


收稿日期:2024-01-13" " "第一作者簡介:周超澤(1999―),男,碩士研究生,z15257251689@163.com;黃義文(1994-),男,研究實習員,18838916683@163.com。 #同等貢獻。*通信作者:彭軍,jun_peng@126.com;匡猛,kuangmeng007@163.com
基金項目:農業生物育種重大項目(2022ZD04019);國家現代農業產業技術體系(CARS-15-26);三亞崖州灣科技城科技專項(SCKJ-JYRC-2022-62)
摘要:棉花是重要的經濟作物之一,在國民經濟中占據重要地位。棉籽作為棉花生產中的重要產物,富含優質的蛋白質和油脂。充分挖掘利用棉籽中的蛋白和油分資源,能夠在一定程度上緩解糧食安全問題。隨著棉籽的綜合利用價值不斷被重視,有關棉籽營養品質遺傳改良等的研究取得了長足的進步。本綜述介紹了棉籽蛋白與油分含量鑒定的常用方法,概述了這些性狀的遺傳特性和影響因素;對棉籽蛋白、油分含量與纖維產量及品質性狀之間的相關關系進行分析;收集整理已報道的335個油分含量數量性狀位點(quantitative trait locus, QTL)和196個蛋白含量QTL構建了一致性物理圖譜;對棉籽蛋白與油分相關合成途徑和調控基因等方面的研究進展進行總結,并展望了棉籽營養品質生物育種未來的研究方向,旨在為棉籽營養品質的遺傳改良提供參考。
關鍵詞:棉籽蛋白;棉籽油分;QTL;物理圖譜;合成途徑;調控基因
Research progress on the genetic basis and QTL mapping of cottonseed protein and oil content
Zhou Chaoze1#, Huang Yiwen1, 2#, Zhou Dayun1, Huang Longyu1, 2, Wu Yuzhen1, Fu Shouyang1, 2, Peng Jun1, 2*, Kuang Meng1, 2*
(1. Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, China; 2. Sanya National Nanfan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China)
Abstract: Cotton is an important economic crop in the world, occupying a significant position in the national economy. Cottonseed, as the main product of cotton production, is rich in high-quality protein and oil. Against the backdrop of the current shortage of protein and oil resources, fully exploring and utilizing the protein and oil resources in cottonseed can ensure the safety of edible oil supply and alleviate food security issues. With the increasing attention paid to the comprehensive utilization of cottonseed, the research on the genetic improvement of cottonseed nutritional quality is gradually increasing. This review provides an overview of the common methods for determining cottonseed protein and oil content, and summarizes the genetic characteristics and influencing factors of these traits. The relationships among cottonseed protein and oil content and fiber yield as well as the fiber quality traits were analyzed. A total of 335 quantitative trait locus (QTL) for oil content and 196 QTL for protein content were collected to construct a consistent physical map. In addition, the research progress of cottonseed protein and oil related synthetic pathways and regulatory genes were introduced, and the future research directions of biological breeding for cottonseed nutritional quality was prospected, which can provide a reference for the genetic improvement of nutritional quality in cottonseed.
Keywords: cottonseed protein; cottonseed oil; QTL; physical map; biosynthetic pathway; regulatory genes
棉花(Gossypium spp.)是重要的經濟作物之一,長期以來主要用于棉纖維的生產,為紡織等工業提供大量的天然原料。隨著人口增加和人類生活水平的提高,對蛋白質和油脂資源的需求不斷增加[1-2],急需拓寬蛋白質和油脂來源。棉花是世界上第5大油料作物[3]和第2大植物蛋白來源,棉籽中富含優質的油脂和蛋白質[4]。棉籽中的油分含量約占棉籽仁質量的30%[5],蛋白含量約占棉籽仁質量的40%[6]。棉籽油中含有豐富的不飽和脂肪酸(50%以上的亞油酸)、維生素E及較低含量的膽固醇,長期食用有利于人體心腦血管健康[7]。而且,棉籽油不會掩蓋食物天然的味道,是食品業中油炸和精細烹飪用油的理想選擇[8]。由于其合適長度的碳鏈,棉籽油還被視為1種理想的生物質燃料原料[9]。棉籽蛋白中的氨基酸組成良好,包含人體必需的8種氨基酸,同時具有抗氧化、降血壓、提高免疫力等功能[10]。加工后的棉籽濃縮蛋白含量在50%~70%[11],可部分替代魚粉及大豆蛋白,在飼用行業有極大的利用空間[12]。在我國食用植物油自給率僅約30%,且飼用蛋白大量緊缺、全球糧油價格持續上漲的背景下,加強高油、高蛋白性狀的遺傳改良和棉花新品種培育,提高棉籽蛋白與油分的綜合利用率,可在一定程度上補足國內蛋白和油分資源的供需缺口,保障國家糧食安全。
然而,不同于一般的農藝性狀,棉籽蛋白與油分含量屬于棉花子代性狀,受多遺傳體系的影響[13],又是由多基因控制的數量性狀,易受環境因素的影響。并且蛋白油分含量與纖維性狀之間存在相關關系[14]。這些都給棉籽蛋白與油分含量相關基因的挖掘和遺傳機理研究帶來了嚴峻的挑戰。因此,本綜述整理了近年來與棉籽蛋白和油分含量相關的研究報道,總結了棉籽蛋白與油分含量的鑒定方法、遺傳基礎、影響因素、數量性狀位點(quantitative trait locus, QTL)定位和基因挖掘等方面取得的研究進展,并對未來的遺傳改良研究方向進行展望,以期為棉籽營養品質相關研究提供參考。
1 棉籽蛋白與油分含量的測定方法
精確、快速、高效的棉籽蛋白與油分含量測定技術是種質發掘、遺傳分析、QTL定位和功能基因挖掘的基礎。棉籽蛋白與油分含量的測定方法有多種,測定油分含量的方法有索氏抽提法[15]、氣相色譜法[16]、核磁共振法[17]以及近紅外光譜法[18]等;測定蛋白含量的方法有凱氏定氮法[19]、氨基酸分析法[20]、近紅外光譜法等。這些方法可以分為2類,即真值法和預測法。
真值法主要通過直接測定樣品中的油分或蛋白含量來獲得較為精確的數值。索氏抽提法利用半連續溶劑萃取,采用低沸點的有機溶劑回流抽提粗脂肪,以樣品與殘渣的質量差計算粗脂肪含量。凱氏定氮法通過將有機氮轉化為氨態氮再與硫酸結合生成硫酸銨,測出有機物中含氮量后進行換算,從而獲得樣品粗蛋白含量。這2種方法測定結果準確,重復性好,是主流的蛋白與油分含量的檢測方法。氨基酸分析法利用氨基酸分析儀進行茚三酮柱后衍生反應,鑒定氨基酸殘基的絕對含量,將各氨基酸殘基的總和作為蛋白質含量[21]。氣相色譜法通過測定脂肪酸的絕對含量再換算成油分含量,可對微量樣品進行分析。這2種方法都具有檢測靈敏、精確度高等優點。上述4種方法都是通過測定樣品的蛋白或油分含量的真實值,具有較高的準確性。然而這些方法操作復雜,檢測效率相對較低,價格昂貴,并且需要破壞種子的完整性,可用于小批量種子的鑒定,不適于育種后代材料的批量選擇。
預測法是通過建立模型對樣品的油分或蛋白含量進行估算預測。核磁共振法主要利用測定原子核在磁場中及電磁波照射下的共振信號,作出核磁共振圖譜以分析鑒定化合物的組成和結構[22]。近紅外光譜法利用待測樣品中C-H、N-H、O-H、C-C等化學鍵在近紅外光下的振動并以漫反射形式獲得吸收光譜,結合化學計量學等方法建立光譜與化學成分含量的線性或非線性模型,以此獲得待測成分的含量。核磁共振法和近紅外光譜法都是無損預測法,不同的是近紅外光譜法可同時測定多個參數,而核磁共振法單次只能獲得1種參數。預測法具有檢測效率高、無需破損種子、操作簡便、安全環保并且不需要復雜的前期處理等優點,適用于大批量種子的表型鑒定工作。但其測定結果的準確度依賴于定標模型,且易受到種子含水量、樣品均勻性等因素的影響。
在開展相關測定工作時,可根據實驗目的、待測樣品數量、材料特性以及實驗需求等選擇合適的檢測方法,也可采取多種方法相互驗證,以提高表型鑒定的準確率。
2 棉籽蛋白與油分含量的遺傳基礎及影響因素
2.1 棉籽蛋白與油分含量的遺傳分化和遺傳效應
棉籽蛋白含量和油分含量在種間和種內均存在較大的變異[23],這為棉花油分和蛋白含量的遺傳改良和基因挖掘提供了豐富的種質資源。Hinze等[24]分析了33個棉種共2 256份樣本的蛋白和油分含量,發現在所有供試棉種中,四倍體棉種具有最高的油分含量和次高的蛋白含量,而二倍體棉種的蛋白含量和油分含量普遍較低,栽培種的油分含量(22.7%)略高于野生種(20.9%),且陸地棉(G. hirsutum)和海島棉(G. barbadense)的蛋白含量和油分含量均具有廣泛的變異范圍。在栽培種中,海島棉的棉籽平均油分含量顯著高于陸地棉,草棉(G. herbaceum)和亞洲棉(G. arboreum)的棉籽含油量相對較低[25]。劉明等[26]對300份海島棉的油分與蛋白含量進行研究,結果表明蛋白含量和油分含量的變異范圍分別為25.92%~35.89%和35.79%~48.68%。Hu等[27]對318份陸地棉的蛋白與油分含量進行測定,發現蛋白含量和油分含量的變異范圍分別為34.04%~45.68%和27.19%~39.89%。
除廣泛的表型變異外,棉籽蛋白與油分含量性狀均表現出較好的遺傳特性。劉小芳等[28]通過對陸地棉重組自交系群體進行棉籽油分與蛋白含量的表型鑒定發現,蛋白含量和油分含量均存在超親遺傳現象,其中油分含量存在超低親本的超親分離,蛋白含量表現為超高親本的超親分離。Singh等[29]利用8個陸地棉品種進行雙列雜交,發現加性效應和非加性效應均對油分含量起重要作用。Du等[30]對316份棉花種質進行分析發現,蛋白含量和油分含量的廣義遺傳力均在93%以上。以上結果表明棉籽蛋白含量和油分含量均存在豐富的遺傳變異且具有較高的遺傳穩定性,這為棉籽營養品質改良奠定了堅實的遺傳基礎。
2.2 棉籽蛋白與油分含量的影響因素
除遺傳因素外,水分、溫度、土壤養分等環境因素也會對棉籽蛋白與油分含量產生影響[31-32]。一定程度的干旱脅迫會降低油分合成途徑中的一些關鍵酶活性并提高蛋白合成相關酶的活性,使得碳源更多地流向蛋白合成途徑[33],導致棉籽中油分含量降低、蛋白含量增加[6]。低溫會阻礙棉籽中干物質的積累,導致籽指降低,從而降低棉籽油分含量[34]。Gong等[34]將日照時間、降水量、經度、緯度等10個環境因素分為地理和氣象因子,并進行去趨勢對應分析(detrended correspondence analysis, DCA),結果表明日平均降水量、累計降水量是影響油分含量的主要因素,分別解釋棉籽油分含量總變異的19.6%和18.2%。棉籽中蛋白與油分的積累對土壤中的營養元素含量較為敏感[35]。Rochester等[36]研究表明施用氮肥會增加棉籽蛋白含量,降低油分含量。在土壤中添加適量鉀元素可以顯著提高棉花的鈴數、籽棉產量、籽指以及棉籽油分含量[37]。棉籽中的蛋白與油分在一定的發育階段內迅速積累。Yang等[38]研究發現在開花后17~24 d,大量游離氨基酸在種子內部積累,開花后24~38 d游離氨基酸快速合成蛋白質,這2個時期對成熟棉籽的蛋白與油分含量有關鍵性影響。籽指與蛋白含量及油分含量之間有一定聯系。Pahlacani等[39]研究表明棉籽質量與油分含量呈顯著的正相關關系(相關系數為0.88),較重的種子中積累了更多的光合產物(碳),從而積累更多的油分;另一方面,用于棉花生長發育的氮是有限的,蛋白質在較大的種子中被“稀釋”,含量占比降低[40]。棉籽蛋白與油分含量還受到環境與基因型互作(genotype × environment, G × E)的影響。Yuan等[31]在3個環境下對196份國內外陸地棉種質的油分與蛋白含量進行了測定,利用雙向方差分析發現,蛋白與油分含量受到基因型、環境以及G × E的顯著影響。其他研究中也證明了G × E顯著影響蛋白與油分含量[14, 32, 41]。在先前的研究中,關于棉籽蛋白含量和油分含量之間的負相關關系已經得到了證實[24, 27],而這一現象在其他油料作物種子中也有類似的報道[42],因此,同時提高二者的含量仍然具有一定的挑戰性。
3 棉籽蛋白和油分含量與纖維品質性狀之間的關系
在棉籽蛋白與油分含量的遺傳改良過程中,面臨的1個主要挑戰是如何在改良營養品質的同時不影響纖維主要品質性狀。棉籽蛋白與油分存在于胚珠中,而纖維則是由胚珠表皮的單細胞突起的毛狀體發育而來[43],棉籽蛋白、油分含量與纖維品質性狀之間存在著一定關聯性。Campbell等[14]對多個環境下的82份美國棉花種質的棉籽蛋白與油分含量、纖維產量和品質性狀進行測定,結果表明棉籽蛋白含量與皮棉產量、衣分、馬克隆值等性狀呈正相關關系,而與籽指和纖維強度呈負相關關系;棉籽油分含量與皮棉產量、衣分等性狀呈負相關關系,與籽指和纖維強度呈正相關關系。Hu等[27]對國內318份陸地棉進行分析,也得出相似的研究結果。蛋白、油分的含量和纖維發育之間可能涉及復雜的生化機制,當胚珠中的碳源流向纖維時會使種子油分含量下降[44]。Yang等[45]發現體外添加超長鏈脂肪酸可以促進棉纖維的伸長。研究人員利用全基因組關聯分析(genome-wide association study, GWAS)發現,棉籽蛋白、油分含量與纖維品質性狀存在共定位位點[27]。這為棉花營養品質和纖維品質的協同改良提供了理論支持。
4 棉籽蛋白與油分含量QTL定位和GWAS研究進展
QTL定位是作物分子育種和基因挖掘的基礎[46]。隨著棉籽營養品質性狀不斷被重視,研究人員利用連鎖分析和關聯分析等方法在不同的群體中挖掘出一些與棉籽蛋白和油分含量相關的QTL。筆者團隊從33個研究中[27-28, 30-32, 47-74]收集整理了335個棉籽油分含量QTL、196個棉籽蛋白含量QTL以及關聯位點標記信息(附表1)。這些研究中的定位群體包括海陸漸滲系、重組自交系、染色體片段代換系以及用于GWAS的自然群體。由于群體遺傳背景、標記類型、定位軟件和種植環境等的不同,研究結果之間存在較大差異。因此,整合不同的研究結果才能發現更多穩定、主效的QTL。本文利用文獻報道的QTL和單核苷酸多態性(single nucleotide polymorphism, SNP)標記,通過與陸地棉遺傳標準系TM-1基因組比對,明確QTL和關聯位點的物理位置,構建了棉籽蛋白與油分含量相關位點的一致性物理圖譜。由于側翼標記未比對到同一染色體上、文獻未提供標記序列信息等原因,該物理圖譜共包含188個QTL和469個分子標記(圖1~2)。油分含量和蛋白含量QTL分別有109個和79個。表型變異解釋率(phenotypic variation explained, PVE)≥10%的棉籽蛋白含量主效QTL有25個,其中5個是穩定的主效QTL(qPC08.1、qPro2-c3-
2、qPC-A03-1、qPC-5和qPro1-c21-1),至少在2個環境中檢測到。PVE≥10%的棉籽油分含量主效QTL有23個,其中3個是穩定的主效QTL(qOC-chr11-1、qOC-chr12-1和qOil4-c21-1),至少在2個環境中檢測到。
陸地棉的26條染色體上均有相關QTL分布,A01(11個)、A09(10個)、A12(14個)、D01(17個)和D05(13個)這5條染色體上含有10個及以上的棉籽蛋白或油分含量相關的QTL,其中D01染色體上定位到的QTL最多,包含8個PVE≥10%的QTL,主要位于D01染色體的0.6~12.8 Mb和53.0~64.5 Mb區間內。A01染色體的4.1~6.5 Mb和A09染色體的65.7~74.2 Mb都包含了5個不同的QTL;A03染色體的65.3~73.2 Mb和D04染色體的4.2~7.2 Mb區間也有4個不同的QTL。還有一些蛋白含量和油分含量共定位的QTL。如Yu等[47]定位到A12染色體上的qPro1-c12-2和qOil2-c12-1(41.6~57.1 Mb)、D07染色體上的qOil2-c16-1和qPro1-
c16-1(13.3~26.8 Mb)、D08染色體上的qPro1-
c24-2和qOil2-c24-1(3.0~13.6 Mb);劉小芳等[28]和Yu等[47]定位到D05染色體上的qOil2-c19-1和qPro2-c19-1(12.2~46.3 Mb);秦利[48]定位到D13染色體上的qPC18-2和Liu等[49]定位到的qOil-18-1(5.6~7.8 Mb)。上述共定位的5對主效QTL對蛋白含量和油分含量表現出相反的加性效應值。這些區間很有可能存在調控棉籽蛋白與油分生物合成的關鍵基因。
5 棉籽中蛋白與油分的合成積累及調控基因挖掘研究進展
棉籽蛋白和油分的生物合成過程涉及多種酶的催化作用,這些酶的活性受到基因型以及環境條件等因素的影響,加大了棉籽蛋白與油分遺傳改良研究的難度[75]。深入解析棉籽蛋白和油分的生物合成機制對于提升棉籽營養品質具有積極意義。隨著基因組學的發展,棉籽蛋白與油分含量相關基因的挖掘鑒定和功能驗證已經取得一些進展。研究人員利用基因工程技術過表達或沉默關鍵酶及轉錄因子的編碼基因,實現對棉籽蛋白和油分含量的定向改良。本文對棉籽蛋白及油分合成途徑中的關鍵酶和相關基因的功能進行簡要介紹,并繪制了棉籽蛋白及油分的生物合成途徑示意圖(圖3)。
5.1 油分與蛋白合成途徑的關鍵節點
碳源分配是影響棉籽中蛋白和油分含量的關鍵因素[35]。磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPCase)和乙酰輔酶A羧化酶(acetyl coenzyme A carboxylase, ACCase)在調節碳源流入油分和蛋白質生物合成途徑中發揮關鍵作用[76-77]。PEPCase是1種羧基裂解酶,可催化磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)和HCO3-生成草酰乙酸(oxaloacetic acid, OAA),后者進入三羧酸循環(tricarboxylic acid cycle, TCA)提供蛋白質和油分生物合成所需的多種中間產物[78]。干涉PEPCase活性可影響蛋白與油分合成的底物分配,這解釋了棉籽油分含量和蛋白含量之間的顯著負相關關系。低活性的PEPCase利于促進更多的碳源流向油分合成途徑。研究表明沉默GhPEPC1和GhPEPC2分別使棉籽油分含量增加16.7%和7.3%[77, 79]。
5.2 棉籽油分合成調控及相關基因挖掘研究進展
棉籽油主要以三酰甘油(triacylglycerol, TAG)的形式儲存在種子中,TAG是甘油和三分子脂肪酸(fatty acid, FA)在多種酶的催化作用下形成的甘油酯,其生物合成途徑由一系列功能基因調控[80]。TAG的生物合成主要涉及脂肪酸從頭合成和TAG合成。每個階段中相關基因所控制的酶活性發生變化均會影響合成運輸和組裝效率,最終影響種子的油分積累。
5.2.1 脂肪酸從頭合成。丙酮酸脫氫酶復合體(pyruvate dehydrogenase complex, PDHC)催化丙酮酸合成乙酰輔酶A[81],后者經ACCase和β-酮脂酰酰基載體蛋白合酶(β-ketoacyl-acyl carrier protein synthase, KAS)等多種關鍵酶的催化作用形成酰基載體蛋白(acyl carrier protein, ACP)的脂肪酸合成前體。ACCase是脂肪酸生物合成途徑的限速酶,過表達GhACCase基因能提高棉籽中的油分含量。Cui等[82]通過超表達ACCase編碼基因,使棉籽含油量提高16.58%~21.92%。丙二酰輔酶A酰基載體蛋白丙二酰基轉移酶(malonyl-coenzyme A acyl carrier protein malonyl transferase, MCAMT)催化丙二酰輔酶A(malonyl-
CoA)和ACP生成丙二酰輔酶ACP(malonyl-
ACP),在脂肪酸合成的酰基轉移階段起關鍵作用。在擬南芥中過表達AtMCAMT可提高種子的油脂含量[83]。KAS Ⅲ催化乙酰輔酶A和丙二酰ACP產生4:0-ACP,這是脂肪酸鏈延伸的第1步[84]。Du等[85]鑒定到1個能夠控制脂肪酸合成的GaKASIII基因。脂肪酸的縮合、還原、脫水以及再還原過程涉及到多種關鍵酶的作用,其中包括KASⅠ、β-酮脂酰-ACP還原酶(β-ketoacyl-ACP-
reductase, KAR)、β-羥丁酰ACP脫水酶(β-hydroxyacyl-ACP-dehydrase, HAD)和烯脂酰-ACP還原酶(enoyl-ACP-reductase, ENR)。KASⅠ催化4:0-ACP到16:0-ACP的碳鏈延長。研究表明擬南芥AtKASⅠ缺失會導致種子中脂肪酸含量顯著降低[86]。KASⅡ 催化16:0-ACP 到18:0-ACP 的生成[87]。Liu等[88]使用RNA干擾(RNA interference, RNAi)技術下調GhKASⅡ的表達,使棉籽中的棕櫚酸(C16:0)積累量顯著增加。過表達GhKAR和GhENR均能顯著提高棉籽油分含量,分別比野生型材料提高10.2%~10.7%和10.2%~14.14%[89]。酰基ACP硫脂酶(fatty acyl-ACP-thioesterase, FAT)、乙酰輔酶A合成酶(acyl-CoA synthetase, ACS)、十八烷酰-ACP-去飽和酶(stearoyl-ACP-
desaturase, SAD)以及脂肪酸脫氫酶(fatty acid desaturase, FAD)可在一定程度上調控脂肪酸的組成。FAT催化脂肪酸合成的最后1步反應,決定合成游離脂肪酸的種類和碳鏈長度。沉默GhFATB使棉籽中油酸(C18:1)含量增加156.96%,降低棕櫚酸(C16:0)和亞油酸(C18:2)含量[90]。ACS催化游離脂肪酸轉化為酰基輔酶A,酰基輔酶A是脂肪酸降解和細胞脂質合成的關鍵中間體。研究發現GhACS1和GhACS2在棉花花藥早期發育中發揮作用[91]。SAD是催化18:0-ACP轉化為18:1-ACP的關鍵酶[92]。在棉花種子中下調GhSAD-1的表達顯著增加了硬脂酸(C18:0)含量(從2%~3%提升到40%)[93]。FAD在植物中催化大部分脂肪酸的脫飽和反應[94]。沉默GhFAD2會顯著提高棉籽中油酸的含量[95]。研究表明,GhFAD2-1控制大約80%的油酸轉變為亞油酸[96-97],FAD2基因突變后產生高油酸種子[98-99]。
5.2.2 TAG合成階段。甘油-3-磷酸酰基轉移酶(glycerol-3-phosphate acyltransferase, GPAT)催化肯尼迪(Kennedy)途徑的第1步反應,將FA從酰基輔酶A轉移到甘油醛-3-磷酸(glyceraldehyde-3-phosphate, G-3-P)的sn-1羥基位,生成溶血磷脂酸[100]。溶血磷脂酸酰基轉移酶(lysophosphatidic acid acyltransferase, LPAAT)可將FA鏈催化成3-磷酸甘油酸,進一步促進油分生成。Wang等[101]在4個栽培棉種中鑒定出40個LPAAT基因,其中在酵母中過表達At-Gh13LPAAT5使棕櫚酸和油酸含量增加25%~31%,總TAG含量增加16%~29%。磷脂酸磷酸酶(phosphatidic acid phosphatase, PAP)催化磷脂酸(phosphatidic acid, PA)產生二酰甘油(diacylglycerol, DAG)。擬南芥雙突變體pah1pah2植株中DAG的含量比野生型減少了15%[102]。二酰甘油酰基轉移酶(diacylglycerol acyltransferase, DGAT)通過酯化DAG生成TAG,是TAG合成的限速酶[103]。在植物中已鑒定出至少5種不同類型的DGAT:DGAT1[104]、DGAT2[105-106]、WS/DGAT[107-108]、可溶性DGAT[109-110]和DacT[111]。Wu等[112]使用種子特異性啟動來驅動DGAT1編碼基因的表達,使轉基因棉籽的油分含量增加到13.9%,明顯高于野生型棉株(4.7%);劉正杰等[113]發現沉默棉花GhDGAT1基因導致種仁油分含量下降3.13%。
5.2.3 轉錄因子。除多種酶類外,一些轉錄因子在調控棉籽油分含量方面也發揮著重要作用,如WRINKLED 1(WRI1)[114]、Dof[115]、NF-YB6[116]以及DPBF2[9]等。
Dof蛋白是植物特異性轉錄因子家族,棉花GhDof1與大豆GmDof4同源。GmDof4通過直接結合啟動子區的順式作用元件來激活ACCase編碼基因的轉錄,阻斷碳源流入蛋白合成途徑,從而提高轉基因擬南芥種子中油分的含量[117]。Su等[118]發現過表達GhDof1基因可以增加棉籽油分含量。WRI基因家族是AP2/EREBP(APETALA2/乙烯響應元件結合蛋白)轉錄因子家族的1個分支[119]。GhWRI1參與種子發育過程中FA的生物合成,過表達GhWRI1會增加轉基因擬南芥和陸地棉的種子油分含量和種子質量[114],GhWRI1還參與纖維發育過程,與纖維長度有關[120]。NF-Y是真核生物中普遍存在的異源三聚體轉錄因子家族,由3個獨立的亞基NF-YA、NF-YB和NF-YC形成轉錄因子復合物,能夠特異性結合啟動子區的位點,調控靶標基因表達[121]。NF-YB6在陸地棉棉籽油分快速積累期起關鍵作用,其表達水平在此階段顯著增加,在花后20" d和30 d該基因的相對表達量比花后10 d分別增加了約340倍和380倍[116]。
5.3 棉籽蛋白含量的調控
蛋白質合成的前體物質是氨基酸,氨基酸的生物合成影響蛋白質的含量和組成。谷氨酸是高等植物氨基酸代謝的中心物質,谷氨酸的氨基可以在多種轉氨酶的作用下生成不同的氨基酸[122]。如天冬氨酸轉氨酶(aspartate aminotransferase, AST)介導谷氨酸和草酰乙酸之間的可逆轉氨,生成天冬氨酸和α-酮戊二酸[123];丙氨酸轉氨酶(alanine aminotransferase, ALT)催化丙酮酸和谷氨酸可逆轉化為丙氨酸和α-酮戊二酸[124]。谷氨酸脫氫酶(glutamate dehydrogenase, GDH)催化谷氨酸與α-酮戊二酸之間的可逆反應,是連接碳代謝和氮代謝的重要酶類。種子中的氮主要來源于根系吸收以及之后的轉移過程,硝酸鹽還原酶(nitrate reductase, NR)將外源硝酸鹽還原為亞硝酸鹽[125],亞硝酸鹽還原酶(nitrite reductase, NIR)將亞硝酸鹽還原為NH4+進入植物體內。谷氨酰胺合成酶(glutamine synthetase, GS)和谷氨酸合成酶(glutamate synthase, GOGAT)是將NH4+轉化成植物體內氨基酸的關鍵酶類,其活性可在一定程度上表征蛋白質合成的強度[126-127]。He等[128]指出GhGS基因與種子胚胎發育相關。Iqbal等[129]研究發現GhASN(編碼天冬酰胺合成酶)的較高水平表達與游離氨基酸的積累和蛋白質合成有關。
除多種關鍵酶類外,種子蛋白質的合成和積累受多種轉錄因子的協同調控。目前關于調控棉花種子蛋白合成的轉錄因子相關的研究報道較少,如GhERF105[130]、HY5[131]等。已報道的相關轉錄因子主要集中于大豆和擬南芥,主要有FUS3[132]、LEC2[133]、ABI3[134]、ROM1[135]、MYC2、MYC3和
MYC4[136]等。
6 討論與展望
長期以來,棉纖維被認為是棉花的主產品,但僅占棉花收獲籽棉產量的35.7%;棉籽被視為棉花的副產品,卻占收獲產量的64.3%[137]。實際上,棉籽中含有相當豐富且優質的營養物質,是重要的蛋白和油脂來源。以往棉籽的油用和飼用價值未得到正確認識,相關遺傳改良研究進展較為滯后。因此,加強棉籽的綜合開發利用,開展棉籽營養品質生物育種,可為我國油料和飼用蛋白安全提供重要保障。
關于棉籽營養品質生物育種未來的研究方向,筆者提出以下幾點建議:(1)加強高蛋白、高油分優異棉花種質的鑒定篩選。目前,有關棉籽營養品質優異種質資源鑒定的研究報道還不多,可結合棉籽營養品質高通量鑒定方法,加強對野生棉和栽培棉種質的大規模鑒定篩選,發掘高蛋白、高油分種質資源,為營養品質改良奠定資源基礎。(2)加強棉籽蛋白及油分相關調控基因的挖掘。棉籽蛋白和油分含量的QTL研究仍處于初定位階段,QTL定位區間較大,缺少主效位點和關鍵基因。棉花基因組測序以及多組學技術的快速發展,為棉籽營養品質重要基因的挖掘提供了新的平臺和手段。同時本文對已收集到的相關QTL進行整合,構建了棉籽蛋白油分含量的一致性物理圖譜,為相關候選基因挖掘提供可靠信息。(3)推進棉籽營養品質生物育種。隨著國家對轉基因棉花品種的進一步放開,通過基因工程手段進行棉籽營養品質改良成為1種可靠、有效的手段。近年來基因編輯技術在大豆[138]、玉米[139]等其他作物中取得了顯著成果,這為棉籽營養品質改良提供了經驗和方法。(4)探究棉籽營養品質與纖維品質協同改良的可能性。纖維和棉籽是棉花生產的兩大產物,且都與胚珠發育密切相關,如何做到兩者協同改良是1個關鍵的問題,應加強兩者之間營養物質分配和調控通路的研究,為棉花“油纖飼”(油料、纖維、飼料)兼用型種質資源創制以及新品種培育奠定基礎。
附表:
詳見本刊網站(http://journal.cricaas.com.cn/)本文網頁版。
附表1 棉籽蛋白與油分含量的QTL位點和分子標記
Table S1 QTL and molecular markers for the content of protein and oil in cottonseed
參考文獻:
[1] Wu M, Pei W F, Wedegaertner T, et al. Genetics, breeding and genetic engineering to improve cottonseed oil and protein: a review[J/OL]. Frontiers in Plant Science, 2022, 13: 864850[2024-
01-02]. https://doi.org/10.3389/fpls.2022.864850.
[2] Wang W J, Li J, Liu J C, et al. Utilising cottonseed in animal feeding: a dialectical perspective[J/OL]. Modern Agriculture, 2023, 1: 112-121[2024-01-02]. https://doi.org/10.1002/moda.16.
[3] Zhang H B, Li Y, Wang B, et al. Recent advances in cotton genomics[J/OL]. International Journal of Plant Genomics, 2008: 742304[2024-01-02]. https://www.hindawi.com/journals/ijpg/
2008/742304/.
[4] Hu W, Dai Z, Yang J S, et al. The variability of cottonseed yield under different potassium levels is associated with the changed oil metabolism in embryo[J/OL]. Field Crops Research, 2018, 224: 80-90[2024-01-02]. https://doi.org/10.1016/j.fcr.2018.05.007.
[5] 田博宇, 黃義文, 周大云, 等. 不同形態棉籽中油分含量快速無損近紅外檢測方法的建立[J/OL]. 棉花學報, 2023, 35(4): 325-
333[2024-01-02]. https://doi.org/10.11963/cs20230005.
Tian Boyu, Huang Yiwen, Zhou Dayun, et al. Development of a rapid non-destructive method for the detection of cottonseed oil content by near-infrared spectroscopy[J/OL]. Cotton Science, 2023, 35(4): 325-333[2024-01-02]. https://doi.org/10.11963/
cs20230005.
[6] 楊碩, 黃義文, 周大云, 等. 基于近紅外光譜技術建立棉籽蛋白質含量快速無損測定方法[J/OL]. 中國糧油學報, 2023[2024-
01-02]. https://link.cnki.net/doi/10.20048/j.cnki.issn.1003-0174.
000631.
Yang Shuo, Huang Yiwen, Zhou Dayun, et al. Establishment of a rapid and non-destructive determination of protein content in cottonseed by near infrared spectroscopy[J/OL]. Journal of the Chinese Cereals and Oils Association, 2023[2024-01-02]. https://
link.cnki.net/doi/10.20048/j.cnki.issn.1003-0174.000631.
[7] Konuskan D B, Yilmaztekin M, Mehmet M, et al. Physico-
chemical characteristic and fatty acids compositions of cottonseed oils[J]. Journal of Agricultural Sciences, 2017, 23(2): 253-259.
[8] Qayyum A, Murtaza N, Azhar F M, et al. Biodiversity and nature of gene action for oil and protein contents in Gossypium hirsutum L. estimated by SSR markers[J/OL]. Journal of Food, Agriculture and Environment, 2009, 7(2): 590-593[2024-01-02]. https://www.researchgate.net/publication/264044318.
[9] Zhu D, Le Y, Zhang R T, et al. A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons[J/OL]. Plant Biotechnology Journal, 2021, 19(6): 1170-1182[2024-01-02]. https://doi.org/10.1111/pbi.13538.
[10] Gao D, Cao Y, Li H. Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate[J/OL]. Journal of the Science of Food and Agriculture, 2010, 90(11): 1855-1860[2024-01-02]. https://doi.org/10.1002/jsfa.4024.
[11] 薛敏. 棉籽濃縮蛋白加工工藝及其在水產飼料中營養價值[J/OL]. 飼料工業, 2021, 42(12): 1-5[2024-01-02]. https://doi.org/10.13302/j.cnki.fi.2021.12.001.
Xue Min. Processing of cottonseed protein concentrated and its nutrient values in aquatic feed[J/OL]. Feed Industry Magazine, 2021, 42(12): 1-5[2024-01-02]. https://doi.org/10.13302/j.cnki.fi.2021.12.001.
[12] Zhang Q L, Liang H L, Xu P, et al. Effects of enzymatic cottonseed protein concentrate as a feed protein source on the growth, plasma parameters, liver antioxidant capacity and immune status of largemouth bass (Micropterus salmoides)[J/OL]. Metabolites, 2022, 12(12): 1233[2024-01-02]. https://doi.org/10.3390/
metabo12121233.
[13] Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypum hirsutum L.) [J/OL]. Euphytica, 2003, 129: 183-191[2024-
01-02]. https://doi.org/10.1023/A:1021974901501.
[14] Campbell B T, Chapman K D, Sturtevant D, et al. Genetic ana-
lysis of cottonseed protein and oil in a diverse cotton germplasm[J/OL]. Crop Science, 2016, 56(5): 2457-2464[2024-01-02]. https://doi.org/10.2135/cropsci2015.12.0742.
[15] 全國糧油標準化技術委員會. 植物油料 含油量測定: GB/T 14488.1-2008[S]. 北京: 中國標準出版社, 2008.
National Grain and oil Standardization Technical Committee. Oilseeds-determination of oil content: GB/T 14488.1-2008[S]. Beijing: Standards Press of China, 2008.
[16]" "ezanka T, Mare?觢 P. Determination of plant triacylglycerols using capillary gas chromatography, high-performance liquid chromatography and mass spectrometry[J/OL]. Journal of Chromatography A, 1991, 542: 145-159[2024-01-02]. https://
doi.org/10.1016/S0021-9673(01)88755-0.
[17] 李浩川, 曲彥志, 楊繼偉, 等. 基于核磁共振的玉米不同籽粒類型單粒質量和含油率分析[J/OL]. 農業工程學報, 2018, 34(20): 183-188[2024-01-02]. https://doi.org/10.11975/j.issn.1002-
6819.2018.20.023.
Li Haochuan, Qu Yanzhi, Yang Jiwei, et al. Analysis on single kernel weight and oil content of different grain types in maize based on NMR[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 183-188[2024-01-02]. https://doi.org/10.11975/j.issn.1002-6819.2018.20.023.
[18] 原姣姣, 王成章, 陳虹霞. 近紅外光譜技術及其在植物油品質分析中的應用[J]. 生物質化學工程, 2010, 44(6): 59-65.
Yuan Jiaojiao, Wang Chengzhang, Chen Hongxia. Near infrared spectroscopy technology and analysis in quality traits of vegetable oil[J]. Biomass Chemical Engineering, 2010, 44(6): 59-65.
[19] McKenzie H A, Wallace H S. The Kjeldahl determination of nitrogen: a critical study of digestion conditions-temperature, catalyst, and oxidizing agent[J/OL]. Australian Journal of Chemistry, 1954, 7(1): 55-70[2024-01-02]. https://doi.org/10.1071/CH9540055.
[20] Rutherfurd S M, Gilani G S. Amino acid analysis[J/OL]. Current Protocols in Protein Science, 2009, 58(1): 11.9.1-11.9. 37[2024-
01-02]. https://doi.org/10.1002/0471140864.ps1109s58.
[21] M?覸hre H K, Dalheim L, Edvinsen G K, et al. Protein determination-method matters[J/OL]. Foods, 2018, 7(1): 5[2024-01-
02]. https://doi.org/10.3390/foods7010005.
[22] Diehl B. Principles in NMR spectroscopy[M]. Amsterdam: Elsevier, 2008: 1-41.
[23] 劉正杰, 郭寶生, 張園, 等. 棉籽油含量及成分研究與改良[J/OL]. 分子植物育種, 2012, 10(6): 1038-1048[2024-01-02]. https://doi.org/10.5376/mpb.cn.2012.10.0006.
Liu Zhengjie, Guo Baosheng, Zhang Yuan, et al. Research and improvement on the oil content and composition of cottonseed[J/OL]. Molecular Plant Breeding, 2012, 10(6): 1038-1048[2024-
01-02]. https://doi.org/10.5376/mpb.cn.2012.10.0006.
[24] Hinze L L, Horn P J, Kothari N, et al. Nondestructive measurements of cottonseed nutritional trait diversity in the US national cotton germplasm collection[J/OL]. Crop Science, 2015, 55(2): 770-782[2024-01-02]. https://doi.org/10.2135/cropsci2014.04.
0318.
[25] Sharif I, Farooq J, Chohan S M, et al. Strategies to enhance cottonseed oil contents and reshape fatty acid profile employing different breeding and genetic engineering approaches[J/OL]. Journal of Integrative Agriculture, 2019, 18(10): 2205-2218[2024-01-02]. https://doi.org/10.1016/S2095-3119(18)62139-2.
[26] 劉明,范君華,由寶昌, 等. 海島棉棉仁蛋白質和脂肪含量分析[J]. 作物品種資源, 1994(4): 25-28.
Liu Ming, Fan Junhua, You Baochang, et al. Analysis of protein and fat content in shelled seed of sea-island cotton (Gossypium barbadense L.)[J]. Crop Germplasm Resources, 1994(4): 25-28.
[27] Hu Y, Han Z G, Shen W J, et al. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis[J/OL]. The Plant Journal, 2022, 112(3): 800-811[2024-01-02]. https://doi.org/10.1111/tpj.15982.
[28] 劉小芳, 李俊文, 余學科, 等. 利用重組自交系進行陸地棉(Gossypium hirsutum L.)棉籽油分含量和蛋白質含量的QTL定位[J/OL]. 分子植物育種, 2013, 11(5): 520-528[2024-01-02]. https://doi.org/10.3969/mpb.011.000520.
Liu Xiaofang, Li Junwen, Yu Xueke, et al. Identification of QTL for cottonseed oil and protein content in upland cotton (Gossypium hirsutum L.) based on a RIL population[J/OL]. Molecular Plant Breeding, 2013, 11(5): 520-528[2024-01-02]. https://doi.org/ 10.3969/mpb.011.000520.
[29] Singh S, Singh V V, Choudhary A D. Combining ability estimates for oil content, yield components and fibre quality traits in cotton (G. hirsutum) using an 8 × 8 diallel mating design[J]. Tropical and Subtropical Agroecosystems, 2010, 12(1): 161-
166.
[30] Du X M, Liu S Y, Sun J L, et al. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study[J/OL]. BMC Genomics, 2018, 19(1): 1-17[2024-01-02]. https://doi.org/10.1186/s12864-
018-4837-0.
[31] Yuan Y C, Wang X L, Wang L Y, et al. Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L.[J/OL]. Frontiers in Plant Science, 2018, 9: 1359[2024-01-02]. https://
doi.org/10.3389/fpls.2018.01359.
[32] Ma J J, Liu J, Pei W F, et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTL qOC-Dt5-1[J/OL]. Plant Science, 2019, 286: 89-97[2024-01-
02]. https://doi.org/10.1016/j.plantsci.2019.05.019.
[33] Li Y X, Hu W, Setter T L, et al. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton[J/OL]. Environmental and Experimental Botany, 2022, 201: 104964[2024-
01-02]. https://doi.org/10.1016/j.envexpbot.2022.104964.
[34] Gong J W, Kong D P, Liu C W, et al. Multi-environment evalua-
tions across ecological regions reveal that the kernel oil content of cottonseed is equally determined by genotype and environment[J/OL]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2529-2544[2024-01-02]. https://pubs.acs.org/doi/
10.1021/acs.jafc.1c07082.
[35] Yang H, Zhang X, Chen B, et al. Integrated management strategies increase cottonseed, oil and protein production: the key role of carbohydrate metabolism[J/OL]. Frontiers in Plant Science, 2017, 8: 48[2024-01-02]. https://doi.org/10.3389/
fpls.2017.00048.
[36] Rochester I J, Constable G A. Nitrogen-fertiliser application effects on cotton lint percentage, seed size, and seed oil and protein concentrations[J/OL]. Crop and Pasture Science, 2020, 71(9): 831-836[2024-01-02]. https://doi.org/10.1071/CP20288.
[37] Hu W, Dai Z, Yang J S, et al. Cultivar sensitivity of cotton seed yield to potassium availability is associated with differences in carbohydrate metabolism in the developing embryo[J/OL]. Field Crops Research, 2017, 214: 301-309[2024-01-02]. https://
doi.org/10.1016/j.fcr.2017.09.022.
[38] Yang H K, Meng Y L, Chen B L, et al. How integrated management strategies promote protein quality of cotton embryos: high levels of soil available N, N assimilation and protein accumulation rate[J/OL]. Frontiers in Plant Science, 2016, 7: 1118[2024-
01-02]. https://doi.org/10.3389/fpls.2016.01118.
[39] Pahlacani M, Miri A, Kazemi G. Response of oil and protein content to seed size in cotton (Gossypium hirsutum L., cv. Sahel) [J/OL]. Plant Breeding and Seed Science, 2009, 59: 53-
64[2024-01-02]. https://doi.org/10.2478/v10129-009-0004-8.
[40] Pettigrew W T, Dowd M K. Interactions between irrigation regimes and varieties result in altered cottonseed composition[J]. Journal of Cotton Science, 2012, 16(1): 42-52.
[41] 李佳樂, 趙茹冰, 陳進紅, 等. 基因型和環境對陸地棉棉籽中主要成分含量影響[J/OL]. 棉花學報, 2019, 31(6): 14[2024-
01-02]. https://doi.org/10.11963/1002-7807.ljlzsj.20191104.
Li Jiale, Zhao Rubing, Chen Jinhong, et al. Effects of genotype and environment on the main components in cottonseed of upland cotton[J/OL]. Cotton Science, 2019, 31(6): 14[2024-01-
02]. https://doi.org/10.11963/1002-7807.ljlzsj.20191104.
[42] Zhang H Y, Goettel W, Song Q J, et al. Selection of GmSWEET39 for oil and protein improvement in soybean[J/OL]. PLoS Genetics, 2020, 16(11): e1009114[2024-01-02]. https://
doi.org/10.1371/journal.pgen.1009114.
[43] Han L B, Li Y B, Wang H Y, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers[J/OL]. The Plant Cell, 2013, 25(11): 4421-4438[2024-01-02]. https://doi.org/10.1105/tpc.113.116970.
[44] Chapman K D, Neogi P B, Hake K D, et al. Reduced oil accumulation in cottonseeds transformed with a Brassica nonfunctional allele of a delta-12 fatty acid desaturase (FAD2) [J/OL]. Crop Science, 2008, 48(4): 1470-1481[2024-01-02]. https://doi.org/10.2135/cropsci2007.11.0618.
[45] Yang Z R, Liu Z, Ge X Y, et al. Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis[J/OL]. The Plant Cell, 2023, 35(6): 2114-2131[2024-01-02]. https://doi.org/10.1093/plcell/koad060.
[46] Kushanov F N, Turaev O S, Ernazarova D K, et al. Genetic diversity, QTL mapping, and marker-assisted selection techno-
logy in cotton (Gossypium spp.)[J/OL]. Frontier in Plant Science, 2021, 12: 779386. https://doi.org/10.3389/fpls.2021.779386.
[47] Yu J W, Yu S X, Fan S L, et al. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population[J/OL]. Euphytica, 2012, 187(2): 191-201[2024-01-02]. https://doi.org/10.1007/s10681-012-0630-3.
[48] 秦利. 陸地棉種子品質性狀遺傳及其QTL定位研究[D]. 杭州: 浙江大學, 2009.
Qin Li. Inheritance of seed quality traits and their QTL mapping in upland cotton (G. hirsutum L.)[D]. Hangzhou: Zhejiang University, 2009.
[49] Liu H Y, Zhang L, Mei L, et al. qOil-3, a major QTL identification for oil content in cottonseed across genomes and its candidate gene analysis[J/OL]. Industrial Crops and Products, 2020, 145: 112070. https://doi.org/10.1016/j.indcrop.2019.112070.
[50] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton[J/OL]. Seed Science Research, 2007, 17(4): 243-251[2024-01-02]. https://doi.org/10.1017/S0960258507834957.
[51] 劉大軍. 陸地棉SRAP圖譜構建與種子物理、營養品質性狀QTL定位[D]. 重慶: 西南大學, 2010.
Liu Dajun. Construction of SRAP genetic map and QTL mapping of physical and nutrional quality traits in upoland cotton (Gossypium hirsutum L.) [D]. Chongqing: Southwest University, 2010.
[52] An C, Jenkins J N, Wu J, et al. Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton[J/OL]. Euphytica, 2010, 172: 21-34[2024-01-
02]. https://doi.org/10.1007/s10681-009-0009-2.
[53] Liu H Y, Quampah A, Chen J H, et al. QTL analysis for gossypol and protein contents in upland cottonseeds with two different genetic systems across environments[J/OL]. Euphytica, 2012, 188: 453-463[2024-01-02]. https://doi.org/10.1007/s10681-012-
0733-x.
[54] Alfred Q, Liu H Y, Xu H M, et al. Mapping of quantitative trait loci for oil content in cottonseed kernel[J/OL]. Journal of
Genetics, 2012, 91: 289-295[2024-01-02]. https://doi.org/10.1007/
s12041-012-0184-0.
[55] 何林池, 徐鵬, 郭婷婷, 等. 陸地棉棉籽油分和蛋白質含量QTL的定位[J/OL]. 江蘇農業學報, 2014, 30(6): 1248-1252[2024-01-02]. https://doi.org/10.3969/j.issn.1000-4440.2014.06.
010.
He Linchi, Xu Peng, Guo Tingting, et al. Mapping QTLs related to seed oil and protein contents in upland cotton (Gossypium hirsutum L.) [J/OL]. Journal of Jiangsu Agriculture, 2014, 30(6): 1248-1252[2024-01-02]. https://doi.org/10.3969/j.issn.1000-
4440.2014.06.010.
[56] 李金榮. 棉籽品質性狀的胚與母體植株遺傳效應及QTL定位研究[D]. 杭州: 浙江大學, 2014.
Li Jinrong. Studies on the genetic effects of the embryo and maternal plant in cottonseeed quality traits and their QTL mapping[D]. Hangzhou: Zhejiang University, 2014.
[57] Liu G Z, Mei H X, Wang S, et al. Association mapping of seed oil and protein contents in upland cotton[J/OL]. Euphytica, 2015, 205: 637-645[2024-01-02]. https://doi.org/10.1007/
s10681-015-1450-z.
[58] Liu D X, Liu F, Shan X R, et al. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.) [J/OL]. Molecular Genetics and Genomics, 2015, 290: 1683-
1700[2024-01-02]. https://doi.org/10.1007/s00438-015-1027-5.
[59] Badigannavar A, Myers G O. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum) [J/OL]. Journal of Genetics, 2015, 94: 87-94[2024-01-02]. https://doi.org/10.1007/s12041-
015-0489-x.
[60] Shang L G, Abduweli A, Wang Y M, et al. Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in upland cotton[J/OL]. Plant Breeding, 2016, 135(2): 224-231[2024-01-
02]. https://doi.org/10.1111/pbr.12352.
[61] Zeng Y D, Sun J L, Bu S H, et al. EcoTILLING revealed SNPs in GhSus genes that are associated with fiber-and seed-related traits in upland cotton[J/OL]. Scientific Reports, 2016, 6(1): 29250[2024-01-02]. https://doi.org/10.1038/srep29250.
[62] 黃夢珠. 陸地棉棉籽油分與蛋白質含量QTL定位[D]. 重慶: 西南大學, 2018.
Huang Mengzhu. Mapping QTL controlling cottonseed oil and protein content in upland cotton[D]. Chongqing: Southwest University, 2018.
[63] Wang W W, Sun Y, Yang P, et al. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton[J/OL]. BMC Genomics, 2019, 20(1): 1-11[2024-01-02]. https://doi.org/10.1186/s12864-019-5819-6.
[64] Zhao W, Kong X, Yang Y, et al. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs[J/OL]. Molecular Breeding, 2019, 39: 1-11[2024-01-02]. https://doi.org/10.1007/s11032-019-1007-2.
[65] Zhu D, Li X M, Wang Z W, et al. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton[J/OL]. BMC Genomics, 2020, 21(1): 1-16[2024-01-02]. https://doi.org/10.1186/s12864-020-06800-x.
[66] 張艷波, 王袁, 馮甘雨, 等. 棉籽油分和 3 種主要脂肪酸含量QTL分析[J/OL]. 作物學報, 2022, 48(2): 380-395[2024-01-
02]. https://doi.org/10.3724/SP.J.1006.2022.04273.
Zhang Yanbo, Wang Yuan, Feng Ganyu, et al. QTLs analysis of oil and three major fatty acid contents in cottonseeds[J/OL]. Acta Agronomica Sinica, 2022, 48(2): 380-395[2024-01-02]. https://doi.org/10.3724/SP.J.1006.2022.04273.
[67] 趙漪柔. 陸地棉種子主要成分的QTL定位與遺傳分析[D]. 杭州: 浙江大學, 2021.
Zhao Yirou. QTL mapping and genetic analysis of main components of upland cottonseeds[D]. Hangzhou: Zhejiang University, 2021.
[68] Zhang Z B, Gong J W, Zhang Z, et al. Identification and analysis of oil candidate genes reveals the molecular basis of cottonseed oil accumulation in Gossypium hirsutum L.[J/OL]. Theoretical and Applied Genetics, 2022, 135: 449-460[2024-01-02]. https://doi.org/10.1007/s00122-021-03975-z.
[69] Gong J W, Peng Y, Yu J W, et al. Linkage and association ana-
lyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton[J/OL]. Computational and Structural Biotechnology Journal, 2022, 20: 1841-1859[2024-01-02]. https://doi.org/10.1016/j.csbj.2022.04.012.
[70] 樂明媚. 達爾文氏棉染色體片段代換系子指和棉仁營養品質性狀QTL定位[D]. 重慶: 西南大學, 2023.
Yue Mingmei. QTL mapping for seed index and nutritional quality traits of cotton kernel from the chromosome segment substitution lines of Gossypium darwinii[D]. Chongqing Southwest University, 2023.
[71] 包婉玉. 陸地棉優質纖維重組近交系群體棉籽營養品質性狀QTL定位[D]. 重慶: 西南大學, 2023.
Bao Wanyu. QTL mapping of cottonseed nutritional quality traits in G. hirsutum recombinant inbred lines with high fiber quality cultivar/lines as parents[D]. Chongqing: Southwest University, 2023.
[72] 崔玉茹. 毛棉染色體片段代換系棉仁營養品質性狀QTL定位[D]. 重慶: 西南大學, 2022.
Cui Yuru. QTL mapping for kernel nutritional quality traits in the chromosome segment substitution lines of Gossypium tomentosum[D]. Chongqing: Southwest University, 2022.
[73] 劉珺. 黃褐棉染色體片段代換系棉仁營養品質相關性狀QTL定位[D]. 重慶: 西南大學," 2023.
Liu Jun. QTL mapping for kernel nutritional quality traits using the chromosome segment substitution lines from G. mustelinum[D]. Chongqing: Southwest University, 2023.
[74] 唐義華. 陸地棉栽培品種與野生種系尖斑棉群體棉仁營養品質性狀QTL定位[D]. 重慶: 西南大學, 2023.
Tang Yihua. QTL mapping for kernel nutritional quality traits from (G. hirsutum cultivar × G. hirsutum race punctatum) po-
pulation[D]. Chongqing: Southwest University, 2023.
[75] 趙彥朋, 梁偉, 王丹, 等. 植物油脂合成調控與遺傳改良研究進展[J/OL]. 中國農業科技導報, 2018, 20(1): 14-24[2024-01-
02]. https://doi.org/10.13304/j.nykjdb.2017.0170.
Zhao Yanpeng, Liang Wei, Wang Dan, et al. Research progress on synthetic regulation and genetic improvement of vegetable oils[J/OL]. Journal of Agricultural Science and Technology, 2018, 20(1): 14-24[2024-01-02]. https://doi.org/10.13304/j.nykjdb.2017.0170.
[76] Salie M J, Thelen J J. Regulation and structure of the heteromeric acetyl-CoA carboxylase[J/OL]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2016, 1861(9): 1207-1213[2024-01-02]. https://doi.org/10.1016/
j.bbalip.2016.04.004.
[77] Xu Z P, Li J W, Guo X P, et al. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference[J/OL]. Scientific Reports, 2016, 6(1): 33342[2024-01-02]. https://doi.org/10.1038/srep33342.
[78] Lepiniec L, Vidal J, Chollet R, et al. Phosphoenolpyruvate carboxylase: structure, regulation and evolution[J/OL]. Plant Science, 1994, 99(2): 111-124[2024-01-02]. https://doi.org/10.1016/
0168-9452(94)90168-6.
[79] Zhao Y P, Huang Y, Wang Y M, et al. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in upland cotton[J/OL]. Plant Science, 2018, 271: 52-61[2024-01-
02]. https://doi.org/10.1016/j.plantsci.2018.03.015.
[80] Bates P D, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis[J/OL]. Current Opinion in Plant Biology, 2013, 16(3): 358-364[2024-01-02]. https://doi.org/10.1016/j.pbi.2013.02.015.
[81] Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J/OL]. Progress in Lipid Research, 2010, 49(3): 235-249[2024-01-02]. https://doi.org/10.1016/j.plipres.2010.01.001.
[82] Cui Y P, Liu Z J, Zhao Y P, et al. Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in upland cotton[J/OL]. Plant Molecular Biology Reporter, 2017, 35: 287-
297[2024-01-02]. https://doi.org/10.1007/s11105-016-1022-y.
[83] Jung S H, Kim R J, Kim K J, et al. Plastidial and mitochondrial malonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content[J/OL]. Plant and Cell Physiology, 2019, 60(6): 1239-1249[2024-01-
02]. https://doi.org/10.1093/pcp/pcz032.
[84] Clough R C, Matthis A L, Barnum S R, et al. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis[J/OL]. Journal of Biological Chemistry, 1992, 267(29): 20992-20998[2024-01-02]. https://
doi.org/10.1016/S0021-9258(19)36787-0.
[85] Du X M, Huang G, He S P, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J/OL]. Nature Genetics, 2018, 50(6): 796-802[2024-01-02]. https://doi.org/10.1038/
s41588-018-0116-x.
[86] Wu G Z, Xue H W. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development[J/OL]. The Plant Cell, 2010, 22(11): 3726-3744[2024-01-02]. https://
doi.org/10.1105/tpc.110.075564.
[87] Pidkowich M S, Nguyen H T, Heilmann I, et al. Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4742-
4747[2024-01-02]. https://doi.org/10.1073/pnas.061114110.
[88] Liu Q, Wu M, Zhang B L, et al. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of GhKAS2 encoding β-ketoacyl-ACP synthase II (KAS II) [J/OL]. Plant Biotechnology Journal, 2017, 15(1): 132-143[2024-01-02]. https://doi.org/10.1111/pbi.12598.
[89] 劉麗, 王玉美, 趙彥朋, 等. 棉花脂肪酸合成酶基因GhKAR和GhENR表達載體構建及其功能初探[J/OL]. 棉花學報, 2016, 28(6): 527-537[2024-01-02]. https://doi.org/10.11963/
issn.1002-7807.201606002.
Liu Li, Wang Yumei , Zhao Yanpeng, et al. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton[J/OL]. Cotton Science, 2016, 28(6): 527-537[2024-01-
02]. https://doi.org/10.11963/issn.1002-7807.201606002.
[90] Liu F, Zhao Y P, Zhu H G, et al. Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid[J/OL]. Journal of Plant Physiology, 2017, 215: 132-139[2024-01-02]. https://doi.org/10.1016/j.jplph.2017.
06.001.
[91] Wang X L, Li X B. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton[J/OL]. The Plant Journal, 2009, 57(3): 473-486[2024-01-02]. https://doi.org/10.1111/j.
1365-313X.2008.03700.x.
[92] Rajwade A V, Kadoo N Y, Borikar S P, et al. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content[J/OL]. Phytochemistry, 2014, 98: 41-
53[2024-01-02]. https://doi.org/10.1016/j.phytochem.2013.12.
002.
[93] Liu Q, Singh S P, Green A G. High-stearic and high-oleic co-
ttonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing[J/OL]. Plant Physiology, 2002, 129(4): 1732-1743[2024-01-02]. https://doi.org/10.1104/pp.001933.
[94] Okuley J, Lightner J, Feldmann K, et al. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis[J/OL]. The Plant Cell, 1994, 6(1): 147-158[2024-01-02]. https://doi.org/10.1105/tpc.6.1.147.
[95] Chen Y Z, Fu M C, Li H, et al. High‐oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) gene-
rated by knockout of GhFAD2 genes with CRISPR/Cas9 system[J/OL]. Plant Biotechnology Journal, 2021, 19(3): 424-426[2024-01-02]. https://doi.org/10.1111/pbi.13507.
[96] Liu Q, Llewellyn D J, Singh S P, et al. Cotton flowering and fruiting. Cotton seed development: opportunities to add value to a byproduct of fiber production[M/OL]. Memphis: The Cotton Foundation Publisher, 2012: 133-162[2024-01-02]. https://
www.cotton.org/foundation/upload/F-F-Chapter-9.pdf.
[97] Liu Q, Singh S, Chapman K, et al. Genetics and genomics of cotton: Bridging traditional and molecular genetics in modifying cottonseed oil[M/OL]. New York: Springer, 2009: 353-382[2024-01-02]. https://doi.org/10.1007/978-0-387-70810-2_15.
[98] Shockey J, Dowd M, Mack B, et al. Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desa-
turase-2[J/OL]. Planta, 2017, 245: 611-622[2024-01-02]. https://
doi.org/10.1007/s00425-016-2633-0.
[99] Sturtevant D, Horn P, Kennedy C, et al. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele[J/OL]. Planta, 2017, 245: 595-
610[2024-01-02]. https://doi.org/10.1007/s00425-016-2630-3.
[100] Dos Santos Maraschin F, Kulcheski F R, Segatto A L A, et al. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution[J/OL]. Progress in Lipid Research, 2019, 73: 46-64[2024-01-02]. https://doi.org/10.1016/j.plipres.2018.12.001.
[101] Wang N H, Ma J J, Pei W F, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality[J/OL]. BMC Genomics, 2017, 18(1): 1-18[2024-01-02]. https://doi.org/10.1186/s12864-017-3594-9.
[102] Nakamura Y, Koizumi R, Shui G, et al. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20978-20983[2024-01-02]. https://doi.org/10.1073/pnas.0907173106.
[103] Liu Q, Siloto R M P, Lehner R, et al. Acyl-CoA: diacylgly-
cerol acyltransferase: molecular biology, biochemistry and biotechnology[J/OL]. Progress in Lipid Research, 2012, 51(4): 350-377[2024-01-02]. https://doi.org/10.1016/j.plipres.2012.
06.001.
[104] Cases S, Smith S J, Zheng Y W, et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 13018-13023[2024-01-02]. https://doi.org/10.1073/pnas.95.22.13018.
[105] Lardizabal K D, Mai J T, Wagner N W, et al. DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity[J/OL]. Journal of Biological Chemistry, 2001, 276(42): 38862-38869[2024-01-02]. https://doi.org/10.1074/
jbc.M106168200.
[106] Oelkers P, Tinkelenberg A, Erdeniz N, et al. A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast[J/OL]. Journal of Biological Chemistry, 2000, 275(21): 15609-15612[2024-01-02]. https://doi.org/10.1074/jbc.C000144200.
[107] Kalscheuer R, Steinbuchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1[J/OL]. Journal of Biological Chemistry, 2003, 278(10): 8075-8082[2024-01-02]. https://doi.org/10.1074/jbc.M210533200.
[108] Santín O, Galié S, Moncalián G. Directed evolution of a bacterial WS/DGAT acyltransferase: improving tDGAT from Thermomonospora curvata[J/OL]. Protein Engineering, Design and Selection, 2019, 32(1): 25-32[2024-01-02]. https://doi.org/
10.1093/protein/gzz011.
[109] Saha S, Enugutti B, Rajakumari S, et al. Cytosolic triacylgly-
cerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase[J/OL]. Plant Physiology, 2006, 141(4): 1533-1543[2024-01-
02]. https://doi.org/10.1104/pp.106.082198.
[110] Rani S H, Saha S, Rajasekharan R. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis[J/OL]. Microbiology, 2013, 159: 155-166[2024-01-02]. https://doi.org/10.1099/mic.
0.063156-0.
[111] Durrett T P, McClosky D D, Tumaney A W, et al. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9464-
9469[2024-01-02]. https://doi.org/10.1073/pnas.1001707107.
[112] Wu P, Xu X L, Li J W, et al. Seed-specific overexpression of cotton GhDGAT1 gene leads to increased oil accumulation in cottonseed[J/OL]. The Crop Journal, 2021, 9(2): 487-490[2024-
01-02]. https://doi.org/10.1016/j.cj.2020.10.003
[113] 劉正杰, 張園, 王玉美, 等. 陸地棉GhDGAT1基因干涉載體構建與遺傳轉化[J]. 中國農業大學學報, 2013(5): 1-8.
Liu Zhengjie, Zhang Yuan, Wang Yumei, et al. Construction of GhDGAT1 gene interference vector and genetic transformation in upland cotton[J]. Journal of China Agricultural University, 2013(5): 1-8.
[114] Liu Z J, Zhao Y P, Liang W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J/OL]. Biologia Plantarum, 2018, 62: 335-342[2024-01-02]. https://doi.org/10.1007/s10535-018-0777-4.
[115] Chattha W S, Atif R M, Iqbal M, et al. Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species[J/OL]. Genomics, 2020, 112(6): 4155-4170[2024-01-02]. https://doi.org/10.1016/j.ygeno.2020.07.006.s.
[116] Zhao Y P, Wang Y M, Huang Y, et al. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in upland cotton[J/OL]. Journal of Plant Physiology, 2018, 228: 101-112[2024-01-02]. https://doi.org/10.1016/j.jplph.2018.06.002.
[117] Wang H W, Zhang B, Hao Y J, et al. The soybean Dof‐type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J/OL]. The Plant Journal, 2007, 52(4): 716-729[2024-01-02]. https://doi.org/10.1111/j.1365-313X.2007.03268.x.
[118] Su Y, Liang W, Liu Z J, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum[J/OL]. Journal of Plant Physiology, 2017, 218: 222-234[2024-01-02]. https://doi.org/10.1016/j.jplph.2017.07.017.
[119] Zhou Y, Xia H, Li X J, et al. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants[J/OL]. PLoS ONE, 2013, 8(10): e78635[2024-
01-02]. https://doi.org/10.1371/journal.pone.0078635.
[120] Zang X S, Pei W F, Wu M, et al. Genome-scale analysis of the WRI-like family in Gossypium and functional characterization of GhWRI1a controlling triacylglycerol content[J/OL]. Frontiers in Plant Science, 2018, 9: 1516[2024-01-02]. https://doi.org/10.3389/fpls.2018.01516.
[121] Tan X X, Zhang H H, Yang Z H, et al. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J/OL]. PLoS Pathogens, 2022, 18(5): e1010548[2024-01-02]. https://doi.org/10.1371/journal.ppat.1010548.
[122] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signalling[J/OL]. Journal of Experimental Botany, 2007, 58(9): 2339-2358[2024-01-02]. https://doi.org/10.1093/
jxb/erm121.
[123] De la Torre F, Ca?觡as R A, Pascual M B, et al. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants[J/OL]. Journal of Experimental Botany, 2014, 65(19): 5527-5534[2024-01-02]. https://doi.org/10.1093/jxb/
eru240.
[124] Xu Z R, Ma J, Qu C P, et al. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings[J/OL]. Scientific Reports, 2017, 7(1): 45933[2024-01-02]. https://doi.org/10.1038/srep45933.
[125] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J/OL]. Annals of Botany, 2010, 105(7): 1141-1157[2024-01-02]. https://doi.org/10.1093/aob/mcq028.
[126] Zhang Z H, Wang W M, Guan C, et al. Mechanisms of nitrogen re-distribution in response to enzyme activities and the effects on nitrogen use efficiency in Brassica napus during later growth stages[J]. Pakistan Journal of Botany, 2014, 46(5): 1789-1795.
[127] Liang C G, Chen L P, Yan W, et al. High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice[J/OL]. Rice Science, 2011, 18(3): 210-216[2024-01-02]. https://doi.org/10.
1016/S1672-6308(11)60029-2.
[128] He Y J, Guo W Z, Shen X L, et al. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton[J/OL]. Planta, 2008, 228: 473-483[2024-01-02]. https://doi.org/10.1007/s00425-
008-0751-z.
[129] Iqbal A, Gui H P, Wang X R, et al. Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism[J/OL]. BMC Plant Biology, 2022, 22(1): 122. https://doi.org/10.1186/
s12870-022-03454-7.
[130] Wu C F, Cheng H L, Li S Y, et al. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.) [J/OL]. BMC Plant Biology, 2021, 21: 102[2024-
01-02]. https://doi.org/10.1186/s12870-021-02846-5.
[131] Wang X W, Luo Z, Hu Q Y, et al. Light induced shoot-sourced transcription factor HY5 regulates the nitrate uptake of cotton by shoot-to-root signal transport[J/OL]. Plant Physiology and Biochemistry, 2023, 200: 107738[2024-01-
02]. https://doi.org/10.1016/j.plaphy.2023.107738.
[132] 呂新云. GmLEC1與GmFUS3在大豆種子發育過程中的表達及其與貯藏蛋白合成的關系[D]. 太原: 山西農業大學, 2016.
Lü Xinyun. The expression of GmLEC1 and GmFUS3 during seed development and it’s relationship with storage protein synthesis in soybean[D]. Taiyuan: Shanxi Agricultural University, 2016.
[133] Manan S, Ahmad M Z, Zhang G, et al. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development[J/OL]. Frontiers in Plant Science, 2017, 8: 1604[2024-
01-02]. https://doi.org/10.3389/fpls.2017.01604.
[134] Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds[J/OL]. The Plant Journal, 2000, 21(2): 143-155[2024-01-02]. https://doi.org/10.1046/j.1365-
313x.2000.00663.x.
[135] Chern M S, Eiben H G, Bustos M M. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos[J/OL]. The Plant Journal, 1996, 10(1): 135-148[2024-01-02]. https://doi.org/10.1046/j.1365-313X.1996.10010135.x
[136] Gao C H, Qi S H, Liu K G, et al. MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis[J/OL]. Plant Physiology and Biochemistry, 2016, 108: 63-70[2024-01-02]. https://doi.org/10.1016/j.plaphy.2016.
07.004.
[137] Rathore K S, Pandeya D, Campbell L A M, et al. Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition[J/OL]. Critical Reviews in Plant Sciences, 2020, 39(1): 1-29[2024-01-02]. https://doi.org/10.1111/j.1467-7652.2011.
00652.x.
[138] Qi Z M, Guo C C, Li H Y, et al. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content[J/OL]. Plant Biotechnology Journal, 2024, 22(3): 759-773[2024-01-02]. https://doi.org/10.1111/pbi.14222.
[139] Gao H, Gadlage M J, Lafitte H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J/OL]. Nature Biotechnology, 2020, 38(5): 579-581[2024-01-02]. https://doi.org/10.1038/s41587-020-0444-0.
(責任編輯:王小璐 " " 責任校對:王國鑫)" " ●