃癌活性,可以通過促進(jìn)腫瘤細(xì)胞DNA損傷、改變線粒體膜電位、增加活性氧(ROS)以及增大脂質(zhì)過氧化水平介導(dǎo)腫瘤細(xì)胞凋亡,抑制人胃腺癌(AGS)細(xì)胞系的細(xì)胞增殖[20]。
順鉑是一種抗癌藥物,但其具有腎毒性,使得臨床使用受到很大限制[21]。研究人員發(fā)現(xiàn),角鯊烯可以通過其抗氧化作用調(diào)節(jié)氧化還原系統(tǒng)的平衡,激活A(yù)kt/mTOR信號(hào)通路改善順鉑誘導(dǎo)的腎臟組織病理學(xué)損傷[22]。而且,角鯊烯本身就具有很強(qiáng)的抗腎細(xì)胞癌(RCC)活性,它能夠靶向缺氧誘導(dǎo)因子(HIF)信號(hào)通路,并影響多種細(xì)胞過程,是一種有前途的RCC治療藥物[23]。
在發(fā)達(dá)國(guó)家,乳腺癌是女性最常見的死亡原因之一[24]。角鯊烯能有效抑制人乳腺上皮細(xì)胞的異常過度增殖,還可以降低ROS水平,保護(hù)乳腺上皮細(xì)胞免受氧化DNA損傷[25]。角鯊烯和羥基酪醇在轉(zhuǎn)移性乳腺癌細(xì)胞中聯(lián)合使用時(shí),能夠抑制癌細(xì)胞增殖,促進(jìn)癌細(xì)胞凋亡和DNA損傷[26]。
2.2 抗氧化
氧化應(yīng)激通常表現(xiàn)為細(xì)胞內(nèi)ROS的過量生成與抗氧化能力降低,在脂肪性肝炎中起負(fù)面作用[27]。角鯊烯能夠誘導(dǎo)脂質(zhì)代謝相關(guān)蛋白的表達(dá),降低肝臟脂肪含量,減輕肝臟中氧化應(yīng)激造成的損傷[28]。在小鼠腹腔巨噬細(xì)胞和人早幼粒白血病細(xì)胞系(HL-60)中,角鯊烯可以降低脂多糖孵育引起的細(xì)胞內(nèi)ROS,抑制H2O2導(dǎo)致的蛋白質(zhì)結(jié)構(gòu)變化[29]。角鯊烯能夠作用于幾種依賴硫氧還蛋白結(jié)構(gòu)域5(thioredoxin domain-containing 5,TXNDC5)的分子機(jī)制,調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激,保護(hù)小鼠肝細(xì)胞免受氧化和內(nèi)質(zhì)網(wǎng)應(yīng)激損傷[30]。
2.3 調(diào)節(jié)氧化型低密度脂蛋白代謝
動(dòng)脈粥樣硬化是一種心血管疾病,其特征是脂質(zhì)在動(dòng)脈內(nèi)膜過度積累,導(dǎo)致一系列炎癥反應(yīng)和氧化事件[31]。巨噬細(xì)胞表面的CD36受體可以調(diào)節(jié)巨噬細(xì)胞氧化型低密度脂蛋白(ox LDL)的識(shí)別與內(nèi)吞,在動(dòng)脈粥樣硬化形成中發(fā)揮重要作用[32]。角鯊烯可以在不引起細(xì)胞毒性的情況下降低單核細(xì)胞和巨噬細(xì)胞CD36受體的表達(dá),促進(jìn)巨噬細(xì)胞對(duì)ox LDL的攝取,從而在動(dòng)脈粥狀硬化疾病中發(fā)揮積極作用[33]。
2.4 抗 炎
角鯊烯能夠調(diào)節(jié)以中性粒細(xì)胞/單核細(xì)胞/巨噬細(xì)胞過度激活為特征的炎癥條件,從而有效地終止炎癥反應(yīng)[34]。
2.5 抗病毒
角鯊烯能夠有效地結(jié)合到花生芽壞死病毒(GBNV)外殼蛋白的結(jié)合位點(diǎn),抑制和阻斷病毒復(fù)制RNA與外殼蛋白的結(jié)合和傳播[35]。
2.6 促進(jìn)輔酶Q10合成
機(jī)體可以自身合成輔酶Q10(一種重要的親脂性抗氧化劑),但皮膚中輔酶Q10的含量會(huì)隨著年齡增長(zhǎng)而減少,導(dǎo)致皺紋增多;將輔酶Q10局部應(yīng)用于人體皮膚可以有效減少皺紋[36]。角鯊烯可以促進(jìn)大鼠體內(nèi)輔酶Q10的合成[37]。
3 角鯊烯的應(yīng)用
3.1 醫(yī)藥領(lǐng)域
角鯊烯因其抗腫瘤、抗氧化、抗炎和保濕等特性而被應(yīng)用于醫(yī)藥領(lǐng)域。它能夠使藥物更容易進(jìn)入細(xì)胞并刺激免疫系統(tǒng),使治療更有效,可以作為佐劑應(yīng)用到新冠肺炎病毒疫苗開發(fā)中[38]。
皮脂是由皮脂導(dǎo)管分泌的多種成分組成的混合物,其中角鯊烯含量為12%~15%,局部應(yīng)用角鯊烯可以調(diào)節(jié)皮膚中不飽和脂肪酸的含量,從而治療脂溢性皮炎和痤瘡[39]。
銀屑病是一種慢性、非傳染性的表皮過度增生性炎癥,全世界約有1.25億人患病,角鯊烯已經(jīng)被應(yīng)用于銀屑病的治療[40]。為了在皮膚中建立局部藥物庫(kù)以提高對(duì)銀屑病的療效,研究人員[41]開發(fā)了角鯊烯集成的納米結(jié)構(gòu)脂質(zhì)載體(NLC)基卡波姆940和羥乙基纖維素(HEC)檸檬酸他莫昔芬凝膠,可以確保在皮膚上停留更長(zhǎng)時(shí)間(由于半固體的稠度),增加皮膚水分(親水性凝膠聚合物)和脂質(zhì)含量(由于天然皮膚脂質(zhì)組分的存在),改善了藥物在皮膚中的滯留,提高了對(duì)銀屑病的療效。
角鯊烯由于其高生物相容性被引入作為藥物遞送系統(tǒng)(DDS)的材料;DDS的化學(xué)、形態(tài)和流動(dòng)性決定了能否準(zhǔn)確地將具有生物活性的化合物或藥物遞送到體內(nèi)疾病部位[42]。角鯊烯與藥物共價(jià)結(jié)合的復(fù)合體,可以在不需要其他材料的情況下作為即用型藥物載體發(fā)揮作用[43]。而且,這些角鯊烯-藥物復(fù)合體可以實(shí)現(xiàn)在給藥后的可視化[44]。
3.2 食品工業(yè)
研究開發(fā)富含生物活性物質(zhì)的食品已成為食品科學(xué)的主要研究領(lǐng)域之一。眾多對(duì)人體健康有益的天然化合物被篩選出來,應(yīng)用于食品加工中。角鯊烯可以添加到即食功能性食品中,它能夠改善松餅的品質(zhì),極大地提升松餅的外觀、顏色、氣味、質(zhì)地和口感[45]。
食品級(jí)生物聚合物,如多糖、膠質(zhì)、極性脂質(zhì)等,常被用于包封生物活性化合物。研究人員以阿拉伯膠(GA)為參考材料,考察了麥芽糊精-乳清蛋白(MD-WPI)基角鯊烯粉末的穩(wěn)定性和溶解性,結(jié)果表明角鯊烯作為功能性食品添加劑具有良好的應(yīng)用前景[46]。此外,殼聚糖-乳清蛋白基角鯊烯也已經(jīng)被用于功能性食品的開發(fā),但其乳化及其隨后的噴霧干燥封裝工藝仍需進(jìn)一步優(yōu)化[47]。
明膠是一種優(yōu)秀的食品包裝材料,對(duì)氧氣和紫外光具有良好的阻隔性,能夠延緩食品的氧化,可以用于生產(chǎn)食品級(jí)無色薄膜[48]。角鯊烯可以取代明膠中50%的甘油,改善明膠薄膜的水蒸氣透過率和透氧性,從而獲得品質(zhì)更好的食品級(jí)薄膜[49]。
3.3 畜牧業(yè)
在肉雞養(yǎng)殖業(yè),人們十分青睞肉雞快速生長(zhǎng)和瘦大雞胸的遺傳特性,但具有這些特性的肉雞品系特別容易受到外界因素的影響而發(fā)生氧化應(yīng)激,如疾病、溫度、濕度、水和飼料中的有毒物質(zhì)的影響[50]。將角鯊烯添加至飼糧中(尤其是在1 000 mg/kg水平)有助于改善肉雞氧化應(yīng)急,減輕肝臟損傷,并促進(jìn)肉雞增重[51]。
在仔豬飼糧中添加角鯊烯還可提高仔豬斷奶后早期的生長(zhǎng)速率,增強(qiáng)仔豬抗氧化能力,保護(hù)仔豬肝臟[52]。
3.4 其他領(lǐng)域
為了應(yīng)對(duì)石油枯竭和全球變暖等問題,越來越多的人將目光投向生物質(zhì)燃料資源。角鯊烯化學(xué)結(jié)構(gòu)相對(duì)簡(jiǎn)單,含有6個(gè)幾乎等價(jià)的C═C鍵,與石油中的碳?xì)浠衔锵嗨疲梢宰鳛槭吞娲Y源。研究人員[53]利用具有高催化環(huán)氧化能力的鎢基催化劑,以過氧化氫為氧化劑,在非均相體系中研究了角鯊烯的環(huán)氧化反應(yīng),成功實(shí)現(xiàn)了角鯊烯的環(huán)氧化。
4 前景與展望
角鯊烯因其廣泛的生物活性,如抗氧化、抗癌、解毒等,在醫(yī)藥、食品、能源和化妝品等領(lǐng)域被廣泛應(yīng)用。可以預(yù)見,角鯊烯未來將在不同的領(lǐng)域得到更加廣泛的研究和應(yīng)用。傳統(tǒng)的角鯊烯主要來源于深海鯊魚的肝油,該方法不可持續(xù)且會(huì)對(duì)生態(tài)造成極大壓力。科研人員和從業(yè)人員將目光投向以橄欖油、南瓜籽油、莧菜籽油為代表的植物源角鯊烯,以及以工程酵母和微藻為代表的微生物源角鯊烯。為了滿足全球?qū)酋徬┭芯坷玫男枨螅瑢ふ腋弋a(chǎn)且廉價(jià)的角鯊烯來源替代物、利用生物技術(shù)開發(fā)和生產(chǎn)非動(dòng)物性角鯊烯是今后工作的重點(diǎn)。
參 考 文 獻(xiàn)
[1] MENG Y H, SHAO X X, WANG Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli[J]. Biotechnology and Bioengineeri ng,2020,117(11):3499-3507.
[2] POLLIER J, VANCAESTER E, KUZHIUMPARAMBIL U, et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis[J]. Nature Microbiology,2019,4(2):226-233.
[3] KOPICOVá Z, VAVREINOVá S. Occurrence of squalene and cholesterol in various species of Czech freshwater fish[J]. Czech Journal of Food Science,2007,36(4):195-201.
[4] VERMA K C. Assessment of squalene variability and its enhancement in amaranthus (Amaranthus caudatus L.) populations: with application to vaccine development[J]. Biotechnol Appl Biochem,2022,69(6):2745-2752.
[5] SRIVASTAVA S, SREERAMA Y N, DHARMARAJ U. Effect of processing on squalene content of grain amaranth fractions[J]. Journal of Cereal Science,2021,100:103218.
[6]田原,鄭坤,王紹文,等.不同控溫儲(chǔ)藏對(duì)橄欖油品質(zhì)和主要功能性成分的影響[J].糧食科技與經(jīng)濟(jì),2018,43(1):88-90
[7]李勇杰,耿樹香,吳濤,等.云南省不同引種地油橄欖果制取的油脂脂肪酸組成和角鯊烯含量分析[J].中國(guó)油脂,2023,48(3):135-139.
[8]楊學(xué)芳,張繼光,吳萬(wàn)富,等.南瓜籽油中角鯊烯含量及特征指標(biāo)比較[J].食品與發(fā)酵工業(yè),2021,47(5):217-223.
[9] GóRNA? P, RUDZI?SKA M, GRYGIER A, et al. Tephrosia apollinea seed: a new rich source of essential polyunsaturated fatty acids, tocopherols, sterols, and squalene[J]. Natural Product Research,2020,34(2):296-299.
[10] SHENG Y Y, XIANG J, WANG K R, et al. Extraction of squalene from tea leaves (Camellia sinensis) and its variations with leaf maturity and tea cultivar[J]. Frontiers in Nutrition,2022,9:755514.
[11] ZPARK S Y, CHOI S J, PARK H J, et al. Hexane extract of green tea (Camellia sinensis) leaves is an exceptionally rich source of squalene[J]. Food Science and Biotechnology,2020,29(6):769-775.
[12] POTIJUN S, JAINGAM S, SANEVAS N, et al. Green microalgae strain improvement for the production of sterols and squalene[J]. Plants (Basel),2021,10(8):1673.
[13] NAGAPPAN S, DAS P, ABDULQUADIR M, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture[J]. Journal of Biotechnol,2021,341:1-20.
[14] LIMA V R D, SILVA S A G D, HENRIQUE B T, et al. Performance, carcass traits, physicochemical properties and fatty acids composition of lambs meat fed diets with marine microalgae meal (Schizochytrium sp.)[J]. Livestock Science,2021,243:104387.
[15] ZHOU C Y, LI M J, LU S R, et al. Engineering of cis-element in Saccharomyces cerevisiae for efficient accumulation of value-added compound squalene via downregulation of the downstream metabolic flux[J]. Journal of Agricultural and Food Chemistry,2021,69(42):12474-12484.
[16] ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metabolic Engineering,2021,68:232-245.
[17] TANG W Y, WANG D P, TIAN Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresource Technology,2021,323:124652.
[18] XU W, WANG D Y, FAN J B, et al. Improving squalene production by blocking the competitive branched pathways and expressing rate-limiting enzymes in Rhodopseudomonas palustris[J]. Biotechnology and Applied Biochemistry,2022,69(4):1502-1508.
[19] SENTHILKUMAR S, DEVAKI T, MANOHAR B M, et al. Effect of squalene on cyclophosphamide-induced toxicity[J]. Clinica Chimica Acta,2006,364(1/2):335-342.
[20] PALANIYANDI T, SIVAJI A, THIRUGANASAMBANDAM R, et al. In vitro antigastric cancer activity of squalene, a triterpenoid compound isolated from Rhizophora Mucronata mangrove plant leaves against AGS cell line[J]. Pharmacognosy Magazine,2018,14(57):369-376.
[21] KILIC U, SAHIN K, TUZCU M, et al. Enhancement of cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate[J]. Frontiers in Nutrition,2015,1:28.
[22] SAKUL A, OZANSOY M, ELIBOL B, et al. Squalene attenuates the oxidative stress and activates AKT/mTOR pathway against cisplatin-induced kidney damage in mice[J]. Turkish Journal of Biology,2019,43(3):179-188.
[23] RAJAMANI K, THIRUGNANASAMBANDAN S S, NATESAN C, et al. Squalene deters drivers of RCC disease progression beyond VHL status[J]. Cell Biology and Toxicology,2021,37(4):611-631.
[24] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians,2018,68(6):394-424.
[25] KATDARE M, SINGHAL H, NEWMARK H, et al. Prevention of mammary preneoplastic transformation by naturally-occurring tumor inhibitors[J]. Cancer Letters,1997,111(1/2):141-147.
[26] SáNCHEZ-QUESADA C, GUTIéRREZ-SANTIAGO F, RODRíGUEZ-GARCíA C, et al. Synergistic effect of squalene and hydroxytyrosol on highly invasive MDA-MB-231 breast cancer cells[J]. Nutrients,2022,14(2):255.
[27] ALBANO E, MOTTARAN E, OCCHINO G, et al. Review article: role of oxidative stress in the progression of non-alcoholic steatosis[J]. Alimentary Pharmacology & Therapeutics,2005,22:71-73.
[28] RAMíREZ-TORRES A, BARCELó-BATLLORI S, MARTíNEZ-BEAMONTE R, et al. Proteomics and gene expression analyses of squalene-supplemented mice identify microsomal thioredoxin domain-containing protein 5 changes associated with hepatic steatosis[J]. Journal of Proteomics,2012,77:27-39.
[29] CáRDENO A, APARICIO-SOTO M, MONTSERRAT-DE L P, et al. Squalene targets pro-and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages[J]. Food,2015,14:779–790.
[30] BIDOOKI S H, ALEJO T, SáNCHEZ-MARCO J, et al. Squalene loaded nanoparticles effectively protect hepatic AML12 cell lines against oxidative and endoplasmic reticulum stress in a TXNDC5-dependent way[J]. Antioxidants (Basel),2022,11(3):581.
[31] LUSIS A J. Atherosclerosis[J]. Nature,2000,407:233-241.
[32] COLLOT-TEIXEIRA S, MARTIN J, MCDERMOTT-ROE C, et al. CD36 and macrophages in atherosclerosis[J]. Cardiovascular Research,2007,75(3):468-477.
[33] GRANADOS-PRINCIPAL S, QUILES J L, RAMIREZ-TORTOSA C L, et al. Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages[J]. Molecular Nutrition & Food Research,2012,56(5):733-740.
[34] CáRDENO A, APARICIO-SOTO M, MONTSERRAT-DE L P S, et al. Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages[J]. Journal of Functional Foods,2015,14:779-790.
[35] SANGEETHA B, KRISHNAMOORTHY A S, SHARMILA D J S, et al. Molecular modelling of coat protein of the groundnut bud necrosis tospovirus and its binding with squalene as an antiviral agent: in vitro and in silico docking investigations[J]. International Journal of Biological Macromolecules,2021,189:618-634.
[36] MUTA-TAKADA K, TERADA T, YAMANISHI H, et al. Amano[J]. BioFactors,2009,35:435-441.
[37] YU W J, SUN K J, ZHANG L Y, et al. Investigation of the effects of squalene and squalene epoxides on the homeostasis of coenzyme Q10 in rats by UPLC-Orbitrap MS[J]. Chemistry & Biodiversity,2020,17(8):e2000243.
[38] YARKENT ?, ONCEL S S. Recent progress in microalgal squalene production and its cosmetic application[J]. Biotechnology and Bioprocess Engineering,2022,27(3):295-305.
[39] WO?OSIK K, KNA? M, ZALEWSKA A, et al. The importance and perspective of plant-based squalene in cosmetology[J]. Journal of Cosmetic Science,2013,64(1):59-66.
[40] HUANG Z R, LIN Y K, FANG J Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology[J]. Molecules,2009,14(1):540-554.
[41] SHARMA A, UPADHYAY D K SARMA G S, et al. Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: a preclinical investigation[J]. Journal of Drug Delivery Science and Technology,2020,56:101568.
[42] FENG J, LEPETRE-MOUELHI S, COUVREUR P. Design, preparation and characterization of modular squalene-based nanosystems for controlled drug release[J]. Current Topics in Medicinal Chemistry,2017,17(25):2849-2865.
[43] SOBOT D, MURA S, YESYLEVSKYY S O, et al. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery[J]. Nature Communications,2017,8:15678.
[44] LEPELTIER E, BOURGAUX C, ROSILIO V, et al. Self-assembly of squalene-based nucleolipids: relating the chemical structure of the bioconjugates to the architecture of the nanoparticles[J]. Langmuir,2013,29(48):14795-14803.
[45] KUMAR L R G, KUMAR H S, TEJPAL C S, et al. Exploring the physical and quality attributes of muffins incorporated with microencapsulated squalene as a functional food additive[J]. Journal of Food Science and Technology,2021,58(12):4674-4684.
[46] KUMAR L R G, TEJPAL C S, ANAS K K, et al. Binary blend of maltodextrin and whey protein outperforms gum arabic as superior wall material for squalene encapsulation[J]. Food Hydrocolloids,2021,121:106976.
[47] LEKSHMI R G K, RAHIMA M, CHATTERJEE N S, et al. Chitosan - whey protein as efficient delivery system for squalene: characterization and functional food application[J]. International Journal of Biological Macromolecules,2019,135:855-863.
[48] ZHANG L, SIMPSON B K, DUMONT M. Effect of beeswax and carnauba wax addition on properties of gelatin films: a comparative study[J]. Food Bioscience,2018,26:88-95.
[49] ALI A M M, PRODPRAN T, BENJAKUL S. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp ( Probarbus jullieni ) skin gelatin film[J]. Food Hydrocolloids,2019,97:105201.
[50] ESTéVEZ M. Oxidative damage to poultry: from farm to fork[J]. Poultry Science,2015,94(6):1368-1378.
[51] CHEN Y P, GU Y F, ZHAO H R, et al. Effects of graded levels of dietary squalene supplementation on the growth performance, plasma biochemical parameters, antioxidant capacity, and meat quality in broiler chickens[J]. Poultry Science,2020,99(11):5915-5924.
[52] GAO Y, DU X, LI B X, et al. Effects of dietary squalene supplementation on growth performance, blood biochemical indexes and antioxidant capacity of early weaned piglets[J]. Chinese Journal of Veterinary Medicine,2022,42 (1):160-164.
[53] HIDEHISA K, YUKI O, MASASHI K, et al. Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst[J]. Tetrahedron,2020,76(16):131109.