

摘 "要""恐懼是一種與進化密切相關的情緒, 對人類的生存與適應具有重要價值。過度的恐懼可能會導致恐懼癥、焦慮癥和創傷后應激障礙等病理性恐懼的產生。而催產素對各種病理性恐懼的干預和治療具有重要的價值。因此, 研究擬采用行為和fMRI技術, 系統探究催產素影響條件化恐懼情緒加工的認知神經機制。重點關注: (1)催產素影響恐懼習得的認知神經機制; (2)催產素影響恐懼記憶鞏固的認知神經機制; (3)催產素影響恐懼記憶再鞏固的認知神經機制; (4)催產素影響恐懼消退的認知神經機制。這項研究的開展對于探究催產素影響條件化恐懼情緒加工的認知神經機制具有很高的科學價值, 對于各種病理性恐懼的干預與治療也具有重要的應用價值。
分類號""B842; B845
1""研究意義
恐懼是一種與進化密切相關的情緒, 它可以激發一系列的防御機制, 對人類的生存具有重要適應性價值。然而, 當動物或人類長期處于恐懼狀態時, 可能發展為焦慮癥、恐懼癥和創傷后應激障礙(posttraumatic stress disorder, PTSD)等精神疾病, 對其身心健康和發展都會造成嚴重的負面影響。條件性恐懼以巴甫洛夫經典條件反射為基礎, 是研究恐懼癥、焦慮癥和PTSD等相關恐懼情緒障礙的經典動物模型。催產素(oxytocin, OXT)"又被稱為縮宮素, 是一種產生自下丘腦的神經肽, 同時作用于外周神經系統和中樞神經系統(MacDonald amp; MacDonald, 2010)。下丘腦的催產素神經元投射到杏仁核、海馬、中腦和額葉等腦區, 同時催產素也調節著下丘腦?垂體?腎上腺(HPA)軸和自主神經系統的功能, 從而對恐懼習得和消退過程發揮調控作用(Hasan et al., 2019)。催產素在社會認知、情緒和記憶等方面發揮著重要作用(Bartz et al., 2011; Campbell, 2010); 同時, 在恐懼癥、焦慮癥和PTSD等情緒障礙的臨床治療和干預中也具有重要的價值(Berardis et al., 2013; MacDonald amp; Feifel, 2014; Rich amp; Caldwell, 2015)。
雖然, 先前研究者對催產素影響恐懼習得與表達和恐懼消退的認知神經機制開展了相關研究(Cavalli et al., 2017; Eckstein et al., 2015; Eckstein et al., 2017; Eckstein et al., 2016; Hu et al., 2019; Petrovic et al., 2008), 然而, 這些研究并沒有從腦網絡(習得網絡與消退網絡)交互角度出發進行探究; 同時, 病理性恐懼(恐懼癥、焦慮癥和創傷后應激障礙)研究發現, 催產素能減弱杏仁核(Amygdala)的活動, 同時也能改變突顯網絡(Salience network including Amygdala, dorsal anterior cingulate cortex (dACC), insula)的活動, 增強腹內側前額葉(ventromedial prefrontal cortex, vmPFC)和杏仁核(Amygdala)與海馬(Hippocampus)之間的功能連接, 從而增加腹內側前額葉(vmPFC)對情緒自上而下的調節能力(Domes et al., 2007; Riem et al., 2011; Sripada et al., 2013; Striepens et al., 2012), 但少有研究系統從催產素影響條件化恐懼習得和消退的認知神經機制角度進行探究; 同時, 恐懼記憶鞏固和再鞏固作為恐懼情緒加工中的兩個核心過程, 以往研究發現杏仁核(Amygdala)、腹內側前額葉(vmPFC)和海馬(Hippocampus)可能是恐懼記憶鞏固和再鞏固的神經基礎, 對隨后恐懼消退具有重要的價值(Feng et al., 2014; Feng et al., 2016; Schiller et al., 2013; Schiller et al., 2010)。然而, 催產素影響恐懼記憶鞏固和再鞏固的認知神經機制研究幾乎是一片空白。只有準確把握了催產素影響恐懼情緒加工的各個階段(習得、鞏固、再鞏固和消退)的核心機制(包括認知機制和神經機制), 才能深入理解恐懼情緒加工的神經網絡模型, 為病理性恐懼(恐懼癥﹑焦慮癥﹑創傷后應激障礙)的臨床干預和治療提供指導。
因此, 本項目擬利用行為和功能性磁共振(fMRI)技術, 從認知機制和神經基礎兩個方面系統探究(1)催產素影響恐懼習得和消退的認知神經機制; (2)催產素影響恐懼記憶鞏固和再鞏固的認知神經機制。本項目的開展對于探究催產素影響條件化恐懼情緒加工的認知神經機制具有很高的科學價值, 對于各種病理性恐懼(恐懼癥、焦慮癥和PTSD)的干預與治療也具有重要的應用價值。具體而言: (1)首先, 本項目的研究系統探究了催產素影響條件化恐懼記憶習得、鞏固、再鞏固和消退的認知神經機制, 對于建構和完善恐懼情緒加工的神經網絡模型具有重要的科學價值; (2)其次, 將催產素與恐懼習得、鞏固、再鞏固和消退結合起來, 應用在恐懼癥﹑焦慮癥和創傷后應激障礙(PTSD)等病理性恐懼的臨床治療中, 其應用價值也顯而易見。
2""研究現狀和發展動態分析
2.1""恐懼情緒加工的4個過程
條件性恐懼情緒加工過程分為恐懼習得(fear acquisition)、恐懼記憶鞏固(fear memory consolidation)、恐懼記憶再鞏固(fear memory reconsolidation)和恐懼消退(fear extinction)四個過程(Feng et al., 2014; Feng et al., 2016; Monfils et al.,"2009; Schiller et al., 2013; Schiller et al., 2010; 馮攀 等, 2018)。具體說來, 恐懼習得以巴甫洛夫的經典條件反射為基礎, 訓練過程中, 無條件刺激(unconditioned stimulus, US, 如電擊或恐懼圖片)與中性刺激(conditioned stimulus, CS, 如幾何圖形或聲音)進行匹配訓練, 后來僅呈現中性刺激CS時, 動物或人類就會表現恐懼反應; 條件性恐懼習得后, 處于睡眠或休息狀況下, 恐懼記憶處于鞏固過程中; 當對記憶進行喚醒后(再次呈現一次CS或CS和US配對呈現), 睡眠或休息狀態下, 恐懼記憶處于再鞏固過程中; 然而, 在恐懼記憶再鞏固窗口中, 如果僅呈現條件刺激CS, 那么動物或人類先前習得的恐懼就會逐漸消退, 其中喚醒和恐懼記憶再鞏固窗口是消退效果保持的兩個必不可少的條件, 喚醒后, 恐懼記憶處于不穩定的狀態, 在恐懼記憶再鞏固窗口內(喚醒后1 h之內)進行消退, 新的記憶可以改寫之前的恐懼記憶(Feng et al., 2014; Feng et al., 2016; Monfils et al., 2009; Schiller et al., 2013; Schiller et al., 2010; 馮攀 等, 2018; 馮攀 等, 2022; 廖素群, 鄭希付, 2016) (圖1)。

圖1 "恐懼情緒加工的4個過程
2.2""恐懼情緒加工的認知神經機制
2.2.1""恐懼習得和消退的認知神經機制
前人關于恐懼習得的研究和元分析發現, 杏仁核(Amygdala)、腦島(insula)、背側前扣帶回(dACC)和中腦等腦區共同構成了恐懼習得的神經網絡(Etkin amp; Wager, 2007; Feng et al., 2023; Feng et al., 2022; Fullana et al., 2016; Linnman et al., 2012;Mechias et al., 2010; Milad, Quirk, et al., 2007; 馮攀, 馮廷勇, 2013; 馮攀, 鄭涌, 2015)。最近, Feng等人從睡眠剝奪角度探究了睡眠剝奪影響恐懼習得的認知神經機制, 研究結果發現在恐懼習得的過程中, 睡眠剝奪增強了基底杏仁核的活動; 同時, 左側基底杏仁核在睡眠剝奪影響條件化恐懼習得過程中發揮著中介作用(Feng et al., 2023)。
前人關于恐懼消退的研究和元分析發現, 杏仁核(Amygdala)、海馬(hippocampus)、腹內側前額葉(ventromedial prefrontal cortex, vmPFC)、背外側前額葉(dorsolateral prefrontal cortex, dlPFC)和腹外側前額葉(ventrolateral prefrontal cortex, vlPFC)等腦區共同構成了恐懼消退的神經網絡, 它們的活動及其功能連接在恐懼消退中發揮著重要作用(Diekhof et al., 2011; Fullana et al., 2018; Gottfried amp; Dolan, 2004; Kalisch et al., 2006; Menz et al., 2016; Milad et al., 2005; Milad, Quirk, et al., 2007; Milad, Wright, et al., 2007; Phelps et al., 2004)。
2.2.2""恐懼記憶鞏固和再鞏固的認知神經機制
前人研究發現在記憶鞏固階段, 杏仁核(Amygdala)與背側前扣帶回(dACC)、海馬(Hippocampus)與腦島(insula)間的功能連接顯著增強, 而杏仁核與內側前額葉(mPFC)間的功能連接則顯著減弱。腦與行為關系的分析表明, 杏仁核(Amygdala)與內側前額葉(mPFC)功能連接的變化程度能夠預測個體習得后的主觀恐懼水平(Feng et al., 2014)。同時, Feng等人從睡眠剝奪角度探究了睡眠剝奪影響恐懼記憶鞏固的認知神經機制, 進一步建構和完善了恐懼記憶加工的神經網絡模型。在恐懼記憶鞏固中, 睡眠剝奪會增強杏仁核的活動, 并減弱腹內側前額葉的活動; 進一步的相關分析表明, 睡眠剝奪組杏仁核活動變化程度與個體恐懼習得效果呈現顯著的正相關, 而控制組腹內側前額葉活動變化程度與個體恐懼習得效果呈現顯著的正相關(Feng, Becker, Feng amp; Zheng, 2018); 在恐懼記憶鞏固過程中, 睡眠剝奪增強了杏仁核與腦島間的功能連接, 減弱了腹內側前額葉與杏仁核間的功能連接; 進一步的相關分析表明, 睡眠剝奪組杏仁核與腦島間的功能連接變化程度與個體恐懼習得效果呈現顯著的正相關, 而控制組腹內側前額葉與杏仁核功能連接的變化程度與個體恐懼習得效果呈現顯著的負相關(Feng, Becker, Zheng amp; Feng, 2018)。
Feng等人從腦區功能分離的角度出發, 探究了恐懼記憶再鞏固的認知神經機制。在恐懼記憶再鞏固的過程中, 與非喚醒組相比, 恐懼記憶喚醒組的背側前扣帶回(dACC)和腹內側前額葉(vmPFC)等腦區的活動更加活躍; 而且, 再鞏固階段腹內側前額葉的活動在一定程度上可以預測隨后的消退效果(Feng et al., 2015)。同時, Feng等人從腦區功能整合的角度出發, 探究了恐懼記憶鞏固的認知神經機制。在恐懼記憶再鞏固過程中, 相比非喚醒組, 喚醒組的杏仁核(Amygdala)與腹內側前額葉(vmPFC)間的功能連接明顯增強; 而且, 杏仁核與腹內側前額葉間的功能連接能夠預測隨后的消退效果(Feng et al., 2016)。
2.3""催產素影響恐懼情緒加工的神經基礎
在催產素影響恐懼情緒表達的研究中, 大量研究發現, 催產素降低了杏仁核對恐懼相關刺激(恐懼面孔或恐懼眼睛等社會性刺激)的活動水平, 同時, 催產素也降低了杏仁核與腦干、梭狀回之間的功能連接(Domes et al., 2007; Gamer et al., 2010; Kanat et al., 2015; Kirsch et al., 2005; Tost""et al., 2010)。同時, 在創傷后應激障礙和廣泛性焦慮障礙等病理研究中, 催產素也降低了杏仁核對恐懼相關刺激的活動水平(Flanagan et al., 2019; Labuschagne et al., 2010)。在催產素影響恐懼習得的研究中, 催產素會抑制恐懼習得過程, 并減弱杏仁核、伏隔核、腦島、前扣帶回和梭狀回等腦區的活動水平(Cavalli et al., 2017; Petrovic et al., 2008)。一項研究探究了催產素如何影響社會性刺激和非社會性刺激, 研究結果發現, 在恐懼習得過程中, 催產素促進了以社會性刺激為條件性刺激的恐懼學習, 同時也提高了后中扣帶回(posterior midcingulate cortex, pMCC)的激活水平; 然而, 催產素卻降低了以非社會性刺激為條件性刺激的恐懼學習, 增強了亞膝前扣帶回(subgenual anterior cingulate cortex, sgACC)的激活水平。這說明催產素隨社會性刺激和非社會性刺激的條件性恐懼習得過程是不同的, 在未來的研究中也需要考慮不同性質的條件性刺激材料(Eckstein et al., 2016)。
在催產素影響恐懼消退的研究中, 行為上研究發現, 催產素促進了恐懼消退過程, 在消退返回階段恐懼程度更低, 尤其是在喚醒后在恐懼記憶再鞏固窗口內進行消退, 催產素促進恐懼消退的效果會更好(Acheson et al., 2013; Hu et al., 2019)。神經機制研究發現催產素減弱了杏仁核與背側前扣帶回等腦區在恐懼消退過程中的激活程度, 同時也增強了額葉與杏仁核和杏仁核與楔前葉間的功能連接(Eckstein et al., 2015; Eckstein et al.,"2017; Petrovic et al., 2008)。研究結果可能提示, 催產素對于增加額頂控制區對于恐懼加工的核心腦區(即杏仁核)的自上而下的調控功能增強, 為理解催產素在恐懼的認知神經機制中所發揮的作用提供了初步證據。
但先前對催產素影響恐懼情緒加工的認知神經機制的理解仍不夠完整和深入。隨著網絡科學技術的發展和研究者們對人腦功能和組織的理解的加深, 研究者開始應用網絡分析方法(network analysis)來探索大腦的功能和組織(Bassett amp; Sporns, 2017; Bullmore amp; Sporns, 2009, 2012)。網絡分析技術是一種量化和定量分析的方法, 可以將復雜系統抽象為網絡結構, 通過分析網絡的節點、邊緣、聚類(node, edge, cluster)等特征來理解系統的結構和功能。相比傳統的功能磁共振成像(fMRI)方法, 網絡分析方法可以更細致地分析腦區之間的相互作用和信息傳遞, 從而對人腦的功能和組織提供更全面的認識(Bassett amp; Gazzaniga, 2011; Bullmore amp; Sporns, 2012; Power et al., 2011; Thiebaut de Schotten amp; Forkel, 2022)。研究者們已經成功使用網絡分析的方法, 在視知覺、語義加工、認知發展和精神障礙等領域獲得了重要的發現并給出了重要的啟示(Fair et al., 2008; Gratton et al., 2016; Menon, 2011; Stam, 2014; Supekar et al., 2009)。然而, 先前的有關研究并沒有從恐懼情緒
加工的神經網絡及交互(恐懼習得和消退網絡)角度出發進行探究, 因而無法深入理解催產素影響恐懼情緒加工的認知神經機制; 更為重要的是, 恐懼記憶鞏固和再鞏固作為恐懼情緒加工中的兩個核心過程, 對隨后恐懼消退具有重要的價值(Feng et al., 2014; Feng et al., 2016; Feng et al., 2013; Schiller et al., 2013; Schiller et al., 2010); 催產素影響恐懼記憶鞏固和再鞏固的認知神經機制的研究幾乎是一片空白。只有準確和全面地把握了——尤其是以腦網絡的方法對大腦的內在機制進行揭示—催產素影響恐懼情緒加工的各個階段的核心機制(包括認知機制和神經基礎), 才能深入理解恐懼情緒加工的神經網絡模型和為病理性恐懼(恐懼癥﹑焦慮癥﹑創傷后應激障礙)的臨床干預和治療提供指導。
3""研究構想
本項目擬采用行為研究方法和功能性磁共振技術(fMRI), 從催產素主線出發, 系統考察催產素影響恐懼情緒加工(習得、鞏固、再鞏固和消退) 的認知機制、神經基礎和臨床機理。項目的整體研究框架與技術路線如圖所示(圖2)。該項目將重點考察催產素影響恐懼習得、鞏固、再鞏固和消退的認知神經機制; 同時, 未來的研究也將試圖探究催產素如何影響病理性恐懼人群(恐懼癥、焦慮癥和創傷后應激障礙)條件化恐懼情緒加工過程, 尤其是恐懼習得和消退過程, 為病理性恐懼的臨床干預和治療提供指導。
3.1""催產素影響恐懼習得的認知神經機制
研究1擬采用任務態fMRI技術, 擬探究催產素影響恐懼習得認知神經基礎。采用2 (實驗處理: 催產素組和安慰劑組) × 2 (刺激類型: CS+和CS?)混合實驗設計。其中實驗處理為被試間變量, 刺激類型為被試內變量。被試被隨機分為催產素實驗組和安慰劑對照組, 并被隨機使用了24個國際單位(international unit, IU)的催產素(OXT)或者安慰劑(PLC)。條件性恐懼習得以經典條件反射范式為基礎。條件刺激為黃、藍方塊(CS+和CS?), 非條件刺激(US)為電擊。對CS+實施37.5%的部分強化, 即有37.5%的CS+伴隨著200 ms電擊shock, 而CS?后至始至終未跟著電擊。在恐懼習得階段, 記錄著被試的皮膚電SCR水平(客觀恐懼水平), 同時所有被試在每個條件性刺激出現后, 需要對CS+和CS?的主觀恐懼程度在1至7點量表上進行評分(主觀恐懼水平)。研究1擬從以下分析思路探究催產素影響恐懼習得的認知神經機制: (1)運用心身交互作用(Psycho-physiological interactions, PPI)和動態因果模型(dynamic causal modeling)分析, 考察催產素如何影響條件化恐懼習得的神經反應模式; (2)中介分析或建模方式考察催產素如何通過恐懼習得網絡來影響主客觀恐懼水平。
3.2""催產素影響恐懼記憶鞏固的認知神經機制
研究2擬采用靜息態fMRI技術, 擬探究催產素影響恐懼記憶鞏固認知神經基礎。研究2分為兩個階段進行, 每個被試在進行條件性恐懼習得任務前, 對其進行8 min的靜息態掃描(Rest1), 作為基線靜息態baseline, 然后進行條件化恐懼習得, 然后吸入鼻噴催產素OXT或安慰劑PLC, 被試被隨機分為催產素實驗組和安慰劑對照組, 并被隨機使用了24個國際單位(international unit, IU)的催產素(OXT)或者安慰劑(PLC)。45分鐘后對每個被試進行8 min的靜息態掃描(Rest2), 以此靜息態作為恐懼記憶的鞏固過程。恐懼習得過程與研究1相同。所有過程均記錄著皮膚電和收集著主觀恐懼水平。研究2擬從以下分析思路探究催產素影響恐懼鞏固的認知神經機制: (1)應用支持向量機的機器學習方法及傳統統計方法, 對比催產素組和安慰劑組在恐懼記憶鞏固階段中腦功能(腦網絡功能連接矩陣、ReHo指標、fALFF指標等)的差異, 系統探明催產素影響恐懼記憶鞏固的認知神經機制; (2)使用因果中介模型, 考察催產素如何通過恐懼鞏固網絡來預測恐懼的習得或消退效果。
3.3""催產素影響恐懼記憶再鞏固的認知神經機制
研究3擬采用靜息態fMRI技術, 擬探究催產素影響恐懼記憶再鞏固認知神經基礎。研究3分進行: 恐懼習得和恐懼記憶再鞏固。第一天進行恐懼習得過程??謶至暤眠^程與研究1相同; 第二天, 催產素組和安慰劑組分別給予等量鼻噴催產素和安慰劑, 被試被隨機分為催產素實驗組和安慰劑對照組, 并被隨機使用了24個國際單位(international unit, IU)的催產素(OXT)或者安慰劑(PLC)。45 min后, 所有被試進行恐懼喚醒(僅僅呈現一次CS+), 10 min后進行8 min的靜息態掃描, 作為恐懼記憶再鞏固的靜息態。所有過程均記錄著皮膚電和收集著主觀恐懼水平。研究3擬從以下分析思路探究催產素影響恐懼鞏固的認知神經機制: (1)應用支持向量機的機器學習方法及傳統統計方法, 對比催產素組和安慰劑組在恐懼記憶再鞏固階段腦功能(腦網絡功能連接矩陣、ReHo指標、fALFF指標等)的差異, 系統探明催產素影響恐懼記憶再鞏固的認知神經機制; (2)采用因果中介模型, 考察催產素如何通過恐懼再鞏固網絡來預測恐懼的習得或消退效果。
3.4""催產素影響恐懼消退的認知神經機制
研究4擬采用任務態fMRI技術, 擬探究催產素影響恐懼消退認知神經基礎。采用2 (實驗處理: 催產素組和安慰劑組) × 2 (人格特質: 高特質焦慮和低特質焦慮) × 2 (刺激類型: CS+和CS?)混合實驗設計。被試被隨機分為催產素實驗組和安慰劑對照組, 并被隨機使用了24個國際單位(international unit, IU)的催產素(OXT)或者安慰劑(PLC)。為了排除安慰劑效應和探究催產素影響恐懼消退和消退返回階段的認知神經機制, 我們進行了以下給藥方式的不同組合。研究4分為三個階段(恐懼習得、消退和再消退)進行, 每個階段分別在獨立的三天完成(第一天、第二天和第三天)。所有被試在第一天進行條件化恐懼習得(實驗流程同研究1); 第二天, 將所有被試分為三組, 其中兩組接受鼻噴安慰劑, 一組接受等量的催產素; 45 min后, 所有被試進行喚醒后消退訓練, 僅呈現條件性刺激CS。第三天, 之前(第二天)接受安慰劑組的兩組被試一組繼續接受安慰劑, 一組接受催產素, 之前接受催產素組的被試接受安慰劑; 實驗處理45 min后, 所有被試接受4次US, 然后進行消退返回訓練。所有過程(習得、消退和消退返回)均記錄著皮膚電和收集著主觀恐懼水平。研究4擬從以下分析思路探究催產素影響恐懼消退的認知神經機制: (1)運用心身交互作用(Psycho-"physiological interactions, PPI)和動態因果模型(dynamic causal modeling)分析, 考察催產素如何影響條件化恐懼消退的神經反應模式, 重點關注其對恐懼消退網絡(Amygdala, Hippocampus, vmPFC, dlPFC, vlPFC, nucleus accumbens (NAc)和PAG等腦區)內部的動態交互的影響; (2)中介分析或建模方式考察催產素如何通過恐懼消退網絡來影響主客觀恐懼水平。(3)探究催產素如何作用于高低特質焦慮的恐懼消退神經網絡。
4""理論建構
首先, 先前對催產素影響恐懼習得和消退的認知神經機制進行了相關探究, 但沒從恐懼的習得和消退的神經網絡出發, 深入探究催產素如何影響恐懼習得和消退的神經網絡; 元分析研究結果發現: 杏仁核(Amygdala)、背側前扣帶回(dorsal anterior cingulate gyrus, dACC)、腦島(insula)和丘腦(thalamus)等腦區共同組成了恐懼習得的神經網絡(Etkin amp; Wager, 2007; Fullana et al., 2016; Mechias et al., 2010), 杏仁核(Amygdala)、海馬(hippocampus)、腹內側前額葉(vmPFC)、背外側前額葉(dlPFC)和腹外側前額葉(vlPFC)等腦區共同組成了恐懼消退的神經網絡(Diekhof et al., 2011; Fullana et al., 2018; Gottfried amp; Dolan, 2004; Kalisch et al., 2006; Menz et al., 2016; Milad, Wright, et al., 2007; Phelps et al., 2004)。同時, 病理性恐懼(恐懼癥、焦慮癥和創傷后應激障礙)研究發現, 催產素能減弱杏仁核的活動, 同時也能改變突顯網絡(Amygdala, dACC, insula)的活動。增強腹內側前額葉(vmPFC)和杏仁核(Amygdala)與海馬(Hippocampus)之間的功能連接, 從而增加腹內側前額葉(vmPFC)對情緒自上而下的調節能力(Domes et al., 2007; Riem et al., 2011; Sripada et al., 2013; Striepens et al., 2012), 但很少有研究從條件化恐懼習得和消退角度進行探究。同時, 也有研究發現, 特質焦慮與恐懼情緒加工過程息息相關, 具體說來, 特質焦慮水平越高, 成年被試的杏仁核對閾下和閾上恐懼面孔的反應就越強, 而且杏仁核的活動水平與特質焦慮分數呈現正相關(Admon et al., 2009; Etkin et al., 2004; Stein et al., 2007); 同時, 已有研究發現, 催產素對高低特質焦慮個體在情緒加工過程中的作用是不同的(Kou et al., 2021; Kou et al., 2022; Xin et al., 2020)。具體說來, 對于高特質焦慮個體, 催產素減弱了杏仁核和腦島的活動, 進而促進了自上而下的情緒調節過程; 而對于低特質焦慮個體, 催產素增強了杏仁核的活動, 進而增強了自下而上的注意和警覺(Xin et al., 2020); 對于高特質焦慮個體來說, 低頻催產素處理能減弱杏仁核、腦島和額葉對威脅性刺激的活動(Kou et al., 2022)。但少有研究探究催產素如何作用于高低特質焦慮個體的條件性恐懼習得和消退神經網絡, 進而影響恐懼習得和消退過程。因此, 本項目擬從恐懼習得和消退的神經網絡及交互出發, 系統探究催產素影響恐懼習得和消退的認知神經機制, 從而完善催產素影響恐懼習得和消退的神經網絡模型; 同時也擬探究催產素如何作用于高低特質焦慮個體的恐懼習得和消退網絡, 進而探究催產素影響高低特質焦慮個體條件化恐懼習得和消退的機制。
其次, 恐懼記憶鞏固和再鞏固作為恐懼情緒加工中的兩個核心過程, 杏仁核(Amygdala)、腹內側前額葉(vmPFC)和海馬(Hippocampus)可能是恐懼記憶鞏固和再鞏固的神經基礎, 與恐懼習得和消退密切相關(Feng et al., 2014; Feng et al., 2015, 2016; Schiller et al., 2013; Schiller et al., 2010)。然而, 催產素影響恐懼記憶鞏固和再鞏固的認知神經機制研究幾乎是一片空白。研究證明靜息態功能磁共振是研究大腦自發活動和功能連接的重要工具(Buckner amp; Vincent, 2007; Friston et al., 1997; Greicius et al., 2003; Raichle et al., 2001), 同時, 前人運用靜息態磁共振對恐懼記憶鞏固和再鞏固過程進行了研究(Feng, Becker, Feng amp; Zheng, 2018; Feng, Becker, Zheng amp; Feng, 2018; Feng et al.,"2014; Feng et al., 2016; Schultz et al., 2012; van Marle et al., 2010)。具體說來, 對于恐懼記憶鞏固和再鞏固的神經基礎, 目前研究者主要從大腦靜息態方面進行了考察。Feng等人從腦區功能分離和功能整合角度出發對恐懼記憶鞏固的神經基礎進行了探究。研究發現, 在記憶鞏固階段, 杏仁核(Amygdala)與背側前扣帶回(dACC)、海馬(Hippcampus)與腦島(insula)間的功能連接顯著增強, 而杏仁核與內側前額葉(mPFC)間的功能連接則顯著減弱(Feng et al., 2014)。同時, 前人也從睡眠剝奪角度出發, 探究了恐懼記憶鞏固的神經基礎。結果發現在恐懼記憶鞏固階段, 睡眠剝奪會增強杏仁核(Amygdala)的活動, 并減弱腹內側前額葉(vmPFC)的活動(Feng, Becker, Feng amp; Zheng, 2018); 同時, 睡眠剝奪增強了杏仁核與腦島間的功能連接, 減弱了腹內側前額葉(vmPFC)與杏仁核(Amygdala)間的功能連接(Feng, Becker, Zheng amp; Feng, 2018)。在恐懼記憶再鞏固的神經基礎方面, Feng等人的研究結果發現, 在恐懼記憶再鞏固過程中, 與非喚醒組相比, 喚醒組的背側前扣帶回(dACC)和腹內側前額葉(vmPFC)等腦區的活動更加活躍(Feng et al., 2015); 同時, 在恐懼記憶再鞏固的過程中, 相比非喚醒組, 喚醒組的杏仁核(Amygdala)與腹內側前額葉(vmPFC)間的功能連接明顯增強(Feng et al., 2016)。以往的研究發現記憶鞏固和再鞏固的時間窗口和喚醒是恐懼記憶產生效果及消退的兩大必要條件(Agren et al., 2012; Feng et al., 2015, 2016; Schiller et al., 2010), 且喚醒條件下鼻噴催產素的效果更好(Hu et al., 2019)。同時, 也有研究發現, 特質焦慮與恐懼記憶鞏固過程息息相關。具體說來, 前人一項研究發現, 恐懼記憶鞏固過程中腹內側前額葉與腦島的功能連接與特質焦慮呈現顯著的正相關(Feng et al., 2014)。同時, 催產素受體存在于大腦信息處理和記憶的核心區域, 包括海馬、紋狀體、杏仁核、下丘腦、伏隔核和中腦, 動物和人類研究也表明催產素具有促進記憶或遺忘的作用, 取決于傳輸的時間、環境、性別和劑量等因素(Chini et al., 2014; Eckstein et al., 2015; Eckstein et al., 2016; Farley et al., 2019; Gimpl amp; Fahrenholz, 2001; Szafoni amp; Piegza, 2022; Thirtamara Rajamani et al., 2023)。催產素是如何影響高低特質焦慮個體恐懼記憶鞏固和再鞏固的神經網絡, 進而影響恐懼記憶鞏固和再鞏固過程的呢?因此, 本項目擬采用靜息態磁共振技術(RS-fMRI), 系統探究催產素影響恐懼記憶鞏固和再鞏固的神經機制, 從而完善催產素影響恐懼鞏固和再鞏固的神經網絡模型。同時也擬探究催產素如何作用于高低特質焦慮個體的恐懼鞏固和再鞏固網絡, 進而探究催產素影響高低特質焦慮個體條件化恐懼鞏固和再鞏固的機制。
最后, 將催產素應用在正常人身上研究的成果轉化到臨床精神病學研究上尤為重要, 目前已知催產素對病理性恐懼如恐怖癥、焦慮癥和創傷后應激障礙(PTSD)存在一定的干預效果(Flanagan et al., 2019; Koch et al., 2014; Kou et al., 2022; Labuschagne et al., 2010)。研究表明, 鼻噴催產素可以改善社交焦慮癥(SAD)患者的社交行為, 降低患者的焦慮水平(Neumann amp; Slattery, 2016; Voncken et al., 2021); 減弱杏仁核對恐懼的反應性(Labuschagne et al., 2010)等。在對PTSD的研究中, 研究者依據催產素在PTSD干預和治療過程中的作用, 如鼻噴催產素會減弱杏仁核的過度活動, 增強杏仁核與vmPFC和海馬之間的功能連接從而增加腹內側前額葉(vmPFC)對情緒自上而下的調節能力(Domes et al., 2007; Riem et al., 2011; Schiller et al., 2013; Schiller et al., 2010)等, 提出鼻噴催產素可以作為一種強化心理治療的輔助策略(Koch et al., 2014)。但前人僅通過催產素本身或催產素與心理療法結合來進行研究, 未從恐懼的習得、鞏固、在鞏固和消退的角度出發。對于恐懼習得和消退過程的研究, 有助于理解和完善已有的催產素影響恐懼習得和消退的神經網絡模型; 對于恐懼記憶鞏固和再鞏固過程的研究, 尤其是在睡眠和喚醒條件下的催產素作用, 有助于深入理解這些疾病的記憶形成和鞏固機制(Feng, Becker, Zheng amp; Feng, 2018; Feng et al., 2023; Feng et al., 2014)。這對于設計干預措施、改善患者的記憶過程, 以及減緩或預防這些疾病的發展具有積極的臨床應用前景。其次, 特質焦慮與恐懼情緒加工的關聯以及催產素在不同特質焦慮個體中的不同作用(Acheson et al., 2013; Etkin et al., 2004; Feng et al., 2014; Kou et al., 2021; Kou et al., 2022; Stein et al., 2007; Xin et al., 2020), 為個體化治療提供了新的可能性。根據研究結果, 針對高特質焦慮個體和低特質焦慮個體的不同神經網絡反應, 可以制定更為精準的干預策略, 個體化地選擇治療手段, 提高治療的效果和預測性。因此這項研究的成果將為恐怖癥、焦慮癥和PTSD等病理性恐懼的臨床治療提供新的神經生物學基礎, 為個體化治療和精準藥物干預提供科學支持, 有望為這些精神障礙的治療開辟新的研究方向。
綜合而言, 本項目擬采用任務態磁共振技術(task fMRI), 系統探究催產素影響恐懼習得和消退的認知神經機制; 采用靜息態磁共振技術(RS-fMRI), 深入探究催產素影響恐懼記憶鞏固和再鞏固的神經機制。首先, 本項目的研究系統探究了催產素影響條件化恐懼記憶習得、鞏固、再鞏固和消退的認知神經機制, 對于建構和完善恐懼情緒加工的神經網絡模型具有重要的科學價值; (2)其次, 對于恐懼癥﹑焦慮癥和創傷后應激障礙(PTSD)等病理性恐懼的臨床治療的應用價值也顯而易見; (3)科學研究與臨床應用相結合, 強化科學研究的應用價值; 將催產素應用到恐懼癥﹑焦慮癥和創傷后應激障礙(PTSD)等病理性恐懼的臨床干預和治療中。
參考文獻
馮攀, 馮廷勇. (2013). 恐懼情緒加工的神經機制. 心理學探新, 33(3), 209?214.
馮攀, 靳玉樂, 鄭涌, 馮廷勇. (2018). 睡眠剝奪影響恐懼記憶鞏固的認知神經機制: 靜息態低頻波動振幅分析. 中國科學:生命科學, 48(10), 1115?1125.
馮攀, 楊可, 馮廷勇. (2022). 催產素影響恐懼習得和消退的認知神經機制. 心理科學進展, 30(2), 365?374.
馮攀, 鄭涌. (2015). 睡眠剝奪影響恐懼情緒加工的認知神經機制. 心理科學進展, 23(9), 1579?1587.
廖素群, 鄭希付. (2016). 認知重評對負性效價的抑制促進條件性恐懼消退. 心理學報, 48(4), 352?361.
Acheson, D., Feifel, D., de Wilde, S., Mckinney, R., Lohr, J., amp; Risbrough, V. (2013). The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology, 229(1), 199?208.
Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., amp; Hendler, T. (2009). Human vulnerability to stress depends on amygdala's predisposition and hippocampal plasticity. Proceedings of the National Academy of Sciences, 106(33), 14120?14125.
Agren, T., Engman, J., Frick, A., Bj?rkstrand, J., Larsson, E.-M., Furmark, T., amp; Fredrikson, M. (2012). Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science, 337(6101), 1550?1552.
Bartz, J. A., Zaki, J., Bolger, N., amp; Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301?309.
Bassett, D. S., amp; Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5), 200?209.
Bassett, D. S., amp; Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353?364.
Buckner, R. L., amp; Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. Neuroimage, 37(4), 1091?1096.
Bullmore, E., amp; Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186?198.
Bullmore, E., amp; Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336?349.
Campbell, A. (2010). Oxytocin and human social behavior. Personality and Social Psychology Review, 14(3), 281?"295.
Cavalli, J., Ruttorf, M., Pahi, M. R., Zidda, F., Flor, H., amp; Nees, F. (2017). Oxytocin differentially modulates pavlovian cue and context fear acquisition. Social Cognitive and Affective Neuroscience, 12(6), 976?983.
Chini, B., Leonzino, M., Braida, D., amp; Sala, M. (2014). Learning about oxytocin: Pharmacologic and behavioral issues. Biological Psychiatry, 76(5), 360?366.
de Berardis, D., Marini, S., Iasevoli, F., Tomasetti, C., de Bartolomeis, A., Mazza, M., ... di Giannantonio, M. (2013). The Role of Intranasal Oxytocin in the Treatment of Patients with Schizophrenia: A Systematic Review. CNS amp; Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS amp; Neurological Disorders), 12(2), 252?264.
Diekhof, E. K., Geier, K., Falkai, P., amp; Gruber, O. (2011). Fear is only as deep as the mind allows: A coordinate-"based meta-analysis of neuroimaging studies on the regulation of negative affect. Neuroimage, 58(1), 275?"285.
Domes, G., Heinrichs, M., Gl?scher, J., Büchel, C., Braus, D. F., amp; Herpertz, S. C. (2007). Oxytocin attenuates amygdala"responses to emotional faces regardless of valence. Biological Psychiatry, 62(10), 1187?1190.
Eckstein, M., Becker, B., Scheele, D., Scholz, C., Preckel, K., Schlaepfer, T. E., ... Hurlemann, R. (2015). Oxytocin facilitates the extinction of conditioned fear in humans. Biological Psychiatry, 78(3), 194?202.
Eckstein, M., Markett, S., Kendrick, K. M., Ditzen, B., Liu, F., Hurlemann, R., amp; Becker, B. (2017). Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: Inverse correlation with depressive traits. Neuroimage, 149, 458?467.
Eckstein, M., Scheele, D., Patin, A., Preckel, K., Becker, B., Walter, A., ... Hurlemann, R. (2016). Oxytocin facilitates Pavlovian fear learning in males. Neuropsychopharmacology, 41(4), 932?939.
Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., amp; Hirsch, J. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44(6), 1043?1055.
Etkin, A., amp; Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 1476?1488.
Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., ... Schlaggar, B. L. (2008). The maturing architecture of the brain's default network. Proceedings of the National Academy of Sciences, 105(10), 4028?4032.
Farley, D., Piszczek, ?., amp; B?bel, P. (2019). Why is running a marathon like giving birth? The possible role of oxytocin in the underestimation of the memory of pain induced by labor and intense exercise. Medical Hypotheses, 128, 86?90. https://doi.org/https://doi.org/10.1016/j.mehy.2019.05.003
Feng, P., Becker, B., Feng, T., amp; Zheng, Y. (2018). Alter spontaneous activity in amygdala and vmPFC during fear consolidation following 24 h sleep deprivation. Neuroimage, 172, 461?469.
Feng, P., Becker, B., Zheng, Y., amp; Feng, T. (2018). Sleep deprivation affects fear memory consolidation: Bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 13(2), 145?155.
Feng, P., Becker, B., Zhou, F., Feng, T., amp; Chen, Z. (2023). Sleep deprivation altered encoding of basolateral amygdala on fear acquisition. Cerebral Cortex, 33(6), 2655?2668.
Feng, P., Chen, Z., Becker, B., Liu, X., Zhou, F., He, Q., ... Feng, T. (2022). Predisposing variations in fear-related brain networks prospectively predict fearful feelings during the 2019 coronavirus (COVID-19) pandemic. Cerebral Cortex, 32(3), 540?553.
Feng, P., Feng, T., Chen, Z., amp; Lei, X. (2014). Memory consolidation of fear conditioning: Bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 9(11), 1730?1737.
Feng, P., Zheng, Y., amp; Feng, T. (2015). Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI. Scientific Reports, 5(1), 16701.
Feng, P., Zheng, Y., amp; Feng, T. (2016). Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction. Social Cognitive and Affective Neuroscience, 11(6), 991?1001.
Feng, T., Feng, P., amp; Chen, Z. (2013). Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning. Brain Research, 1523, 59?67.
Flanagan, J. C., Sippel, L. M., Santa Maria, M. M. M., Hartwell, K. J., Brady, K. T., amp; Joseph, J. E. (2019). Impact of Oxytocin on the neural correlates of fearful face processing in PTSD related to childhood Trauma. European"Journal of Psychotraumatology, 10(1), 1606626.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., amp; Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218?229.
Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O., ... Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neuroscience amp; Biobehavioral Reviews, 88, 16?25.
Fullana, M. A., Harrison, B., Soriano-Mas, C., Vervliet, B., Cardoner, N., àvila-Parcet, A., amp; Radua, J. (2016). Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies. Molecular Psychiatry, 21(4), 500?508.
Gamer, M., Zurowski, B., amp; Büchel, C. (2010). Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proceedings of the National Academy of Sciences, 107(20), 9400?9405.
Gimpl, G., amp; Fahrenholz, F. (2001). The oxytocin receptor system: Structure, function, and regulation. Physiological Reviews, 81(2), 629?683.
Gottfried, J. A., amp; Dolan, R. J. (2004). Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neuroscience, 7(10), 1144?1152.
Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B., amp; Petersen, S. E. (2016). Evidence for two independent factors that modify brain networks to meet task goals. Cell reports, 17(5), 1276?1288.
Greicius, M. D., Krasnow, B., Reiss, A. L., amp; Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253?258.
Hasan, M. T., Althammer, F., da Gouveia, M. S., Goyon, S., Eliava, M., Lefevre, A., ... Grinevich, V. (2019). A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron, 103(1), 133?146.
Hu, J., Wang, Z., Feng, X., Long, C., amp; Schiller, D. (2019). Post-retrieval oxytocin facilitates next day extinction of threat memory in humans. Psychopharmacology, 236(1), 293?301.
Kalisch, R., Korenfeld, E., Stephan, K. E., Weiskopf, N., Seymour, B., amp; Dolan, R. J. (2006). Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. Journal of Neuroscience, 26(37), 9503?9511.
Kanat, M., Heinrichs, M., Schwarzwald, R., amp; Domes, G. (2015). Oxytocin attenuates neural reactivity to masked threat cues from the eyes. Neuropsychopharmacology, 40(2), 287?295.
Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., ... Meyer-Lindenberg, A. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 11489?11493.
Koch, S. B., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., amp; Olff, M. (2014). Intranasal oxytocin as strategy for medication-enhanced psychotherapy of PTSD: Salience processing and fear inhibition processes. Psychoneuroendocrinology, 40, 242?256.
Kou, J., Lan, C., Zhang, Y., Wang, Q., Zhou, F., Zhao, Z., ... Kendrick, K. M. (2021). In the nose or on the tongue? Contrasting motivational effects of oral and intranasal oxytocin on arousal and reward during social processing. Translational Psychiatry, 11(1), 94.
Kou, J., Zhang, Y., Zhou, F., Gao, Z., Yao, S., Zhao, W., ... Becker, B. (2022). Anxiolytic effects of chronic intranasal oxytocin on neural responses to threat are dose-frequency dependent. Psychotherapy and Psychosomatics, 91(4), 253?264.
Labuschagne, I., Phan, K. L., Wood, A., Angstadt, M., Chua, P., Heinrichs, M., ... Nathan, P. J. (2010). Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology, 35(12), 2403?2413.
Linnman, C., Zeidan, M. A., Pitman, R. K., amp; Milad, M. R. (2012). Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning. Biological Psychology, 89(2), 450?459.
MacDonald, K., amp; Feifel, D. (2014). Oxytocin? s role in anxiety: A critical appraisal. Brain Research, 1580, 22?56.
MacDonald, K., amp; MacDonald, T. M. (2010). The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18(1), 1?21.
Mechias, M.-L., Etkin, A., amp; Kalisch, R. (2010). A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat. Neuroimage, 49(2), 1760?"1768.
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483?506.
Menz, M. M., Rihm, J. S., amp; Büchel, C. (2016). REM sleep is causal to successful consolidation of dangerous and safety stimuli and reduces return of fear after extinction. Journal of Neuroscience, 36(7), 2148?2160.
Milad, M. R., Quinn, B. T., Pitman, R. K., Orr, S. P., Fischl, B., amp; Rauch, S. L. (2005). Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Sciences, 102(30), 10706?10711.
Milad, M. R., Quirk, G. J., Pitman, R. K., Orr, S. P., Fischl, B., amp; Rauch, S. L. (2007). A role for the human dorsal anterior cingulate cortex in fear expression. Biological Psychiatry, 62(10), 1191?1194.
Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., amp; Rauch, S. L. (2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62(5), 446?454.
Monfils, M.-H., Cowansage, K. K., Klann, E., amp; LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324"(5929), 951?955.
Neumann, I. D., amp; Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: A translational approach. Biological Psychiatry, 79(3), 213?221.
Petrovic, P., Kalisch, R., Singer, T., amp; Dolan, R. J. (2008). Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. Journal of Neuroscience, 28(26), 6607?6615.
Phelps, E. A., Delgado, M. R., Nearing, K. I., amp; LeDoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43(6), 897?905.
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., ... Petersen, S. (2011). Functional network organization of the human brain. Neuron, 72(4), 665?678.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., amp; Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676?682.
Rich, M. E., amp; Caldwell, H. K. (2015). A role for oxytocin in the etiology and treatment of schizophrenia. Frontiers in Endocrinology, 6, 90.
Riem, M. M., Bakermans-Kranenburg, M. J., Pieper, S., Tops, M., Boksem, M. A., Vermeiren, R. R., ... Rombouts, S. A. (2011). Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: A randomized controlled trial. Biological Psychiatry, 70(3), 291?297.
Schiller, D., Kanen, J. W., LeDoux, J. E., Monfils, M.-H., amp; Phelps, E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences, 110(50), 20040?20045.
Schiller, D., Monfils, M.-H., Raio, C. M., Johnson, D. C., LeDoux, J. E., amp; Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49?53.
Schultz, D. H., Balderston, N. L., amp; Helmstetter, F. J. (2012). Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning. Frontiers in Human Neuroscience, 6, 242.
Sripada, C. S., Phan, K. L., Labuschagne, I., Welsh, R., Nathan, P. J., amp; Wood, A. G. (2013). Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. International Journal of Neuropsychopharmacology, 16(2), 255?260.
Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15(10), 683?695.
Stein, M. B., Simmons, A. N., Feinstein, J. S., amp; Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164(2), 318?327.
Striepens, N., Scheele, D., Kendrick, K. M., Becker, B., Sch?fer, L., Schwalba, K., ... Hurlemann, R. (2012). Oxytocin facilitates protective responses to aversive social stimuli in males. Proceedings of the National Academy of Sciences, 109(44), 18144?18149.
Supekar, K., Musen, M., amp; Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.
Szafoni, S., amp; Piegza, M. (2022). Progress in Personalized Psychiatric Therapy with the Example of Using Intranasal Oxytocin in PTSD Treatment. Journal of Personalized Medicine, 12(7), 1067.
Thiebaut de Schotten, M., amp; Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505?510.
Thirtamara Rajamani, K., Barbier, M., Lefevre, A., Niblo, K., Cordero, N., Netser, S., ... Harony-Nicolas, H. (2023). Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Molecular Psychiatry, doi: 10.1038/s41380-023-02336-0.
Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., ... Meyer-Lindenberg, A. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-"limbic structure and function. Proceedings of the National Academy of Sciences, 107(31), 13936?13941.
van Marle, H. J., Hermans, E. J., Qin, S., amp; Fernández, G. (2010). Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. Neuroimage, 53(1), 348?354.
Voncken, M. J., Dijk, C., St?hr, F., Niesten, I. J., Schruers, K., amp; Kuypers, K. P. (2021). The effect of intranasally administered oxytocin on observed social behavior in social anxiety disorder. European Neuropsychopharmacology, 53, 25?33.
Xin, F., Zhou, X., Dong, D., Zhao, Z., Yang, X., Wang, Q., ... Becker, B. (2020). Oxytocin differentially modulates amygdala responses during top-down and bottom-up aversive anticipation. Advanced Science, 7(16), 2001077.
Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing
FENG Pan, ZHAO Hengyue, JIANG Yumeng,ZHANG Yuetong, FENG Tingyong
(Faculty of Psychology, Southwest University, Chongqing"400715, China)
Abstract: Fear is a basic emotion that plays an important role in human survival and adaptation. However, excessive fear may lead to conditions such as phobia, anxiety disorder and PTSD. Oxytocin is a promising pharmacological agent to enhance treatment response in fear-related disorders. Therefore, through the combination of behavioral and fMRI research, the project systematically investigated neural mechanisms underlying the impact of oxytocin on fear processing. The contents of this project include: (1) Examining neural mechanisms underlying the impact of oxytocin on fear acquisition; (2) Investigating neural mechanisms underlying the impact of oxytocin on fear consolidation; (3) Exploring neural mechanisms underlying the impact of oxytocin on fear reconsolidation; (4) Studying neural mechanisms underlying the impact of oxytocin on fear extinction. Thus, the implementation of this project will contribute important scientific value to investigation of neural mechanisms underlying the impact of oxytocin on fear processing. Moreover, the findings also provide an approach of potential intervention and treatment for the fear-related disorders.
Keywords:"fear, emotional memory, amygdala, ventromedial prefrontal cortex, cognitive neural mechanisms