999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

低頻超聲在抗感染領(lǐng)域的應(yīng)用現(xiàn)狀

2024-01-01 21:25:57閆開成陳麗劉曉麗梁文馨蔡蕓
中國抗生素雜志 2023年8期

閆開成 陳麗 劉曉麗 梁文馨 蔡蕓

摘要:抗菌藥物的不合理使用,導(dǎo)致耐藥菌感染成為影響人類健康的一大危機(jī),雖然近些年研發(fā)了一些新型抗菌藥物,但耐藥趨勢(shì)并未逆轉(zhuǎn),目前急需替代療法來應(yīng)對(duì)這一危機(jī)。低頻超聲作為一個(gè)安全且有應(yīng)用前景的物理方法,在抗感染領(lǐng)域的應(yīng)用越來越被受到重視,與抗菌藥物聯(lián)合應(yīng)用能產(chǎn)生協(xié)同殺菌作用,殺菌機(jī)制包括熱效應(yīng)、機(jī)械效應(yīng)和空化效應(yīng)。本文綜述了體內(nèi)外低頻超聲聯(lián)合抗菌藥物在抗浮游菌和生物被膜、促進(jìn)植入物藥物釋放和臨床應(yīng)用的特點(diǎn),旨在對(duì)低頻超聲進(jìn)一步研究和未來在抗感染領(lǐng)域的應(yīng)用提供指導(dǎo)。

關(guān)鍵詞:低頻超聲;抗感染;空化效應(yīng);浮游菌;生物被膜;植入物

中圖分類號(hào):R978.1 ?文獻(xiàn)標(biāo)志碼:A

Application status of low-frequency ultrasound in the field of anti-infection

Yan Kaicheng1,2, Chen Li3, Liu Xiaoli4, Liang Wenxin2, and Cai Yun2

(1 Medical School of Chinese PLA, Beijing 100853; 2 Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853; 3 Department of Information, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853; 4 Department of Dermatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853)

Abstract The irrational use of antibiotics has led to the infection of drug-resistant bacteria, which has become a major crisis affecting human health. Although some new antibiotics have been developed in recent years, the trend of drug resistance has not reversed. At present, there is an urgent need for alternative therapy to deal with this crisis. As a safe and promising physical method, low-frequency ultrasound has attracted more and more attention in the field of anti-infection. Combined with antibiotics, it can produce synergistic bactericidal effects. The bactericidal mechanism includes thermal effects, mechanical effects and cavitation effects. This review summarizes the characteristics of low-frequency ultrasound combined with antibiotics in anti-planktonic bacteria and biofilm, promoting implant drug release and clinical application in vivo and in vitro, in order to provide guidance for the further research of low-frequency ultrasound and its application in the field of anti-infection in the future.

Key words Low-frequency ultrasound; Anti-infection; Cavitation effect; Planktonic bacteria; Biofilm; Implants

1 ? ?背景

細(xì)菌感染仍然是人類社會(huì)面臨的主要挑戰(zhàn)之一,而抗菌藥物依舊是目前治療相關(guān)感染的最有效方法。但是在過去的幾十年中,由于不謹(jǐn)慎地使用抗菌藥物導(dǎo)致細(xì)菌耐藥性的流行急劇增加,耐藥菌感染仍然是人類健康的嚴(yán)重威脅[1]。在這種情況下,抗菌藥物聯(lián)合應(yīng)用已成為治療耐藥菌感染的一種選擇,因?yàn)樗哂袕V泛的覆蓋范圍和協(xié)同效應(yīng),但也提高了藥物不良反應(yīng)風(fēng)險(xiǎn),最終導(dǎo)致治療失敗、抗菌藥物使用量增加以及可能加速多重耐藥菌產(chǎn)生[2]。生物被膜是指細(xì)菌黏附于接觸表面或形成聚集體,并顯示出對(duì)抗菌藥物和宿主防御的極端耐受性,抗菌藥物消除細(xì)菌生物被膜所需的藥量是根除浮游菌所需用量的500~5000倍,這遠(yuǎn)遠(yuǎn)超出了人體的承受能力[3]。因此,抗菌藥物治療通常無法完全根除生物膜,導(dǎo)致復(fù)發(fā)性生物被膜相關(guān)感染[4]。為了應(yīng)對(duì)這些挑戰(zhàn),有必要尋求一種輔助方法來協(xié)助去除細(xì)菌生物被膜和緩解細(xì)菌耐藥趨勢(shì)。

物理方法是疾病治療的一個(gè)重要輔助手段,其中低頻超聲(low frequency ultrasound,LFU)作為一個(gè)安全且有應(yīng)用前景的物理方法,已經(jīng)在臨床研究和診斷中應(yīng)用了很多年。LFU指頻率范圍在20 kHz~1 MHz,具有長波長的聲波,這種聲波在各種組織中具有很強(qiáng)的穿透力,可以引起熱效應(yīng)、機(jī)械效應(yīng)和空化效應(yīng)[5]。關(guān)于超聲治療的最早報(bào)道可以追溯到19世紀(jì)50年代,氫化可的松軟膏聯(lián)合超聲“按摩”治療手指關(guān)節(jié)炎和手滑囊炎,與單純注射氫化可的松相比療效更佳,在后來的研究中也得到了類似的結(jié)果,證實(shí)了超聲可以增強(qiáng)藥物的皮膚滲透性[6-7]。隨著對(duì)這些作用機(jī)制的深入研究,LFU在治療中的潛力逐漸顯現(xiàn)。針對(duì)多種臨床疾病進(jìn)行了充分研究,包括促進(jìn)組織再生、疼痛管理、神經(jīng)調(diào)節(jié)、抗感染和抗癌癥治療[8]。

LFU在抗感染領(lǐng)域的應(yīng)用也越來越受到重視,多項(xiàng)研究表明,LFU與抗菌藥物聯(lián)合應(yīng)用能產(chǎn)生協(xié)同殺菌作用,可以提高抗菌藥物對(duì)浮游細(xì)菌、細(xì)菌生物被膜、真菌和其他生物體的殺菌作用[9]。因此,根據(jù)現(xiàn)有的體內(nèi)和體外的研究數(shù)據(jù),綜述LFU的作用機(jī)制及應(yīng)用效果,旨在評(píng)估LFU協(xié)同抗菌藥物在抗感染領(lǐng)域的應(yīng)用現(xiàn)狀,為未來的臨床實(shí)踐提供指導(dǎo)。

2 LFU的生物學(xué)機(jī)制

2.1 熱效應(yīng)

一般認(rèn)為,LFU的抗菌效果取決于其生物學(xué)影響,包括熱效應(yīng)和非熱效應(yīng)。LFU的熱效應(yīng)也稱為熱療效應(yīng),當(dāng)超聲波穿過組織時(shí),組織顆粒介質(zhì)界面會(huì)產(chǎn)生摩擦,介質(zhì)吸收這些能量并將其轉(zhuǎn)化為熱能,引起生物體的某些變化[10]。LFU的熱效應(yīng)與超聲參數(shù)和組織密度有關(guān),超聲的受阻和衰減度決定了組織中產(chǎn)生的熱量水平,這些熱量隨后對(duì)機(jī)體的血管舒張、氧合功能和營養(yǎng)交換等生理現(xiàn)象發(fā)揮作用。當(dāng)LFU強(qiáng)度<0.1 W/cm2主要表現(xiàn)為多普勒效應(yīng),而0.1和1 W/cm2之間的強(qiáng)度用于診斷成像[11]。當(dāng)超聲強(qiáng)度>10 W/cm2會(huì)產(chǎn)生大量熱量,高強(qiáng)度聚焦超聲是一種新的無創(chuàng)治療技術(shù),可以瞬間將靶組織加熱到60℃,導(dǎo)致蛋白質(zhì)變性或凝固性壞死,因此,高強(qiáng)度聚焦超聲主要用于抗癌和消融[12]。相比之下,低頻低強(qiáng)度超聲(0.02至1 W/cm2)隨著時(shí)間的推移產(chǎn)生的熱量相對(duì)較少[13],具體取決于頻率、波長和治療持續(xù)時(shí)間,許多研究已經(jīng)驗(yàn)證了低強(qiáng)度脈沖超聲和低強(qiáng)度連續(xù)超聲在組織再生、疼痛緩解、血栓形成、抗微生物、骨折愈合和骨關(guān)節(jié)炎等疾病治療中的潛在有效性,可見LFU在低強(qiáng)度下對(duì)抗炎、抗菌、修復(fù)和再生等有積極療效。

2.2 機(jī)械效應(yīng)

機(jī)械效應(yīng)是超聲波的最基本的效應(yīng),當(dāng)超聲波在體液介質(zhì)中產(chǎn)生駐波時(shí),懸浮在介質(zhì)中的微粒在機(jī)械力的作用下凝聚,發(fā)生位移,這些作用力包括空化效應(yīng)、微束流和輻射力。而LFU最重要的生理效應(yīng)是產(chǎn)生空化效應(yīng),當(dāng)超聲波在機(jī)體傳播時(shí),使組織中的液體形成微小氣泡核(空化核),這些空化核閉合時(shí)會(huì)發(fā)生一系列動(dòng)態(tài)過程,包括振蕩、膨脹、收縮和崩潰。當(dāng)聲壓達(dá)到一定數(shù)值時(shí),氣泡迅速膨脹,然后突然關(guān)閉,隨后的沖擊波可以誘導(dǎo)周圍空化核的形成以及細(xì)胞膜和質(zhì)膜的破裂。LFU的這種空化和微流特性歸因于慣性流體中微泡的連續(xù)壓縮和折射循環(huán),引發(fā)細(xì)胞膜和質(zhì)膜的局部擴(kuò)展松動(dòng),從而增加營養(yǎng)物質(zhì)的交換或促進(jìn)藥物輸送[14]。

空化效應(yīng)通常分為穩(wěn)定型和慣性型,在低強(qiáng)度下,空化核圍繞平衡半徑周期性振蕩,產(chǎn)生輻射壓力和微束,微束可以在氣泡表面附近產(chǎn)生高剪切力,然后氣泡變形和破裂,影響相鄰的組織結(jié)構(gòu)并使周圍的細(xì)胞或血管壁破裂。隨著頻率的降低,共振氣泡的大小和因振蕩而被迫移動(dòng)的液體體積也會(huì)增加,這表明微束在低頻下可能具有更重要的作用[15]。當(dāng)強(qiáng)度增加時(shí),空化氣泡在負(fù)壓下迅速膨脹,在正壓下急劇收縮內(nèi)爆,稱為慣性空化。在此過程中,氣泡振蕩比較劇烈,從劇烈膨脹到急劇塌陷再到瞬間破裂,慣性空化對(duì)超聲強(qiáng)度呈總體依賴性,超聲強(qiáng)度必須高于閾值強(qiáng)度,并且超聲頻率越高,慣性空化的閾值強(qiáng)度越大。Tezel等[16]發(fā)現(xiàn)慣性空化增強(qiáng)通常與空化的能量密度相關(guān),而與強(qiáng)度和頻率無關(guān)。這些數(shù)據(jù)表明慣性空化在低頻超聲中起著重要作用。

LFU的生理效應(yīng)受多因素影響,其效應(yīng)機(jī)制也是多樣復(fù)雜的,生物學(xué)效應(yīng)可能主要?dú)w因于機(jī)械振動(dòng),因?yàn)橐话阍诘蛷?qiáng)度下對(duì)組織和細(xì)胞水平上的熱效應(yīng)很小[17]。在過去的幾十年中,LFU應(yīng)用取得了重大進(jìn)展,隨著對(duì)超聲生物效應(yīng)的了解不斷增加,已經(jīng)確定機(jī)械效應(yīng)可以增強(qiáng)超聲化學(xué)效應(yīng),在促進(jìn)藥物滲透中,LFU介導(dǎo)的微束流和內(nèi)吞作用可能具有協(xié)同作用;在抗腫瘤和抗感染的治療中,LFU的熱效應(yīng)和空化效應(yīng)也是相輔相成的;多數(shù)研究發(fā)現(xiàn)LFU的空化作用在多種治療作用中具有主導(dǎo)作用[18]。

3 LFU的協(xié)同抗菌效應(yīng)

3.1 對(duì)浮游菌的作用

LFU對(duì)浮游菌作用效果的相關(guān)文獻(xiàn)大多是體外研究,盡管有些研究表明單獨(dú)使用LFU可以降低細(xì)菌的數(shù)量[19-20],但這樣的殺菌效果并不明顯,設(shè)定的強(qiáng)度也較高,容易產(chǎn)生熱損傷。本課題組胡杏等[21]通過體內(nèi)小鼠肺炎模型,考察了LFU對(duì)小鼠肺炎克雷伯菌肺炎的作用效果,設(shè)定頻率為29.36 kHz,強(qiáng)度為0.25~0.3 W/cm2,發(fā)現(xiàn)對(duì)小鼠活體肺組織中發(fā)光肺炎克雷伯菌熒光強(qiáng)度無影響。因此,LFU在抗感染領(lǐng)域的應(yīng)用主要表現(xiàn)為和抗菌藥物的協(xié)同作用,Pitt等[22]首次證實(shí)了LFU聯(lián)合慶大霉素對(duì)銅綠假單胞菌、大腸埃希菌和葡萄球菌的協(xié)同抗菌作用,吸引了很多學(xué)者對(duì)LFU在抗感染方面的探索。LFU對(duì)浮游菌的聯(lián)合作用主要是在體外孔板中進(jìn)行,容易操作和孵育,作用時(shí)間短且不易生成生物被膜(表1)。

Runyan等[23]使用70 kHz的LFU在不同強(qiáng)度下聯(lián)合頭孢硝噻吩作用于銅綠假單胞菌,在0.5~4.7 W/cm2范圍內(nèi),殺菌效果隨著超聲強(qiáng)度增強(qiáng)而增高,進(jìn)一步研究發(fā)現(xiàn)LFU作用于銅綠假單胞菌時(shí),會(huì)增大細(xì)菌的孔膜,可以使大分子的β-內(nèi)酰胺酶從細(xì)胞中排出,而小分子頭孢硝噻吩更容易進(jìn)入細(xì)菌內(nèi),從而殺死細(xì)菌。其他研究也證實(shí)了LFU增強(qiáng)了一些抗菌藥物對(duì)某些特定細(xì)菌的活性,特別是氨基糖苷類對(duì)革蘭陰性菌的活性,Zhu等[28]運(yùn)用LFU介導(dǎo)的微泡法進(jìn)一步增強(qiáng)了慶大霉素對(duì)大腸埃希菌的抗菌活性,透射電鏡下顯示細(xì)菌細(xì)胞膜比單用藥物組破壞更嚴(yán)重。此外,Liu等[26]發(fā)現(xiàn)LFU聯(lián)合左氧氟沙星或環(huán)丙沙星可增強(qiáng)其殺死大腸埃希菌的有效性,LFU可以激活氟喹諾酮類藥物產(chǎn)生活性氧,主要包括超氧自由基陰離子和羥基自由基。研究發(fā)現(xiàn)一些革蘭陽性菌也容易受到LFU的作用,使得病原菌對(duì)抗菌藥物更敏感,甚至能降低耐藥性,Ayan等[24]發(fā)現(xiàn)LFU可以增強(qiáng)金黃色葡萄球菌對(duì)青霉素、替考拉寧、紅霉素等多種抗生素的敏感性,對(duì)細(xì)菌的形態(tài)學(xué)和遺傳學(xué)都產(chǎn)生了改變。LFU聯(lián)合苯唑西林不僅減少了耐甲氧西林金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)的菌落數(shù),使得細(xì)胞壁破裂,并且改變MRSA的菌落特征,包括對(duì)甲氧西林的耐藥性[25]。

除了常規(guī)抗菌藥物,LFU還可以增強(qiáng)新型抗菌物質(zhì)對(duì)病原菌殺傷能力,比如金屬氧化物納米顆粒、生物聚合物和綠原酸[27,29-30]。

3.2 對(duì)生物被膜的作用

與浮游菌相比,生物被膜內(nèi)的細(xì)菌對(duì)多種抗菌藥物表現(xiàn)為耐藥,耐藥性的增加是由于細(xì)菌代謝特征和基因表達(dá)的變化。除了表型變化外,生物被膜本身可能會(huì)結(jié)合或減緩抗菌藥物的運(yùn)輸,從而保護(hù)內(nèi)部的細(xì)菌免于接觸致死水平的抗菌藥物。大多細(xì)菌在繁殖過程中都會(huì)產(chǎn)生生物被膜,金黃色葡萄球菌、銅綠假單胞菌、大腸埃希菌產(chǎn)生的生物被膜更常見、耐藥性更強(qiáng)。很多研究報(bào)道了LFU在體外和體內(nèi)可有效增強(qiáng)某些抗菌藥物殺滅細(xì)菌生物膜的作用,體內(nèi)模型大多為兔子和大小鼠皮下植入物模型(表2)。

Rediske等[32]報(bào)道LFU作用于家兔皮下的載有大腸埃希菌的聚乙烯圓盤,皮下在超聲作用前注射慶大霉素,治療24 h后分別測(cè)量圓盤載菌量,研究分為8個(gè)組別,分別設(shè)置了陰性對(duì)照組、陽性對(duì)照組、單用藥物組、單用LFU組以及不同強(qiáng)度的LFU組。在24.48 kHz頻率下,單用強(qiáng)度0.1 W/cm2

的LFU未見殺菌效果,而與單用藥物組相比,LFU聯(lián)合慶大霉素在0.1 W/cm2時(shí),細(xì)菌活力未見明顯降低;在0.3 W/cm2時(shí),細(xì)菌平均活力從2.94降低到

0.99 lgCFU/cm2;在0.6 W/cm2時(shí),細(xì)菌平均活力從2.93降低到1.69 lgCFU/cm2,結(jié)果顯示在強(qiáng)度為0.3 W/cm2時(shí)聯(lián)合慶大霉素有更好的殺菌效果,這也提示并不是超聲強(qiáng)度越高越好,在實(shí)際應(yīng)用中需要探索合適的作用強(qiáng)度,才可能產(chǎn)生更好地殺菌效果。同樣,Carmen等[34]研究了LFU聯(lián)合慶大霉素在不同強(qiáng)度下作用于體外大腸埃希菌和銅綠假單胞菌被膜,隨著作用強(qiáng)度的增加LFU顯著增加了慶大霉素穿過生物膜的量,使得慶大霉素在生物被膜下處于較高濃度。對(duì)于金黃色葡萄球菌和表皮葡萄球菌生物被膜的治療主要是協(xié)同萬古霉素,LFU增強(qiáng)了萬古霉素在體內(nèi)外對(duì)葡萄球菌生物膜的抑菌作用,特別是對(duì)于MRSA[42],這種聯(lián)合作用更具殺菌效果,且對(duì)動(dòng)物無明顯危害,其他研究也顯示多次LFU聯(lián)合抗菌藥物組合對(duì)細(xì)菌生物膜的協(xié)同作用優(yōu)于單次LFU[46]。另外,人β-防御素3抗菌肽對(duì)于葡萄球菌具有殺菌效果,LFU可以通過同時(shí)促進(jìn)細(xì)菌相關(guān)基因表達(dá)來增強(qiáng)人β-防御素3活性,從而抑制葡萄球菌耐藥基因的表達(dá),在80 kHz時(shí)體內(nèi)外都有明顯的協(xié)同殺菌作用[37-38]。LFU協(xié)同殺死有生物被膜的細(xì)菌,一是可能增加了細(xì)胞的通透性,提高了抗菌物質(zhì)通過生物膜的效率;二是LFU作用后的局部溫度升高和細(xì)胞內(nèi)活性氧的產(chǎn)生增多。

3.3 促進(jìn)植入物抗菌藥物釋放

臨床植入物的的使用越來越廣范,心腦血管和骨科每年有大量的手術(shù)都涉及醫(yī)療器械植入人體,這就導(dǎo)致這些“外來品”容易造成局部或全身感染,并且細(xì)菌在植入物表面更易形成生物被膜。近年來,人們致力于通過制備生物相容性材料來抑制細(xì)菌及生物被膜的形成,以防止或減少生物被膜的感染。其中一種策略是在器械或材料中加入抗菌藥物,通過藥物緩慢釋放來預(yù)防植入部位的細(xì)菌感染以及生物被膜的形成,當(dāng)感染發(fā)生時(shí),LFU可促進(jìn)這些預(yù)制抗菌藥物的加速釋放而起到積極的效果[47]。目前相關(guān)研究主要集中在體內(nèi)外模擬預(yù)制骨水泥抗菌藥物的釋放,而主要的病原菌和臨床感染相似,以常見的金黃色葡萄球菌為主(表3)。

Cai等[51]模擬髖關(guān)節(jié)置換術(shù)預(yù)制萬古霉素丙烯酸骨水泥,置入家兔髖關(guān)節(jié)部位,然后人為造成金黃色葡萄球菌急性感染,加用LFU后測(cè)量髖部抽取物的細(xì)菌載量,LFU組0~12 h的髖部抽吸物菌量減少了1.62 lg CFU/mL,LFU組12~24 h的髖部抽吸物菌量減少了2.77 lg CFU/mL。LFU增強(qiáng)骨水泥抗菌效果可能歸因于促進(jìn)釋放的藥物濃度始終高于最低抑菌濃度,以及超聲引起的相關(guān)生物聲學(xué)效應(yīng)。在預(yù)防植入物葡萄球菌引發(fā)的感染主要以預(yù)制萬古霉素和慶大霉素骨水泥為主[50,55],而對(duì)于革蘭陰性菌大腸埃希菌和銅綠假單胞菌的植入物感染,LFU主要聯(lián)合環(huán)丙沙星或慶大霉素[48-49],LFU可促進(jìn)相應(yīng)抗菌藥物的釋放,使得水凝膠上的生物膜累積量顯著減少。LFU的這種可靶向或控制藥物釋放能力,使得在感染發(fā)生時(shí)能夠使預(yù)制骨水泥大量釋放抗菌藥物,局部藥物濃度高于最低抑菌濃度,有效殺滅感染菌,此外,LFU可以更有效地讓藥物透過深層組織,發(fā)揮更大療效。

3.4 臨床應(yīng)用

LFU作為一種新型的物理輔助抗感染手段,目前研究大多處于體外和動(dòng)物實(shí)驗(yàn)階段,臨床研究主要集中在表皮清創(chuàng)術(shù)后的康復(fù)和慢性傷口愈合,具有減少抗菌藥物的使用時(shí)間、降低感染復(fù)發(fā)率和促進(jìn)組織再生等功效。相關(guān)研究主要以臨床病例回顧性為主,主要針對(duì)葡萄球菌,抗菌藥物全身使用,部分是局部協(xié)同用藥,LFU局部治療時(shí)間一般較長,3個(gè)月左右(表4)。

Tewarie等[59]回顧性對(duì)比了胸骨切開術(shù)后心臟手術(shù)患者胸骨皮膚瘺使用超聲輔助治療的效果,設(shè)定超聲頻率為25 kHz,強(qiáng)度35~40 W/cm2 ,LFU輔助傷口組18人,常規(guī)治療組19人,61%為革蘭陽性菌,16.5%為革蘭陰性菌,10.5%白色念珠菌,結(jié)果顯示LFU輔助治療組傷口愈合時(shí)間和患者住院時(shí)間明顯縮短,抗菌藥物使用時(shí)間減少,感染復(fù)發(fā)率降低。LFU輔助傷口清創(chuàng)系統(tǒng)是一種能夠破壞細(xì)菌生物被膜、優(yōu)先清除壞死組織、減少細(xì)菌數(shù)量、減少出血量和相對(duì)無痛的清創(chuàng)方式。在胸骨深部感染及下肢血管移植術(shù)后感染,LFU輔助清除促進(jìn)了表面和深部壞死物質(zhì)的分離和脫落,而不損害周圍正常的組織[56-57]。除了外科手術(shù)的優(yōu)勢(shì)外,LFU輔助技術(shù)在傷口清創(chuàng)和促進(jìn)愈合等方面,將通過縮短住院時(shí)間和降低抗微生物治療的時(shí)間來節(jié)約成本,提高療效。

4 總結(jié)

根據(jù)近20年的體外和體內(nèi)研究數(shù)據(jù),可以得出LFU在對(duì)浮游菌和細(xì)菌生物被膜的聯(lián)合治療中起到了很好的輔助作用。對(duì)于含藥植入物,LFU可以促進(jìn)抗菌藥物的釋放,達(dá)到最佳療效,但也有報(bào)道顯示,經(jīng)LFU處理會(huì)降低負(fù)載萬古霉素的丙烯酸骨水泥的界面剪切強(qiáng)度和穩(wěn)定性[60]。另外,LFU與抗菌藥物聯(lián)合治療的臨床應(yīng)用可能還有很長的路要走,因?yàn)榕R床應(yīng)用除了考察其有效性外,安全性是放在首位的,目前雖然對(duì)LFU的作用機(jī)制有一定了解,但作用頻率、強(qiáng)度及應(yīng)用時(shí)間在體外研究中尚存在很大差異,能夠使用于臨床的參數(shù)還需要進(jìn)一步評(píng)估。人們對(duì)一種新生事物的研究總會(huì)經(jīng)歷一個(gè)漫長的過程,從理論到實(shí)踐都是必經(jīng)之路,從目前來看,LFU這一物理抗感染手段在未來應(yīng)對(duì)細(xì)菌耐藥及抗生物被膜是很有前景的。

參 考 文 獻(xiàn)

Kong Q, Yang Y. Recent advances in antibacterial agents[J]. Bioorg Med Chem Lett, 2021, 35(6): 127-134.

Wang Y, Li H, Xie X, et al. In vitro and in vivo assessment of the antibacterial activity of colistin alone and in combination with other antibiotics against Acinetobacter baumannii and Escherichia coli[J]. J Glob Antimicrob Resist, 2020, 20(3): 351-359.

Maszewska A, Moryl M, Wu J, et al. Amikacin and bacteriophage treatment modulates outer membrane proteins composition in Proteus mirabilis biofilm[J]. Sci Rep, 2021, 11(1): 1522-1529.

Tzeng A, Tzeng T H, Vasdev S, et al. Treating periprosthetic joint infections as biofilms: Key diagnosis and management strategies[J]. Diagn Microbiol Infect Dis, 2015, 81(3): 192-200.

Schoellhammer C M, Srinivasan S, Barman R, et al. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs[J]. J Control Release, 2015, 202(37): 93-100.

Fellinger K S J. Klinik and therapies des chromi-schen gelenkreumatismus[J]. Vienna: Maudrich Verlag, 1954, 6(5): 549-552.

Santoianni P, Nino M, Calabro G. Intradermal drug delivery by low-frequency sonophoresis(25 kHz)[J]. Dermatol Online J, 2004, 10(2): 24-29.

Uddin S M Z, Komatsu D E, Motyka T, et al. Low-intensity continuous ultrasound therapies-a systematic review of current state-of-the-art and future perspectives[J]. J Clin Med, 2021, 10(12): 325-334.

Xie S, Li G, Hou Y, et al. A synergistic bactericidal effect of low-frequency and low-intensity ultrasound combined with levofloxacin-loaded PLGA nanoparticles on M. smegmatis in macrophages[J]. J Nanobiotechnology, 2020, 18(1): 107-112.

Jiang B L, Gao X, Xiong J, et al. Experimental study on synergistic effect of HIFU treatment of tumors using Bifidobacterium bound with cationic phase-change nanoparticles[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5714-5725.

Kingwill A, Barker G, Wong A. Point-of-care ultrasound: its growing application in hospital medicine[J]. Br J Hosp Med(Lond), 2017, 78(9): 492-496.

Quadri S A, Waqas M, Khan I, et al. High-intensity focused ultrasound: Past, present, and future in neurosurgery[J]. Neurosurg Focus, 2018, 44(2): 16-25.

Jiang X, Savchenko O, Li Y, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.

Uddin S M Z, Komatsu D E. Therapeutic potential low-intensity pulsed ultrasound for osteoarthritis: Pre-clinical and clinical perspectives[J]. Ultrasound Med Biol, 2020, 46(4): 909-920.

Bader K B, Gruber M J, Holland C K. Shaken and stirred: Mechanisms of ultrasound-enhanced thrombolysis[J]. Ultrasound Med Biol, 2015, 41(1): 187-196.

Tezel A, Sens A, Mitragotri S. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy[J]. J Pharm Sci, 2002, 91(2): 444-453.

De Lucas B, Perez L M, Bernal A, et al. Ultrasound therapy: Experiences and perspectives for regenerative medicine[J]. Genes(Basel), 2020, 11(9): 356-367.

Petit B, Bohren Y, Gaud E, et al. Sonothrombolysis: The contribution of stable and inertial cavitation to clot lysis[J]. Ultrasound Med Biol, 2015, 41(5): 1402-1410.

Gao S, Lewis G D, Ashokkumar M, et al. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria[J]. Ultrason Sonochem, 2014, 21(1): 446-453.

Al Bsoul A, Magnin J P, Commenges-Bernole N, et al. Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain(6PY1)[J]. Ultrason Sonochem, 2010, 17(1): 106-110.

Hu X, Cai Y, Wang Y, et al. Imaging of bioluminescent Klebsiella pneumoniae induced pulmonary infection in an immunosuppressed mouse model[J]. J Int Med Res, 2020, 48(10): 1-13.

Pitt W G, Mcbride M O, Lunceford J K, et al. Ultrasonic enhancement of antibiotic action on Gram-negative bacteria[J]. Antimicrob Agents Chemother, 1994, 38(11): 2577-2582.

Runyan C M, Carmen J C, Beckstead B L, et al. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa[J]. J Gen Appl Microbiol, 2006, 52(5): 295-301.

Ayan I, Aslan G, Comelekoglu U, et al. The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics[J]. Acta Orthop Traumatol Turc, 2008, 42(4): 272-277.

Conner-Kerr T, Alston G, Stovall A, et al. The effects of low-frequency ultrasound(35 kHz) on methicillin-resistant Staphylococcus aureus(MRSA) in vitro[J]. Ostomy Wound Manage, 2010, 56(5): 32-43.

Liu B, Wang D J, Liu B M, et al. The influence of ultrasound on the fluoroquinolones antibacterial activity[J]. Ultrason Sonochem, 2011, 18(5): 1052-1056.

Seil J T, Webster T J. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound[J]. Nanotechnology, 2012, 23(49): 495-502.

Zhu H X, Cai X Z, Shi Z L, et al. Microbubble-mediated ultrasound enhances the lethal effect of gentamicin on planktonic Escherichia coli[J]. Biomed Res Int, 2014, 14(6): 142-151.

Guo M, Zhang L, He Q, et al. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7[J]. Ultrason Sonochem, 2020, 66(5): 104-113.

Sun J, Wang D, Sun Z, et al. The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems[J]. Ultrason Sonochem, 2021, 80(6): 105-111.

Sun J, Huang L, Sun Z, et al. Combination of ultrasound and chlorogenic acid for inactivation of planktonic and biofilm cells of Pseudomonas fluorescens[J]. Food Res Int, 2022, 155(9): 111-118.

Rediske A M, Roeder B L, Nelson J L, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo[J]. Antimicrob Agents Chemother, 2000, 44(3): 771-772.

Carmen J C, Roeder B L, Nelson J L, et al. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo[J]. J Biomater Appl, 2004, 18(4): 237-245.

Carmen J C, Nelson J L, Beckstead B L, et al. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli[J]. J Infect Chemother, 2004, 10(4): 193-199.

Carmen J C, Roeder B L, Nelson J L, et al. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics[J]. Am J Infect Control, 2005, 33(2): 78-82.

Seth A K, Nguyen K T, Geringer M R, et al. Noncontact, low-frequency ultrasound as an effective therapy against Pseudomonas aeruginosa-infected biofilm wounds[J]. Wound Repair Regen, 2013, 21(2): 266-274.

Zhu C, He N, Cheng T, et al. Ultrasound-targeted microbubble destruction enhances human beta-defensin 3 activity against antibiotic-resistant Staphylococcus biofilms[J]. Inflammation, 2013, 36(5): 983-996.

Li S, Zhu C, Fang S, et al. Ultrasound microbubbles enhance human beta-defensin 3 against biofilms[J]. J Surg Res, 2015, 199(2): 458-469.

Liu X, Yin H, Weng C X, et al. Low-frequency ultrasound enhances antimicrobial activity of colistin-vancomycin combination against pan-resistant biofilm of Acinetobacter baumannii[J]. Ultrasound Med Biol, 2016, 42(8): 1968-1975.

Dong Y, Xu Y, Li P, et al. Antibiofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm[J]. Int J Med Microbiol, 2017, 307(6): 321-328.

Dong Y, Li J, Li P, et al. Ultrasound microbubbles enhance the activity of vancomycin against Staphylococcus epidermidis biofilms in vivo[J]. J Ultrasound Med, 2018, 37(6): 1379-1387.

Wang J, Wen K, Liu X, et al. Multiple low frequency ultrasound enhances bactericidal activity of vancomycin against methicillin-resistant Staphylococcus aureus biofilms[J]. Biomed Res Int, 2018, 18(6): 602-609.

Fu Y Y, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii[J]. Int J Nanomedicine, 2019, 14(8): 1805-1815.

Hou Y, Yang M, Jiang H, et al. Effects of low-intensity and low-frequency ultrasound combined with tobramycin on biofilms of extended-spectrum beta-lactamases(ESBLs) Escherichia coli[J]. FEMS Microbiol Lett, 2019, 366(3): 326-331.

Yang M, Du K, Hou Y, et al. Synergistic antifungal effect of amphotericin b-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms[J]. Antimicrob Agents Chemother, 2019, 63(4): 765-763.

Liu X, Wang J, Weng C X, et al. Low-frequency ultrasound enhances bactericidal activity of antimicrobial agents against Klebsiella pneumoniae biofilm[J]. Biomed Res Int, 2020, 2020(8): 591-626.

Delaney L J, Macdonald D, Leung J, et al. Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations[J]. Acta Biomater, 2019, 93(2): 12-24.

Norris P, Noble M, Francolini I, et al. Ultrasonically controlled release of ciprofloxacin from self-assembled coatings on poly(2-hydroxyethyl methacrylate) hydrogels for Pseudomonas aeruginosa biofilm prevention[J]. Antimicrob Agents Chemother, 2005, 49(10): 4272-4279.

Ensing G T, Roeder B L, Nelson J L, et al. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo[J]. J Appl Microbiol, 2005, 99(3): 443-448.

Ensing G T, Neut D, Van Horn J R, et al. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: An in vitro study with clinical strains[J]. J Antimicrob Chemother, 2006, 58(6): 1287-1290.

Cai X Z, Yan S G, Wu H B, et al. Effect of delayed pulsed-wave ultrasound on local pharmacokinetics and pharmacodynamics of vancomycin-loaded acrylic bone cement in vivo[J]. Antimicrob Agents Chemother, 2007, 51(9): 3199-3204.

Yan S, Cai X, Yan W, et al. Continuous wave ultrasound enhances vancomycin release and antimicrobial efficacy of antibiotic-loaded acrylic bone cement in vitro and in vivo[J]. J Biomed Mater Res B Appl Biomater, 2007, 82(1): 57-64.

Lin T, Cai X Z, Shi M M, et al. In vitro and in vivo evaluation of vancomycin-loaded PMMA cement in combination with ultrasound and microbubbles-mediated ultrasound[J]. Biomed Res Int, 2015, 15(8): 309-315.

Shi M, Chen L, Wang Y, et al. Effect of low-frequency pulsed ultrasound on drug delivery, antibacterial efficacy, and bone cement degradation in vancomycin-loaded calcium phosphate cement[J]. Med Sci Monit, 2018, 24(8): 797-802.

Shi M, Chen L, Wang Y, et al. Low-intensity pulsed ultrasound enhances antibiotic release of gentamicin-loaded, self-setting calcium phosphate cement[J]. J Int Med Res, 2018, 46(7): 2803-2809.

Breuing K H, Bayer L, Neuwalder J, et al. Early experience using low-frequency ultrasound in chronic wounds[J]. Ann Plast Surg, 2005, 55(2): 183-187.

Carmo M, Mazzaccaro D, Barbetta I, et al. Use of ultrasound debridement as an adjunctive tool for treating infected prosthetic vascular grafts in the lower extremities[J]. Ann Vasc Surg, 2015, 29(3): 607-615.

Tewarie L, Moza A K, Zayat R, et al. Ultrasound-assisted treatment of sternocutaneous fistula in post-sternotomy cardiac surgery patients[J]. Eur J Cardiothorac Surg, 2015, 47(5): 180-187.

Tewarie L, Chernigov N, Goetzenich A, et al. The effect of ultrasound-assisted debridement combined with vacuum pump therapy in deep sternal wound infections[J]. Ann Thorac Cardiovasc Surg, 2018, 24(3): 139-146.

Zhao Q H, Zhu F B, Cai X Z, et al. Effects of low-frequency pulsed wave ultrasound on the shear properties of the interface of vancomycin-loaded acrylic bone cement-stem[J]. Zhonghua Yi Xue Za Zhi, 2017, 97(7): 545-550.

主站蜘蛛池模板: 91精品免费高清在线| 香蕉久人久人青草青草| 国产高清国内精品福利| 国产女主播一区| 91久久偷偷做嫩草影院| 嫩草国产在线| 综合色在线| www亚洲天堂| 中文字幕人妻av一区二区| 精品国产污污免费网站| 狠狠色噜噜狠狠狠狠奇米777 | 亚洲另类国产欧美一区二区| 国产亚洲视频在线观看| 国产精品久久久久鬼色| 中文字幕在线永久在线视频2020| 日韩无码视频专区| 国外欧美一区另类中文字幕| 国产情侣一区| 国产美女91视频| 97视频免费看| 在线永久免费观看的毛片| 亚洲日本中文综合在线| 国产成人精品亚洲日本对白优播| 亚州AV秘 一区二区三区| AV片亚洲国产男人的天堂| 伊人蕉久影院| 国产麻豆aⅴ精品无码| 日本精品影院| 成人福利在线免费观看| 国产男女免费完整版视频| 国产精品三级av及在线观看| 亚洲欧洲自拍拍偷午夜色| 在线亚洲小视频| 亚洲精品爱草草视频在线| 国产一区二区在线视频观看| 日本人妻一区二区三区不卡影院| 久久这里只精品国产99热8| 91免费片| 亚洲swag精品自拍一区| 99爱视频精品免视看| 国产av一码二码三码无码| 毛片网站观看| 色婷婷狠狠干| 精品无码日韩国产不卡av| 91网站国产| 日本久久久久久免费网络| 97青青青国产在线播放| 99re经典视频在线| 久久国产精品麻豆系列| 在线精品视频成人网| 国产网站在线看| 91丨九色丨首页在线播放| 亚洲三级成人| 久操线在视频在线观看| 高清无码一本到东京热| 综合人妻久久一区二区精品| 久久动漫精品| 亚洲一区二区无码视频| 亚洲一区二区三区麻豆| 亚洲成综合人影院在院播放| 亚洲成aⅴ人片在线影院八| 免费一级毛片在线播放傲雪网| 日韩欧美国产成人| 国产精品欧美激情| 亚洲欧美极品| 日本午夜三级| 亚洲性视频网站| 高清精品美女在线播放| 波多野结衣中文字幕一区| 精品国产污污免费网站| 国产青青草视频| 精品无码一区二区在线观看| 香蕉eeww99国产在线观看| 日本www在线视频| 亚洲精品天堂自在久久77| 亚洲日韩精品无码专区| 影音先锋丝袜制服| 久久99热这里只有精品免费看| 国产精品v欧美| 国产亚洲精品自在久久不卡 | 国产亚洲欧美在线人成aaaa| 成人福利免费在线观看|