999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于無損腦刺激的情緒調節干預

2023-12-29 00:00:00周士人仇秀芙何振宏張丹丹
心理科學進展 2023年8期

摘" 要" 既往研究積累了無損腦刺激(non-invasive brain stimulation, NIBS)技術干預情緒調節以改善負性情緒的大量證據。總結NIBS的情緒調節干預效果和適用范圍對于豐富情緒調節理論、促進轉化研究有重要意義。通過綜述文獻可發現NIBS能有效影響相關腦區(例如前額葉)的活動, 從而干預外顯與內隱情緒調節過程; 通過改善情緒調節功能, NIBS具有改善精神障礙癥狀的潛在可能性。此領域尚需解決的問題如下:首先, 研究間異質性太強導致結果不一; 其次, 情緒調節干預過程的腦神經環路機制仍不明確, 情緒調節的衡量指標單一。此外, 以往NIBS方案存在定位精度不高、單時段效果微弱、現有方案難以滿足新需要, 以及具有一定的副作用等問題。據此, 未來有必要全面定量總結現有文獻, 結合神經導航技術確定最優靶點, 考察干預狀態下外顯/內隱情緒調節的腦神經環路改變, 并從主觀體驗?生理指標?神經特征多層面評估NIBS干預效果。未來還可采用多靶點NIBS方案, 或結合超掃描、神經反饋等技術以提高研究效度, 為相關的轉化研究和臨床提供啟示。

關鍵詞" 無損腦刺激技術, 前額葉, 情緒調節, 神經環路

分類號" B842; B845

1" 引言

情緒調節指的是人們有意或無意影響或調節情緒的產生、體驗與表達的過程(Gross, 1998)。有效的情緒調節能力是衡量個體心理健康與否的重要指標(Galderisi et al., 2015)。良好的情緒調節能帶來積極影響, 例如總體幸福感、工作表現、社會關系的改善(Gross amp; John, 2003)。相反, 情緒調節異常或障礙不僅容易使個體的身心健康受到不良壓力源的侵害(Crowell et al., 2015), 甚至可能導致某些精神疾病, 例如抑郁癥、焦慮癥、邊緣性人格障礙的產生或復發(Aldao et al., 2010)。改善和提高情緒調節能力, 有助于減輕個體在面臨生活或工作壓力源時的負性情緒反應, 增強面對負性情境或壓力時的心理韌性(resilience; Charles, 2013)。這對于疫情政策放開后國民調節負性情緒, 維護身心健康, 具有重大現實意義。

參與情緒調節的腦區包括前額葉皮層(prefrontal cortex, PFC)、扣帶前回(anterior cingulate cortex, ACC)、邊緣系統、頂葉, 以及這些腦區周圍的神經網絡。其中PFC在情緒的調節與控制中發揮著重要的作用(Buhle et al., 2014; Morawetz et al., 2020)。研究發現, 個體在進行情緒調節的時候, PFC活動增強, 而當個體出現情緒失調的時候, 這些腦區活動減弱(Etkin et al., 2015)或過度興奮(Grimm et al., 2008)。通過外部手段提升PFC的激活水平可能是提高個體情緒調節能力的有效途徑(Smits et al., 2020)。

無損腦刺激(non-invasive brain stimulation, NIBS)技術是一種不會對人體造成損傷的, 可以靶向調控特定腦神經區域活動的神經調控技術。其工作原理是通過放置在頭部的外部設備的磁場或電流來改變(增強或減弱)大腦皮層神經的興奮性(excitability; Ziemann et al., 2008)。NIBS主要包括經顱磁刺激(transcranial magnetic stimulation, TMS)、經顱電刺激(transcranial electrical stimulation, TES)和經顱超聲刺激(transcranial ultrasound stimulation, TUS)。其中經顱電刺激又可分為:經顱直流電刺激(transcranial direct current stimulation, tDCS)、經顱交流電刺激(transcranial alternating current stimulation, tACS)、經顱隨機噪聲刺激(transcranial random noise stimulation)。其中, tDCS能通過電極片向頭皮特定區域施加微弱的直流電流(0.5~4 mA)來調控自發的神經元網絡活動(Brunoni et al., 2012; Farnad et al., 2021)。其調控效果取決于刺激極性:陽極能增強, 而陰極會抑制神經元的興奮性(Nitsche amp; Paulus, 2000, 2001)。tACS的工作原理是將有節律的電流作用于腦皮層目標區域, 通過增強或減弱神經元之間活動的同步性, 在大腦中產生內源性震蕩, 以調節腦網絡活動(Liu, V?r?slakos et al., 2018)。TMS則是通過在大腦皮層上放置電線圈, 利用快速產生的脈沖磁場穿過大腦頭骨來改變皮層下神經細胞的膜電位, 從而影響腦內代謝和神經元活動, 對大腦神經活動產生短暫性的干擾(Gershon et al., 2003)。根據脈沖個數以及刺激規律的不同, TMS被分為單脈沖TMS、雙脈沖TMS和重復性TMS (repetitive TMS, rTMS)。當前使用較為普遍的rTMS有高低頻rTMS兩種:低頻(≤ 1 Hz) rTMS被認為具有神經抑制作用, 即降低特定腦區的興奮性和代謝活動, 而高頻(≥ 5 Hz) rTMS則被認為具有神經興奮作用(Gershon et al., 2003; Rosa amp; Lisanby, 2012)。tDCS的空間聚焦率和刺激深度不及TMS (Keeser et al., 2011), 標準TMS中使用“8”字線圈最大刺激深度為距頭皮1.5~2.5 cm; 深部TMS中使用的“H”型線圈能刺激的最大深度達6 cm (Roth et al., 2007)。相比TMS和tDCS兩種調控技術, TUS則具有更高的空間分辨率和更深的穿透力。它利用低強度聚焦超聲穿過顱骨作用于神經組織來抑制或增強高空間特異性的神經元活動(Mehi? et al., 2014)。以上技術已被眾多研究證明能有效提高認知功能和改善抑郁癥、癲癇等腦功能疾病的臨床癥狀(Wang et al., 2022; Hyde et al., 2022)。

目前, 包括TMS和tDCS在內的NIBS技術已是被廣泛用于研究大腦功能和治療精神疾病的神經科學工具。在國家科技創新2030——“腦科學與類腦研究”重大項目實施方案中, 以NIBS為代表的神經調控技術被多次提及, 并被作為新型干預手段應用到腦疾病治療、認知功能增強等多個研究領域中。例如, 對與認知和情緒功能相關的腦區(例如背外側前額葉皮層(dorsolateral PFC, dlPFC))施加rTMS可以有效改善抑郁癥和精神分裂癥患者的認知功能(Barr et al., 2013)。遺憾的是, 我們目前暫未找到TUS和tACS干預情緒調節過程的相關研究, 這兩類技術目前更多的是用于改善抑郁癥、癲癇、帕金森等腦功能疾病的臨床癥狀, 僅有一篇摘要性報道發現TUS刺激右額下回可以改變健康被試基于自我報告的情緒狀態(Sanguinetti amp; Allen, 2017)。因此本文無法介紹這兩種技術干預情緒調節過程的研究進展。基于以上, 本文以TMS和tDCS為主要介紹對象, 對NIBS在情緒調節上的研究與應用、發展動態、目前尚需解決的問題及建設性意見進行綜述。

2" 外顯/內隱情緒調節的腦機制及NIBS對情緒調節的影響

研究者們普遍把情緒調節劃分為外顯情緒調節(explicit emotion regulation)和內隱情緒調節(implicit emotion regulation; Braunstein et al., 2017)。外顯情緒調節指在意識參與狀態下, 通過主觀努力啟動, 并需要一定水平的監控來執行的情緒調節過程; 而內隱情緒調節指在沒有意識參與的狀態下由刺激本身自動引發和完成, 且無需監控的情緒調節過程(Gyurak et al., 2011)。目前相當多的綜述或元分析已總結了情緒調節的腦成像研究(Etkin et al., 2015; Morawetz et al., 2020)。其核心神經環路機制為負責認知控制功能的PFC腦區(主要包括dlPFC、腹外側前額葉皮層(ventrolateral prefrontal cortex, vlPFC)、頂葉、輔助運動區)對負責情緒反應功能腦區(皮層下區域包括杏仁核、腹側紋狀體和中腦中央灰質, 皮層區域包括腦島和背側ACC)的調控。根據情緒調節目標、策略、被調節情緒效價等因素的不同, 還會有負責語言、記憶, 或動作控制等功能的腦區(包括扣帶中回、海馬旁回、角回、顳上回)參與。其中, 內隱和外顯情緒調節的神經環路機制稍有不同, 前者主要依靠腹內側前額葉(ventromedial PFC, vmPFC) (該腦區與腹側ACC有重疊)和腦島, 而后者更加依靠dlPFC、vlPFC、輔助運動區和頂葉(Etkin et al., 2015)。由于PFC是外顯/內隱情緒調節神經環路中的核心觸發腦區, 大部分基于NIBS的情緒調節干預研究, 其刺激靶點都位于此。然而, 研究者認為NIBS不僅改變了PFC的激活水平, 還進一步調節了更深層腦區的活動, 比如ACC、腦島及杏仁核等(Feeser et al., 2014)。最近的研究發現, TMS刺激vlPFC時會引起杏仁核活動增強。這表明以皮質?皮質下結構連接為靶點可以增強頭皮TMS對皮質下神經活動的影響(Sydnor et al., 2022)。以上意味著NIBS不只是影響受刺激的靶點, 還會通過影響深層腦區和不同腦區之間的協變來達到干預情緒調節和改善情緒的目的(Berboth amp; Morawetz, 2021)。除了腦影像證據外, NIBS干預情緒調節過程也積累了一些來自腦電(electroencephalogram, EEG)研究的證據。一項TMS-EEG研究發現, 在認知重評期間, 左側vlPFC上的單脈沖TMS增加了中央頂葉和右側PFC內的腦電晚期正電位(late positive potential, LPP)幅度, 這為單脈沖TMS通過積極的認知重評來調節負性情緒體驗程度提供了一個神經指標(Cao et al., 2022)。目前本文未能找到采用功能近紅外光譜(functional near-infrared spectroscopy, fNIRS)來證明NIBS對情緒調節有干預效果的相關研究。已有研究者探索了針對情緒障礙人群的fNRIS神經反饋訓練, 在該實驗中, 被試能根據實時fNIRS反饋信號上調他們右側dlPFC的活動, 進而顯著改善了對負性情緒的調節(Yu et al., 2021)。

在PFC中, 左側PFC (包括dlPFC和vlPFC)是NIBS干預外顯/內隱情緒調節的主要靶點, 而內側前額葉皮層(包括背內側前額葉皮層(dorsomedial PFC, dmPFC)和vmPFC), 則是NIBS干預內隱情緒調節的主要靶點(Etkin et al., 2015)。已有的綜述文獻均支持NIBS激活 PFC能增強情緒調節能力的觀點。例如, Mondino等人(2015)總結發現, 刺激dlPFC能夠影響情緒、情緒加工, 以及情緒刺激的注意加工。Plewnia等人(2015)則發現增強或減弱PFC的激活水平能相應地增強或減弱對情緒的認知控制能力。Amidfar等人(2019)的綜述也表明對dlPFC的刺激能提高對情緒的認知控制能力。Makovac等人(2017)通過元分析發現NIBS能降低自主神經系統的反應, 意味著NIBS可降低負性情緒伴隨的生理指標強度。最近的一篇元分析表明, NIBS能降低壓力帶來的負性情緒反應, 即支持了上述觀點, 然而卻發現單一時段(session)的NIBS效應量較低, 推薦多次重復NIBS以獲得理想的負性情緒下調效果(Smits et al., 2020)。既往研究積累了NIBS技術干預情緒調節以改善負性情緒的大量證據。但由于不同研究所用的NIBS參數, 例如刺激深度、刺激強度、刺激部位和作用范圍等有很大區別, 因此本文將這些信息, 連同實驗設計、刺激材料、任務類型、情緒調節方向和策略, 以及實驗結果進行了梳理(見表1、表2), 以下分別介紹NIBS對外顯/內隱情緒調節的影響。

在要求被試使用外顯情緒調節策略(例如認知重評、表達抑制、注意分散等)以進行主動情緒調節的情況下(表1):He, Zhao等人(2020)發現在激活右側vlPFC后, 個體對社會疼痛的體驗強度降低(主觀情緒評分以及LPP波幅降低), 情緒調節能力變強。進一步的研究發現rTMS激活右側vlPFC能促進對社會疼痛的調節且增強社會獎勵所帶來的情緒體驗(Li et al., 2022)。最近研究發現, 激活vlPFC顯著改善了認知重評策略條件下的負性情緒, 而激活dlPFC則顯著改善了分心策略條件下的負性情緒, 并且被試在重新評估中表現出比VLPFC激活組的分心塊更小的LPP振幅(Zhao et al., 2021) 。采用tDCS方案的研究發現, 左側vlPFC在積極重評中有功能特異性(Cao et al., 2021)。右側vlPFC的激活降低了個體在社會排斥情境下的負性情緒體驗強度和生理指標強度(瞳孔直徑), 提高其應對社會排斥時的情緒調節能力(He et al., 2018)。激活dlPFC或vlPFC能增強情緒調節, 降低負性情緒的主觀體驗和生理指標的強度, 如皮電傳導水平(skin conductance level)和心率等(Van Erp et al., 2018)。而針對NIBS干預外顯情緒調節時腦功能神經環路改變的研究中, de Wit等人(2015)發現高頻rTMS刺激強迫癥患者的dlPFC, 影響了患者額葉與邊緣系統的功能性連接, 從而增強了情緒調節的能力。Chrysikou等人(2019)發現, tDCS激活左側dlPFC期間, mPFC在情緒下調過程中被激活增強, 并削弱了mPFC與雙側杏仁核之間的腦功能連接, 從而影響了抑郁癥患者認知重評的表現。van Dam和Chrysikou (2021)卻發現, 在刺激前, 健康對照組的右側杏仁核與視覺皮層在下調負性情緒時被激活, 然而左側dlPFC接受tDCS刺激期間卻未產生任何腦激活的改變。這項研究中tDCS效應微弱或缺失的原因除了樣本量較小之外, 還有兩大原因:其一, 中等強度(1.5 mA)的單側腦刺激可能難以刺激到對應或深層腦區; 其二, 我們推測可能跟該研究設置的刺激方案有關, 即陰極電極置于右側dlPFC (該腦區亦為情緒調節關鍵腦區)。因此難以排除該效應的缺失是由陰極刺激抑制了右側dlPFC活動引起的。

在未要求被試完成任何情緒調節任務(即僅考察了內隱情緒調節)的情況下, 采用TMS方案的研究發現, 右側dlPFC的激活降低了個體對恐懼面部表情的效價與喚醒度評分(Notzon et al., 2018)。有研究發現雙側dlPFC的激活能降低負性情緒體驗強度(如疼痛的情緒反應; Boggio et al., 2009; Rêgo et al., 2015)。采用tDCS方案的研究發現, tDCS激活右側vlPFC減弱了個體對負性刺激的情緒反應(包括主觀情緒評分與皮膚電活動; Vergallito et al., 2018)。Riva等人(2012)發現激活右側vlPFC能降低社會排斥誘發的負性情緒反應(社會疼痛和攻擊性行為), 提升情緒控制能力; 而抑制右側vlPFC, 會增加社會排斥所帶來的的負性情緒反應(Riva et al., 2015)。Antal等人(2014)發現激活右側mPFC降低了對社會壓力的情緒反應(衡量指標為皮質醇水平)。最近一篇研究發現使用tDCS激活vmPFC不但能增強被試內隱情緒調節的效果還能減少被試對負性刺激的注意偏向, 陽極刺激組的LPP波幅顯著低于偽刺激組(高可翔 等, 2022)。此外, 在探索NIBS干預內隱情緒調節時腦功能神經環路改變的研究中, Abend等人(2019)發現, tDCS激活mPFC降低了個體對負性視頻材料的情緒強度評分, 還同步激活了負責內隱情緒調節的相關腦區, 即vmPFC、膝下扣帶前回(subgenual ACC)和腹側紋狀體, 且改變了這些腦區間的功能連接性。研究還發現vmPFC被tDCS激活后增強了對憤怒情緒的內隱調節, 同時減少了攻擊性行為(Gilam et al., 2018), 以及增強了對快樂面孔(而非恐懼面孔)的識別表現和神經反應(Winker et al., 2018)。

3" NIBS對精神障礙人群情緒調節異常的改善

精神障礙往往伴有情緒調節異常(Koole, 2009)。大量綜述和元分析所總結的證據表明NIBS可以有效改善抑郁癥、焦慮癥、創傷后應激障礙等精神障礙的臨床癥狀(Begemann et al., 2020; Kan et al., 2020; Zhou amp; Fang, 2022; Hyde et al., 2022)。情緒調節異常作為眾多精神障礙的一大共性特征已受到廣泛關注(Koole, 2009)。然而遺憾的是, 在眾多NIBS研究中, 相比于干預和改善精神疾病嚴重程度的研究而言, 針對這些人群情緒調節的干預研究, 其數量仍然相當有限。目前該方向已有一定程度的有益嘗試, 發現情緒調節功能的改善也能間接地減少抑郁癥、創傷后應激障礙(post-traumatic stress disorder, PTSD)、強迫癥(obsessive-compulsive disorder, OCD)和焦慮癥的癥狀(Iannone et al., 2016; Ma et al., 2014; Watts et al., 2012)。我們以抑郁癥、焦慮癥、OCD以及PTSD為例, 分別介紹。

3.1" 抑郁癥

情緒調節障礙和認知缺陷是抑郁癥的核心特征, 其核心腦功能異常來源于PFC腦區在情緒調節時激活減弱, 這反映了抑郁癥人群對負性情緒認知控制功能的弱化(Rive et al., 2013; 何振宏 等, 2015)。研究者們據此考察NIBS激活PFC后, 能否增強認知控制功能, 達到改善抑郁癥患者負性情緒的目的。在NIBS干預抑郁癥患者的外顯情緒調節過程中, 研究發現, tDCS激活抑郁水平個體的右側vlPFC時可顯著提高被試對社會排斥的外顯情緒調節能力(He, Liu et al., 2020)。采用TMS方案的研究也發現了類似的結果, 即激活抑郁癥患者的右側vlPFC, 可有效提高患者對社會疼痛的外顯情緒調節能力(莫李澄 等, 2021)。NIBS也能有效干預患者的內隱情緒調節過程。例如, 在左側dlPFC施加陽極tDCS可以有效增強抑郁癥患者的認知控制表現, 且完全消除了患者對負性情緒圖片的注意偏向。此外, 與偽刺激組相比, tDCS激活左側dlPFC能有效改善抑郁情緒體驗, 且30分鐘刺激相比于20分鐘效果更佳(Pavlova et al., 2018)。有研究還探索了tDCS激活vlPFC以提高抑郁癥患者對社會疼痛的內隱情緒調節能力的可能性, 然而該研究僅發布了摘要性的報道(Hsu et al., 2018)。基于以上這些結果, 研究者認為可能的起效機制如下:NIBS可通過刺激認知控制網絡(cognitive control network)的dlPFC節點, 從而能直接影響情緒的認知控制過程, 最終達到上調或下調情緒的目的(Lantrip et al., 2017)。

3.2" 焦慮癥

焦慮癥可分為廣泛性焦慮癥、社交焦慮癥、恐懼癥等。情緒調節困難也是焦慮癥的特征之一, 這與包含了dlPFC的神經回路活動異常有關。研究表明, rTMS能改善焦慮癥狀(Mantovani et al., 2010; Rodrigues et al., 2019)和焦慮型抑郁癥(Diefenbach et al., 2013)。然而, 針對焦慮癥患者的外顯情緒調節這一細分領域的研究比較缺乏。已有一篇研究證明對廣泛性焦慮癥患者的右側dlPFC進行30次的低頻rTMS能顯著改善患者的情緒調節能力(Diefenbach et al., 2016), 但該研究僅采用自我報告的方式衡量情緒調節的困難程度, 缺乏神經生理學上的證據。此外, Haeems (2018)發現對社交焦慮癥患者的PFC或小腦進行20分鐘的tDCS刺激, 能有效改善患者的認知重評能力。目前未能發現針對焦慮癥患者內隱情緒調節的NIBS干預研究。

3.3" 強迫癥

情緒調節受損是OCD患者過度情緒反應的基礎。在NIBS干預OCD患者的外顯情緒調節過程的研究中發現, 使用高頻rTMS刺激dlPFC有助于增強OCD患者的認知重評過程, 降低負性情緒反應(de Wit et al., 2015)。Douw等人(2020)發現使用興奮性的rTMS刺激dlPFC能降低OCD患者的情緒痛苦程度。在針對恐懼消退(內隱情緒調節的一種)的研究中, 研究者利用陽極tDCS刺激mPFC, 發現該方案可顯著促進OCD患者的安全學習(safety learning)過程(一種通過學習新的安全線索從而抑制恐懼情緒的過程), 從而降低了患者的情緒困擾程度(Adams et al., 2021)。

3.4" 創傷后應激障礙

PTSD的主要特征是對恐懼性條件刺激的情緒反應失調(Parsons amp; Ressler, 2013)。神經影像學研究表明PTSD患者在面對恐懼性條件刺激時, 杏仁核活動過度活躍, 而海馬和vmPFC活動顯著減少(Etkin amp; Wager, 2007; Shin et al., 2006)。以上腦神經病理機制研究為NIBS干預PTSD患者的情緒調節過程提供了靶點參考。目前未能發現針對PTSD患者外顯情緒調節的NIBS干預研究。在對內隱情緒調節的研究中, 研究者發現在恐懼消退學習之后, tDCS激活vmPFC可以改善PTSD患者對恐懼記憶的消退(Van't Wout et al., 2017)。針對PTSD患者的臨床試驗研究結果表明, 工作記憶訓練和tDCS的結合顯著改善了患者的認知功能和情緒表現(Kedzior et al., 2012; Saunders et al., 2015)。

4" 目前尚需解決的問題及建設性意見

綜上所述, NIBS已被證明能有效影響情緒調節相關腦區(例如PFC)的活動, 從而干預外顯與內隱情緒調節過程。利用該機制的NIBS方案已在精神疾病的治療上展現出充分的潛力。然而, 此領域還有許多尚待解決的問題。例如, NIBS干預情緒調節的研究結果不一, 情緒調節干預過程中神經環路的具體改變尚無定論, 刺激靶點定位精度不高等問題。接下來, 我們對每個問題分別介紹并給出相應的建設性意見。

4.1" 研究間異質性太強導致結果不一, 可定量總結已有文獻, 通過多靶點調控技術以減少實驗中額外變量的影響

目前此領域多數研究支持了NIBS的情緒調節干預效果。然而部分研究未能發現該干預效果(Mungee et al., 2016; van Dam amp; Chrysikou, 2021)。這可能是由研究之間的異質性所致, 例如被試個體差異、刺激深度、刺激參數、離線(NIBS與實驗任務分開進行)與在線(NIBS與實驗任務同時進行) NIBS等因素。這些因素在一定程度上掩蓋了NIBS效應的普遍性與可靠性。異質性因素具體表現為:(1)被試個體差異會導致實驗結果的不同。例如Hofhansel等人(2020)對罪犯和正常健康被試使用陽極tDCS刺激dlPFC, 發現罪犯的腦興奮性明顯降低而不是增加, 這就挑戰了傳統觀點認為的tDCS二分效應(dichotomous tDCS effects):即陽極具有興奮作用, 陰極具有抑制作用。此外, 使用陽極tDCS刺激右側vlPFC能有效下調低抑郁水平個體的社會疼痛, 但在高抑郁水平個體中效果微弱(He, Liu et al., 2020); (2)在刺激深度上, 傳統的TMS (如標準“8”字形線圈)僅能刺激頭骨下方約1~2 cm的淺層腦區(Deng et al., 2013), 這就難以保證與情緒調節相關的更深層腦區(如mPFC、杏仁核)得到刺激。因此刺激深度太淺很可能是一些研究未能發現NIBS對情緒調節有干預效果的原因之一(Kirkovski et al., 2017)。深部TMS能深入刺激到頭骨以下4 cm的更深層腦區(Tendler et al., 2016)。研究發現, 采用深部TMS刺激mPFC后, 被試對負性社會反饋的預期顯著增強(Zhang, Ao et al., 2022); (3)刺激參數(如刺激靶點、極性)的選擇也會影響情緒調節效果:在刺激靶點上, 研究發現, 陽極tDCS激活右側vlPFC可加強認知重評能力從而減弱負性情緒體驗(張丹丹 等, 2019)。該刺激方案也能顯著上調或下調對負性圖片的情緒效價評估, 而刺激dlPFC則不能達到預期效果(Marques et al., 2018)。在刺激極性的選擇上, Abend等人(2016)發現陽極tDCS刺激mPFC不能減少恐懼消退, 甚至會誘發對中性刺激恐懼反應的泛化, 但其他研究者發現陽極tDCS刺激vmPFC能夠增強恐懼消退(Dittert et al., 2018; van't Wout et al., 2016)。在使用陰極tDCS的研究中也出現了矛盾結果:有研究發現陰極tDCS抑制右側dlPFC對健康被試的恐懼消除沒有效果(Mungee et al., 2016), 但別的研究則顯示了陽性結果(Ganho-ávila et al., 2019); (4)離線與在線NIBS也會影響情緒調節效果。研究發現, 采用在線tDCS刺激左側dlPFC未能增強對厭惡圖片的情緒調節能力(Clarke et al., 2020), 而離線tDCS同樣是刺激左側dlPFC卻能增強調節能力, 甚至能提高對正性情緒圖片的感知能力(Hansenne amp; Weets, 2020)。

鑒于NIBS的干預效果不一, 未來研究可以結合以下思路進行改進:(1) 開展更全面的元分析來驗證NIBS對情緒調節的有效性和普遍性, 并找出影響干預結果的潛在因素。目前已有3篇相關的元分析或綜述考察了NIBS對情緒調節的影響。Smits等人(2020)的元分析顯示tDCS在減少與壓力相關的情緒反應上有微弱且顯著的效果, 但是沒有給出證據表明rTMS作用于PFC能影響個體的情緒反應。Markovic等人(2021)的綜述表明tDCS與rTMS都能有效調節個體的恐懼記憶和恐懼消退過程。最新的一篇元分析表明單次時段的NIBS對下調負性情緒有顯著的影響, 其中rTMS對負性情緒的下調有中等顯著的影響, 而tDCS則沒有顯著的影響(Zhang, Li et al., 2022)。然而, 這3篇文章聚焦的點還不夠全面:首先, Markovic等人僅綜述了NIBS對恐懼情緒的調節作用, 但沒有提供相應的元分析或系統綜述的證據。Smits等人主要關注NIBS如何影響壓力性的情緒應激反應, 甚少提及情緒調節過程。Zhang等人分析的負性情緒調節效果以主觀的自我報告來衡量, 因此結果難以避免存在偏差。其次, 3篇文章都只納入了單時段(session)腦刺激的實證研究, 這就缺少了與多時段腦刺激的研究結果的量化比對。此外, 它們僅分析了單向的情緒調節目標(只有下調, 沒有上調)。(2) 采用多靶點調控技術以減少實驗中額外變量的影響。以雙線圈TMS為例, 其相比于單線圈的突出優勢在于:①雙線圈隨機刺激模式可以減少被試在單點刺激中產生的干擾性心理因素(如期望效應、注意分散); ②比起單線圈TMS, 多線圈TMS不僅是刺激深部皮質結構的另一種方案(即深部TMS的替代), 還能保證刺激靶點的精度(Tzabazis et al., 2013); ③雙線圈TMS可用來研究不同腦區間的功能連接性和可塑性, 有助于揭示眾多精神疾病(如精神分裂癥、自閉癥)的病理生理學機制(Lafleur et al., 2016)。再如多灶性tDCS (multifocal tDCS)。作為多靶點NIBS的一種應用, 其一般使用兩個以上的電極(如1個陽極電極和4個及以上的陰極電極)。與傳統雙極tDCS方案相比, 其空間精度更高(Ruffini, Fox et al., 2014; Ruffini, de Lara et al., 2017), 誘發的皮質興奮性更強(Fischer et al., 2017)。在臨床治療上, 多靶點NIBS已被證明可以緩解神經性慢性疼痛(Chodakiewitz et al., 2013)和帕金森患者的行動障礙(Stefani et al., 2009), 甚至能改善長期意識障礙患者的疼痛敏感性(Zhang, Li et al., 2021)。已有研究采用多靶點NIBS方案同時對重度抑郁癥患者的左側dlPFC和dmPFC進行高頻rTMS刺激, 發現能顯著改善抑郁癥狀(Carpenter et al., 2017)。Corlier等人(2021)的摘要性報道表明同時刺激左側dlPFC和初級運動皮層的多靶點rTMS方案, 比單靶點rTMS更能有效改善抑郁癥癥狀。在一項針對OCD患者恐懼消退的研究中, 研究者采用1個陽極電極片刺激mPFC和5個陰極電極片置于其周圍的方案, 發現能顯著增加額極與額中、額上回的功能連接性, 并促進了被試在暴露療法中的安全學習效果(Adams et al., 2021)。然而, 目前采用多靶點方案來干預正常人和精神障礙人群情緒調節過程的文獻仍非常缺乏。未來可著眼于探索多靶點NIBS對情緒調節對應腦區的精準調控(例如, 采用雙線圈TMS技術, 探討不同腦區在外顯情緒調節中的工作時序), 同時結合功能性核磁共振成像(functional magnetic resonance imaging, fMRI)、腦電圖(electroencephalogram)等腦觀測技術, 觀察在多靶點NIBS共同作用下神經機制的變化, 以更加明確各個腦區在情緒調節過程中的因果關系。

4.2" 情緒調節干預過程的神經環路有待進一步研究

使用NIBS技術刺激dlPFC的方案已被證明能有效調控情緒反應和認知缺陷(Kuo et al., 2014)。但是結合腦成像技術探測NIBS干預外顯情緒調節的腦神經機制的變化截至目前只有3篇(Chrysikou et al., 2019; de Wit et al., 2015; van Dam amp; Chrysikou, 2021)。這些研究的樣本量較小, 且都為單時段(session)刺激, 容易導致得出的研究結論效應量不足。目前尚未有研究采用特定內隱情緒調節任務(例如情緒標記任務、情緒 Stroop 任務等)探討NIBS干預過程下的腦神經環路機制。因此在個體進行外顯/內隱情緒調節的過程中, PFC被NIBS技術激活的同時有哪些深層腦區同步受到影響以及PFC-深層腦區連接性會發生怎樣的改變等問題, 還需進一步的實證研究予以解答。

結合fMRI技術來研究NIBS干預情緒調節過程中的神經環路機制是當下的研究思路, 但是其發展還受到一定程度的技術限制。例如, 采用在線TMS方案結合fMRI, 我們會發現TMS的電流脈沖與MRI掃描儀的磁場會相互作用, 從而發出刺耳的噪聲, 這種噪音不僅會引起被試的不適, 而且會破壞線圈的機械穩定性, 存在安全隱患(Bungert, 2010)。因此大多數fMRI研究更多采用離線NIBS方案。目前在技術層面上已實現在線tDCS與fMRI的結合(Baeken et al., 2018; van Dam amp; Chrysikou, 2021), 可以在某種程度上作為在線TMS與fMRI的代替。然而, tDCS的刺激空間精度相較于TMS來說更低, 難以達到滿意的刺激效果。當前, TMS-fMRI技術正在不斷發展, 有研究已提出新的與fMRI兼容的TMS線圈設計方案, 并有效改進了TMS的機械穩定性(Cobos Sanchez et al., 2020)。

NIBS干預下的情緒調節神經環路研究還有潛在的臨床應用價值。相關研究結果可促進轉化研究, 甚至有指導精神障礙人群的NIBS干預策略的可能性。例如:(1) NIBS激活PFC的效果可以通過fMRI探測到, 因此MRI可以準確地找到患者PFC中的目標區域。考慮到精神障礙人群在解剖學和電生理學上存在個體差異, 該系統也許能為精神障礙人群中對TMS/tDCS治療無反應的個體(noresponder)優化刺激部位和刺激頻率, 實現個體化的NIBS治療方案(Cash et al., 2021; Modak amp; Fitzgerald, 2021); (2)由于對PFC的NIBS刺激效果可以投射到大腦深部區域, 如vmPFC、杏仁核和腦島, 因此除了外側PFC區域這些表層靶點, 大腦深部區域也可以是NIBS用于治療精神障礙相關癥狀的靶點(Downar amp; Daskalakis, 2013); (3)鑒于PFC-NIBS能調節情緒調節相關腦區之間的功能連接, 那么未來NIBS干預方案下的目標就可以是遠程改變功能連接的強度, 從而改善情緒調節功能(Hiser amp; Koenigs, 2018; Myers- Schulz amp; Koenigs, 2012)。

4.3" NIBS的刺激靶點定位精度不高, 可采用神經導航技術提高定位精確度

為精確定位情緒調節相關腦區, 以最大化NIBS靶點區域的電場強度或聚焦度, 以往多數研究通過手動或依據10-20國際標準腦電電極位置系統定位刺激靶點。然而這些定位方法未能充分考慮到頭部大小、形狀, 以及腦皮層形態的個體差異(Gordon et al., 2017)。因此這些研究是否精準地刺激到預定靶點值得懷疑。采用MRI等腦影像指導下的神經導航技術(neuronavigation)則可解決該問題。該技術借助光學或磁學跟蹤儀顯示出腦結構圖像以進行個體化建模, 精確地衡量刺激靶點位置、角度、深度, 并直觀地引導NIBS刺激線圈對刺激靶點進行定位追蹤, 從而實現對每名被試刺激靶點定位方案的“量體裁衣” (Cash et al., 2021)。結合電生理學與神經影像學的神經導航技術還可以回答NIBS在何處、何時以及如何進行刺激的問題, 并能同時提供神經元活動的在線和離線數據(Bergmann et al., 2016)。研究發現, 通過神經導航技術與10-20系統定位出的dlPFC靶點位置、刺激范圍和電流強度具有顯著差別(De Witte et al., 2018)。這很有可能說明以往大多數研究并未精準刺激到目標腦區, 因此有必要采用神經導航技術優化刺激靶點的定位精度, 驗證以往研究結果的可靠性。

目前已有研究做了神經導航與NIBS技術的結合。例如, 在針對OCD患者情緒反應性增加的神經機制的研究中, 研究者利用實時神經導航技術精準定位dlPFC, 實現了對rTMS干預效果的優化(de Wit et al., 2015)。采用與tDCS兼容的MRI神經導航系統能精準定位左側dlPFC, 更好地排除頭部移動帶來的干擾因素(Baeken et al., 2018)。此外, 采用光學神經導航技術也展示出優于手動定位刺激靶點的效果。比如, 進行離線rTMS期間, 光學導航系統能自動定位和監測每個被試的左額下回(left inferior frontal gyrus), 從而實現刺激靶點的個體化和自動化監測(Urgesi et al., 2016)。

4.4" 單個刺激時段(session)的NIBS效果微弱, 可采用多時段刺激以增強干預效果

此前有元分析指出, 單時段或較少時段的NIBS對情緒調節的干預效果微弱, 建議采用多時段重復性刺激以增強干預效果(Smits et al., 2020)。比如, 在情緒調節任務中, 抑郁傾向人群難以從單時段刺激中獲益(He, Liu et al., 2020; Zhang, Liu et al., 2021), 這可能與刺激次數較少, 刺激時長較短有關。同樣, 在抑郁癥患者的認知控制任務中, 單時段tDCS效果遠沒有健康被試的好(Wolkenstein amp; Plewnia, 2013)。單時段短時間的tDCS刺激右側vlPFC后, 高抑郁水平被試的負性情緒強度下降程度明顯不如低抑郁水平被試(張丹丹 等, 2019)。對特殊人群(罪犯)的單時段tDCS也未能發現他們與正常人在情緒調節任務中有不同的神經反應(Hofhansel et al., 2020)。然而, 采用連續多時段重復NIBS有望成為驗證干預效果的更優方案。它不僅能有效提高皮層興奮性(Bergmann et al., 2016), 還能增強其對工作記憶或認知控制的干預效果(Elmasry et al., 2015; Hill et al., 2016)。Molavi等人(2020)發現采用連續多時段tDCS (1次/20分鐘/天, 共10天)方案刺激邊緣型人格障礙患者的雙側dlPFC, 能有效提高他們的認知重評能力和執行功能。在NIBS對于情感障礙的治療應用上, 20~30個時段的刺激為推薦值(Martin et al., 2018)。刺激時段越長(30 vs. 20分鐘), 帶來的臨床療效越好(Woods et al., 2016)。這些發現提示了在健康或抑郁人群中使用多次重復性NIBS增強干預情緒調節效果的可能性。

4.5" 情緒調節效果的衡量指標單一, 可從多層面評估NIBS的干預效果

情緒調節效果是通過比較情緒指標在調節前后的差異來衡量的。反映情緒的指標主要包括主觀體驗與生理指標。主觀體驗即個體對情緒主觀感受的自評和情緒問卷的得分。當負性情緒產生時, 被試主觀體驗的負性情緒強度分數增加, 情緒問卷的得分變高(Gross amp; John, 2003)。生理指標主要指自主神經系統(the autonomic nervous system, ANS)的指標, 包括心率、血壓、瞳孔直徑, 以及皮電傳導水平等。當負性情緒產生時, ANS迅速反應, 引起心率加快、血壓升高、瞳孔直徑增大, 以及皮電傳導水平上升等反應(Levenson, 2014)。此外, 負性情緒還可誘發其他腦神經特征反應, 例如腦電的LPP波幅增加以及負責情緒反應功能腦區(例如杏仁核)的激活等(Hajcak et al., 2010; Kragel amp; LaBar, 2016)。以往研究主要通過主觀體驗的方法衡量情緒調節效果, 然而被試受社會贊許性或從眾效應的影響, 容易隱瞞自己真實的主觀體驗強度, 但生理指標強度和神經特征卻確是不受干擾的真實反應(Mauss amp; Robinson, 2009)。因此, 僅考察情緒的主觀體驗, 不足以涵蓋與揭示情緒調節發生過程的全貌, 應通過主觀體驗、生理指標以及神經特征相結合的方式來驗證情緒調節的發生及調節效果。

4.6" 現有NIBS方案難以滿足新興情緒調節研究領域的需要, 亟需發展新的NIBS方案

以往研究探討的情緒調節更多只是針對個體自身的情緒調節(intrapersonal emotion regulation), 較少涉及多人情境下的情緒調節, 例如人際情緒調節(interpersonal emotion regulation), 而這是一個新興研究熱點(Niven, 2017; Ray-Yol amp; Altan- Atalay, 2022; Zaki amp; Williams, 2013)。人際情緒調節是指在社會互動的情境下, 個體有目標地影響他人情緒體驗的過程(Zaki amp; Williams, 2013)。目前, 已有的NIBS方案也僅能匹配個體自身的需要進行情緒調節干預, 無法研究和干預多人情境下的人際情緒調節中的相關指標, 例如腦間同步性(interbrain synchronization), 即腦間耦合的指標, 可用來衡量兩個或多個互動個體間大腦信號的動態相似性(Hasson et al., 2012; Liu, Liu et al., 2018; Valencia amp; Froese, 2020)。針對該問題, 采用多腦NIBS與超掃描技術(hyperscanning)結合的研究方案是個潛在的研究思路。研究表明, 在兩個大腦中同步二者的神經節律可以有效地促進人際間的信息流動(Lakatos et al., 2019)。使用同頻率的tACS同時刺激雙腦的下額葉腦區, 可以增強個體間的社會互動與學習(Pan et al., 2021)。使用多腦NIBS來模擬人類腦間同步的外源性條件, 并測量對應刺激腦區對社會行為的影響, 觀察腦間同步性是否能因果地調節社會互動, 并最終能在行為上和神經腦機制上對腦間同步性做出科學的解釋。由此我們或許能找出抑郁癥、廣場恐懼癥、社交恐懼癥等精神障礙人群在人際情緒調節異常的潛在治療方案(Novembre amp; Iannetti, 2021)。

4.7" NIBS具有一定副作用, 可通過神經反饋技術加以彌補

NIBS是一種外源性的神經調控技術, 雖對人體沒有損傷, 但實施階段仍然伴隨著一些副作用, 例如tDCS的電流刺激, 以及TMS的噪聲和振動刺激等。這些副作用都會一定程度上影響NIBS的情緒調節干預效果。相較于此, 內源性的神經調控例如實時神經反饋(real-time neurofeedback)能達到真正意義上的無損和無副作用。神經反饋是一種訓練大腦功能進行自我調節的方法, 它通過視覺、聽覺或其他感官系統向自己或他人展示自身大腦當下的活動, 并允許個體改變相應的大腦功能和行為(Marins et al., 2019; Papoutsi et al., 2018)。在情緒調節策略的運用訓練中, 相比于傳統的方法, 神經反饋加持下的訓練更有效, 且已被成功用于改善情緒調節(Linhartová et al., 2019)。神經反饋技術與fMRI的結合是研究情緒調節的新興技術方案, 可用于增強某些與情緒調節障礙相關的精神障礙群體的情緒調節能力。例如, Herwig等人(2019)利用fMRI-實時神經反饋技術對健康被試進行情緒調節訓練。結果顯示, 相比于對照組, 實驗組能顯著下調自身杏仁核的活動信號, 并成功下調負性情緒。該技術也能有效訓練抑郁癥患者使用認知重評策略, 同時顯著增強了患者左側vlPFC的興奮性, 這些經過神經反饋訓練的患者能將情緒調節策略成功應用于日常生活中(Keller et al., 2021)。研究者還采用神經反饋技術與fNIRS的結合方案。實驗中, 被試能根據實時fNIRS反饋信號上調右側dlPFC的活動以改善對負性情緒的調節(Yu et al., 2021)。研究發現, 患有PTSD、邊緣型人格障礙和精神分裂癥的患者在接受神經反饋訓練后癥狀減輕(Linhartová et al., 2019)。未來針對情緒障礙人群的fMRI實時神經反饋訓練, 可以把情緒調節重要腦區以及重要的腦功能連接靶點作為目標。在已有假設的基礎上, 要求患者自我調控相關腦區功能并給予實時神經反饋。例如, 基于如下假設:即抑郁癥患者的杏仁核對負性刺激反應過度, 而對正性刺激反應減弱(Groenewold et al., 2013), 相應的神經反饋目標可能是讓抑郁癥患者在體驗負性情緒時降低杏仁核活動, 或在體驗積極情緒時促進杏仁核活動, 從而達到調節情緒的目的。目前神經反饋技術與NIBS結合主要用于神經性疼痛、失眠癥等探索性研究(Kosari et al., 2019; Najafabadi et al., 2021), 但在情緒調節領域尚處空白, 有待更多的探索與嘗試。

5" 小結

NIBS技術因其無創、無痛、安全和靈活性等優點, 已在多個學科和應用領域大量使用, 且大量研究表明該技術能有效地輔助治療抑郁癥、PTSD等精神障礙疾病。近年來的研究證據表明, NIBS技術作為干預手段, 能影響情緒調節并降低負性情緒, 對心理健康的改善具有潛在價值, 因而受到學界內外廣泛關注, 相關研究在迅速積累, 然而, 該干預過程背后的腦機制研究和相關臨床研究尚存大量空白, 仍需更多隨機雙盲對照的臨床實驗提供更有力的證據。我們認為未來有必要全面定量總結現有文獻, 結合神經導航技術來確定NIBS靶點的通用方案和個性化精準治療方案, 考察干預狀態下外顯/內隱情緒調節的腦神經環路改變, 并從主觀體驗?生理指標?神經特征多層面評估NIBS干預效果。此外, 我們認為多靶點NIBS方案、NIBS與神經反饋等技術的結合在提高此領域實驗效度上有較大前景, 有待相關研究者的挖掘。

參考文獻

高可翔, 張岳瑤, 李思瑾, 袁加錦, 李紅, 張丹丹. (2023). 腹內側前額葉在內隱認知重評中的因果作用. 心理學報, 55(2), 210?223

何振宏, 張丹丹, 羅躍嘉. (2015). 抑郁癥人群的心境一致性認知偏向. 心理科學進展, 23(12), 2118?2128.

莫李澄, 郭田友, 張岳瑤, 徐鋒, 張丹丹. (2021). 激活右腹外側前額葉提高抑郁癥患者對社會疼痛的情緒調節能力:一項TMS研究. 心理學報, 53(5), 494?504.

張丹丹, 劉珍莉, 陳鈺, 買曉琴. (2019). 右腹外側前額葉對高抑郁水平成年人社會情緒調節的作用: 一項tDCS研究. 心理學報, 51(2), 207?215.

Abend, R., Jalon, I., Gurevitch, G., Sar-El, R., Shechner, T., Pine, D. S., … Bar-Haim, Y. (2016). Modulation of fear extinction processes using transcranial electrical stimulation. Translational Psychiatry, 6(10), e913.

Abend, R., Sar-El, R., Gonen, T., Jalon, I., Vaisvaser, S., Bar-Haim, Y., amp; Hendler, T. (2019). Modulating emotional experience using electrical stimulation of the medial- prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation: Technology at the Neural Interface, 22(8), 884?893.

Adams, T. G., Cisler, J. M., Kelmendi, B., George, J. R., Kichuk, S. A., Averill, C. L., … Pittenger, C. (2021). Transcranial direct current stimulation targeting the medial prefrontal cortex modulates functional connectivity and enhances safety learning in obsessive-compulsive disorder: Results from two pilot studies. Depress Anxiety, 39(1), 37?48.

Aldao, A., Nolen-Hoeksema, S., amp; Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217?237.

Amidfar, M., Ko, Y. H., amp; Kim, Y. K. (2019). Neuromodulation and cognitive control of emotion. Advances in Experimental Medicine and Biology, 1192, 545?564.

Antal, A., Fischer, T., Saiote, C., Miller, R., Chaieb, L., Wang, D. J., ... Kirschbaum, C. (2014). Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Human Brain Mapping, 35(8), 3750?3759.

Baeken, C., Dedoncker, J., Remue, J., Wu, G. R., Vanderhasselt, M. A., De Witte, S., … De Raedt, R. (2018). One MRI-compatible tDCS session attenuates ventromedial cortical perfusion when exposed to verbal criticism: The role of perceived criticism. Human Brain Mapping, 39(11), 4462?4470.

Barr, M. S., Farzan, F., Rajji, T. K., Voineskos, A. N., Blumberger, D. M., Arenovich, T., … Daskalakis, Z. J. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73(6), 510?517.

Berboth, S., amp; Morawetz, C. (2021). Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions. Neuropsychologia, 153, 107767.

Begemann, M. J., Brand, B. A., ?ur?i?-Blake, B., Aleman, A., amp; Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychological Medicine, 50(15), 2465?2486.

Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., amp; Siebner, H. R. (2016). Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage, 140, 4?19.

Boggio, P. S., Zaghi, S., amp; Fregni, F. (2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212?217.

Braunstein, L. M., Gross, J. J., amp; Ochsner, K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive Affective Neuroscience, 12(10), 1545?1557.

Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., ... Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175?195.

Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981?2990.

Bungert, A. (2010). TMS combined with fMRI (Unpublished doctoral dissertation). University of Nottingham.

Cao, D., Li, Y., amp; Tang, Y. (2021). Functional specificity of the left ventrolateral prefrontal cortex in positive reappraisal: A single-pulse transcranial magnetic stimulation study. Cognitive, Affective, amp; Behavioral Neuroscience, 21(4), 793?804.

Cao, D., Qian, Z., Tang, Y., Wang, J., Jiang, T., amp; Li, Y. (2022). Neural indicator of positive reappraisal: A TMS- EEG study over the left VLPFC. Journal of Affective Disorders, 300, 418?429.

Carpenter, L. L., Aaronson, S. T., Clarke, G. N., Holtzheimer, P. E., Johnson, C. W., McDonald, W. M., … Schneider, M. B. (2017). rTMS with a two-coil array: Safety and efficacy for treatment resistant major depressive disorder. Brain Stimulation, 10(5), 926?933.

Cash, R. F. H., Weigand, A., Zalesky, A., Siddiqi, S. H., Downar, J., Fitzgerald, P. B., amp; Fox, M. D. (2021). Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biological Psychiatry, 90(10), 689?700.

Charles, V. (2013). Positive psychological factors in late adolescence: The role of resilience and hope in the well-being of 16 to 18 year olds (Unpublished Doctoral dissertation). University of Liverpool.

Chodakiewitz, Y. G., Bicalho, G. V., amp; Chodakiewitz, J. W. (2013). Multi-target neurostimulation for adequate long- term relief of neuropathic and nociceptive chronic pain components. Surgical Neurology International, 4(4), S170? 175.

Chrysikou, E. G., Wing, E. K., amp; van Dam, W. O. (2019). Transcranial direct current stimulation over the prefrontal cortex in depression modulates cortical excitability in emotion regulation regions as measured by concurrent functional magnetic resonance imaging: An exploratory study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(1), 85?94.

Clarke, P. J. F., Van Bockstaele, B., Marinovic, W., Howell, J. A., Boyes, M. E., amp; Notebaert, L. (2020). The effects of left DLPFC tDCS on emotion regulation, biased attention, and emotional reactivity to negative content. Cognitive, Affective, amp; Behavioral Neuroscience, 20(6), 1323?1335.

Cobos Sanchez, C., Cabello, M. R., Olozabal, A. Q., amp; Pantoja, M. F. (2020). Design of TMS coils with reduced Lorentz forces: Application to concurrent TMS-fMRI. Journal of Neural Engineering, 17(1), 016056.

Corlier, J., Wilson, A., Tadayonnejad, R., Ginder, N., Levitt, J. Krantz, D., … Leuchter., A. (2021). Multi-target repetitive transcranial magnetic stimulation (rTMS) protocol for the treatment of comorbid depression and chronic pain. Brain Stimulation, 14(6), 1729?1730.

Crowell, S. E., Puzia, M. E., amp; Yaptangco, M. (2015). The ontogeny of chronic distress: Emotion dysregulation across the life span and its implications for psychological and physical health. Current Opinion in Psychology, 3, 91?99.

de Wit, S. J., van der Werf, Y. D., Mataix-Cols, D., Trujillo, J. P., van Oppen, P., Veltman, D. J., amp; van den Heuvel, O. A. (2015). Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder. Psychological Medicine, 45(14), 3059?3073.

De Witte, S., Klooster, D., Dedoncker, J., Duprat, R., Remue, J., amp; Baeken, C. (2018). Left prefrontal neuronavigated electrode localization in tDCS: 10-20 EEG system versus MRI-guided neuronavigation. Psychiatry Research: Neuroimaging, 274, 1?6.

Deng, Z.-D., Lisanby, S. H., amp; Peterchev, A. V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6(1), 1?13.

Deng, J., Fang, W., Gong, Y., Bao, Y., Li, H., Su, S., . . . Shi, L. (2021). Augmentation of fear extinction by theta-burst transcranial magnetic stimulation of the prefrontal cortex in humans. Journal of Psychiatry and Neuroscience, 46(2), E292?E302.

Diefenbach, G. J., Assaf, M., Goethe, J. W., Gueorguieva, R., amp; Tolin, D. F. (2016). Improvements in emotion regulation following repetitive transcranial magnetic stimulation for generalized anxiety disorder. Journal of Anxiety Disorders, 43, 1?7.

Diefenbach, G. J., Bragdon, L., amp; Goethe, J. W. (2013). Treating anxious depression using repetitive transcranial magnetic stimulation. Journal of Affective Disorders, 151(1), 365?368.

Dittert, N., Hüttner, S., Polak, T., amp; Herrmann, M. J. (2018). Augmentation of fear extinction by transcranial direct current stimulation (tDCS). Frontiers in Behavioral Neuroscience, 12, 76.

Douw, L., Quaak, M., Fitzsimmons, S., de Wit, S. J., van der Werf, Y. D., van den Heuvel, O. A., amp; Vriend, C. (2020). Static and dynamic network properties of the repetitive transcranial magnetic stimulation target predict changes in emotion regulation in obsessive-compulsive disorder. Brain Stimulation, 13(2), 318?326.

Downar, J., amp; Daskalakis, Z. J. (2013). New targets for rTMS in depression: A review of convergent evidence. Brain Stimulation, 6(3), 231?240.

Elmasry, J., Loo, C., amp; Martin, D. (2015). A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative Neurology Neuroscience, 33(3), 263?278.

Etkin, A., Buchel, C., amp; Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693?700.

Etkin, A., amp; Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 1476?1488.

Farnad, L., Ghasemian-Shirvan, E., Mosayebi-Samani, M., Kuo, M. F., amp; Nitsche, M. A. (2021). Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimulation, 14(3), 622?634.

Feeser, M., Prehn, K., Kazzer, P., Mungee, A., amp; Bajbouj, M. (2014). Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimulation, 7(1), 105?112.

Fischer, D. B., Fried, P. J., Ruffini, G., Ripolles, O., Salvador, R., Banus, J., ... Fox, M. D. (2017). Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage, 157, 34?44.

Galderisi, S., Heinz, A., Kastrup, M., Beezhold, J., amp; Sartorius, N. J. W. p. (2015). Toward a new definition of mental health. World Psychiatry, 14(2), 231?233.

Ganho-ávila, A., Gon?alves ó, F., Guiomar, R., Boggio, P. S., Asthana, M. K., Krypotos, A. M., amp; Almeida, J. (2019). The effect of cathodal tDCS on fear extinction: A cross- measures study. Public Library of Science, 14(9), e0221282.

Gershon, A. A., Dannon, P. N., amp; Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160(5), 835?845.

Gilam, G., Abend, R., Gurevitch, G., Erdman, A., Baker, H., Ben-Zion, Z., amp; Hendler, T. (2018). Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex, 109, 156?170.

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., ... Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791?807.

Grimm, S., Beck, J., Schuepbach, D., Hell, D., Boesiger, P., Bermpohl, F., ... Northoff, G. (2008). Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fMRI study in severe major depressive disorder. Biological Psychiatry, 63(4), 369?376.

Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., amp; Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience amp; Biobehavioral Reviews, 37(2), 152?163.

Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271?299.

Gross, J. J., amp; John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348?362.

Gyurak, A., Gross, J. J., amp; Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition amp; Emotion, 25(3), 400?412.

Haeems, G. B. (2018). Emotion regulation in social anxiety disorder: Exploration and neuro-modulation of underlying neural mechanisms of cognitive reappraisal (Unpublished doctoral dissertation). University of Southampton.

Hajcak, G., MacNamara, A., amp; Olvet, D. M. (2010). Event- related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129?155.

Hansenne, M., amp; Weets, E. (2020). Anodal transcranial direct current stimulation (tDCS) over the left DLPFC improves emotion regulation. Polish Psychological Bulletin, 51(1), 37?43.

Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., amp; Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114?121.

He, Z., Lin, Y., Xia, L., Liu, Z., Zhang, D., amp; Elliott, R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357?366.

He, Z., Liu, Z., Zhao, J., Elliott, R., amp; Zhang, D. (2020). Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychological Medicine, 50(16), 2768?2779.

He, Z., Zhao, J., Shen, J., Muhlert, N., Elliott, R., amp; Zhang, D. (2020). The right VLPFC and downregulation of social pain: A TMS study. Human Brain Mapping, 41(5), 1362? 1371.

Herwig, U., Lutz, J., Scherpiet, S., Scheerer, H., Kohlberg, J., Opialla, S., ... Bruhl, A. B. (2019). Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage, 184, 687?696.

Hill, A. T., Fitzgerald, P. B., amp; Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9(2), 197?208.

Hiser, J., amp; Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638?647.

Hofhansel, L., Regenbogen, C., Weidler, C., Habel, U., Raine, A., amp; Clemens, B. (2020). Stimulating the criminal brain: Different effects of prefrontal tDCS in criminal offenders and controls. Brain Stimulation, 13(4), 1117?1120.

Hsu, D., Yttredahl, A., amp; Sankar, A. (2018). Neuroimaging evidence for targeting abnormal responses to the social environment in major depressive disorder. Biological Psychiatry, 83(9), S27.

Hyde, J., Carr, H., Kelley, N., Seneviratne, R., Reed, C., Parlatini, V., ... Brandt, V. (2022). Efficacy of neurostimulation across mental disorders: Systematic review and meta- analysis of 208 randomized controlled trials. Molecular Psychiatry, 27(6), 2709?2719.

Iannone, A., Cruz, A. P. d. M., Brasil-Neto, J. P., amp; Boechat-Barros, R. (2016). Transcranial magnetic stimulation and transcranial direct current stimulation appear to be safe neuromodulatory techniques useful in the treatment of anxiety disorders and other neuropsychiatric disorders. Arquivos de Neuro-Psiquiatria, 74(10), 829?835.

Kan, R. L. D., Zhang, B. B. B., Zhang, J. J. Q., amp; Kranz, G. S. (2020). Non-invasive brain stimulation for posttraumatic stress disorder: A systematic review and meta-analysis. Translational Psychiatry, 10(1), 168.

Kedzior, K. K., Rajput, V., Price, G., Lee, J., amp; Martin- Iverson, M. J. B. p. (2012). Cognitive correlates of repetitive transcranial magnetic stimulation (rTMS) in treatment- resistant depression-a pilot study. BMC Psychiatry 12(1), 1?9.

Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., …Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience, 31(43), 15284?15293.

Keller, M., Zweerings, J., Klasen, M., Zvyagintsev, M., Iglesias, J., Mendoza Quinones, R., amp; Mathiak, K. (2021). fMRI neurofeedback-enhanced cognitive reappraisal training in depression: A double-blind comparison of left and right vlPFC regulation. Frontiers in Psychiatry, 12, 715898.

Kirkovski, M., Rogasch, N. C., Saeki, T., Fitzgibbon, B. M., Enticott, P. G., amp; Fitzgerald, P. B. (2017). A combined TMS-EEG investigation of autism spectrum disorder. Brain Stimulation, 10(2), 424.

Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition and Emotion, 23(1), 4?41.

Kosari, Z., Dadashi, M., Maghbouli, M., amp; Mostafavi, H. (2019). Comparing the effectiveness of neurofeedback and transcranial direct current stimulation on sleep quality of patients with migraine. Basic and Clinical Neuroscience, 10(6), 579.

Kragel, P. A., amp; LaBar, K. S. (2016). Decoding the nature of emotion in the brain. Trends in Cognitive Sciences, 20(6), 444?455.

Kuo, M. F., Paulus, W., amp; Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage, 85, 948?960.

Lafleur, L. P., Tremblay, S., Whittingstall, K., amp; Lepage, J. F. (2016). Assessment of effective connectivity and plasticity with dual-Coil transcranial magnetic stimulation. Brain Stimulation, 9(3), 347?355.

Lakatos, P., Gross, J., amp; Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890?R905.

Lantrip, C., Gunning, F. M., Flashman, L., Roth, R. M., amp; Holtzheimer, P. E. (2017). Effects of transcranial magnetic stimulation on the cognitive control of emotion: Potential antidepressant mechanisms. Journal of ECT, 33(2), 73?80.

Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6(2), 100?112.

Li, S., Xie, H., Zheng, Z., Chen, W., Xu, F., Hu, X., amp; Zhang, D. (2022). The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. Human Brain Mapping, 43(9), 2898?2910.

Linhartová, P., Látalová, A., Kó?a, B., Ka?párek, T., Schmahl, C., amp; Paret, C. (2019). fMRI neurofeedback in emotion regulation: A literature review. Neuroimage, 193, 75?92.

Liu, A., V?r?slakos, M., Kronberg, G., Henin, S., Krause, M. R., Huang, Y., ... Buzsáki, G. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 9(1), 5092.

Liu, D., Liu, S., Liu, X., Zhang, C., Li, A., Jin, C., ... Zhang, X. (2018). Interactive brain activity: Review and progress on EEG-Based hyperscanning in social interactions. Frontiers in Psychology, 9, 1862.

Ma, X., Huang, Y., Liao, L., amp; Jin, Y. (2014). A randomized double-blinded sham-controlled trial of α electroencephalogram- guided transcranial magnetic stimulation for obsessive- compulsive disorder. Chinese Medical Journal, 127(04), 601?606.

Makovac, E., Thayer, J. F., amp; Ottaviani, C. (2017). A meta- analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neuroscience amp; Biobehavioral Reviews, 74, 330?341.

Mantovani, A., Simpson, H. B., Fallon, B. A., Rossi, S., amp; Lisanby, S. H. (2010). Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment- resistant obsessive-compulsive disorder. The International Journal of Neuropsychopharmacology, 13(2), 217?227.

Marins, T., Rodrigues, E., Bortolini, T., Melo, B., Moll, J., amp; Tovar-Moll, F. (2019). Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery. Neuroimage, 194, 283?290.

Markovic, V., Vicario, C. M., Yavari, F., Salehinejad, M. A., amp; Nitsche, M. A. (2021). A systematic review on the effect of transcranial direct current and magnetic stimulation on fear memory and extinction. Frontiers in Human Neuroscience, 15, 655947.

Marques, L. M., Morello, L. Y. N., amp; Boggio, P. S. (2018). Ventrolateral but not dorsolateral prefrontal cortex tDCS effectively impact emotion reappraisal - effects on emotional experience and interbeat interval. Scientific Reports, 8(1), 15295.

Martin, D. M., Moffa, A., Nikolin, S., Bennabi, D., Brunoni, A. R., Flannery, W., ... Loo, C., K. (2018). Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: An individual patient data meta-analysis of randomised, sham-controlled trials. Neuroscience amp; Biobehavioral Reviews, 90, 137?145.

Mauss, I. B., amp; Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209?237.

Mehi?, E., Xu, J. M., Caler, C. J., Coulson, N. K., Moritz, C. T., amp; Mourad, P. D. (2014). Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PloS One, 9(2), e86939.

Modak, A., amp; Fitzgerald, P. B. (2021). Personalising transcranial magnetic stimulation for depression using neuroimaging: A systematic review. The World Journal of Biological Psychiatry, 22(9), 647?669.

Molavi, P., Aziziaram, S., Basharpoor, S., Atadokht, A., Nitsche, M. A., amp; Salehinejad, M. A. (2020). Repeated transcranial direct current stimulation of dorsolateral- prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: A randomized, sham-controlled, parallel-group study. Journal of Affective Disorders, 274, 93?102.

Mondino, M., Haesebaert, F., Poulet, E., Suaud-Chagny, M.-F., amp; Brunelin, J. (2015). Fronto-temporal transcranial direct current stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia. Schizophrenia Research, 161(2-3), 515–516.

Morawetz, C., Riedel, M. C., Salo, T., Berboth, S., Eickhoff, S. B., Laird, A. R., amp; Kohn, N. (2020). Multiple large-scale neural networks underlying emotion regulation. Neuroscience amp; Biobehavioral Reviews, 116, 382?395.

Mungee, A., Burger, M., amp; Bajbouj, M. (2016). No effect of cathodal transcranial direct current stimulation on fear memory in healthy human subjects. Brain Sciences, 6(4), 55.

Myers-Schulz, B., amp; Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. Molecular Psychiatry, 17(2), 132?141.

Najafabadi, A. J., Oh, H., Imani, H., amp; Godde, B. (2021). Effect of neurofeedback training combined with transcranial direct current stimulation on primary insomnia. Bremen, IRC-Library: Information Resource Center der Jacobs University Bremen.

Nitsche, M. A., amp; Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633.

Nitsche, M. A., amp; Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899?1901.

Niven, K. (2017). The four key characteristics of interpersonal emotion regulation. Current Opinion in Psychology, 17, 89?93.

Notzon, S., Steinberg, C., Zwanzger, P., amp; Jungh?fer, M. (2018). Modulating emotion perception: Opposing effects of inhibitory and excitatory prefrontal cortex stimulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 329?336.

Novembre, G., amp; Iannetti, G. D. (2021). Hyperscanning alone cannot prove causality. Multibrain stimulation can. Trends in Cognitive Sciences, 25(2), 96?99.

Pan, Y., Novembre, G., Song, B., Zhu, Y., amp; Hu, Y. (2021). Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Social Cognitive and Affective Neuroscience, 16(1-2), 210?221.

Papoutsi, M., Magerkurth, J., Josephs, O., Pepes, S., Ibitoye, T., Reilmann, R., ... Tabrizi, S. J. (2018). HD brain-train: Enhancing neural plasticity using real-time fMRI neurofeedback training. Journal of Neurology, Neurosurgery amp; Psychiatry, 89, A102.

Parsons, R. G., amp; Ressler, K. J. (2013). Implications of memory modulation for post-traumatic stress and fear disorders. Nature Neuroscience, 16(2), 146?153.

Pavlova, E. L., Menshikova, A. A., Semenov, R. V., Bocharnikova, E. N., Gotovtseva, G. N., Druzhkova, T. A., ... Guekht, A. B. (2018). Transcranial direct current stimulation of 20-and 30-minutes combined with sertraline for the treatment of depression. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 82, 31?38.

Plewnia, C., Schroeder, P. A., amp; Wolkenstein, L. (2015). Targeting the biased brain: Non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry, 2(4), 351?356.

Ray-Yol, E., amp; Altan-Atalay, A. (2022). Interpersonal emotion regulation and psychological distress: What is the function of negative mood regulation expectancies in this relationship? Psychological Reports, 125(1), 280?293.

Rêgo, G. G., Lapenta, O. M., Marques, L. M., Costa, T. L., Leite, J., Carvalho, S., ... Boggio, P. S. (2015). Hemispheric dorsolateral prefrontal cortex lateralization in the regulation of empathy for pain. Neuroscience Letters, 594, 12?16.

Riva, P., Romero Lauro, J, L., DeWall, C. N., amp; Bushman, B. J. (2012). Buffer the pain away: Stimulating the right ventrolateral prefrontal cortex reduces pain following social exclusion. Psychological Science, 23(12), 1473?1475.

Riva, P., Romero Lauro, L. J., Vergallito, A., DeWall, C. N., amp; Bushman, B. J. (2015). Electrified emotions: Modulatory effects of transcranial direct stimulation on negative emotional reactions to social exclusion. Social Neuroscience, 10(1), 46?54.

Rive, M. M., Van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., amp; Ruhé, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience amp; Biobehavioral Reviews, 37(10), 2529?2553.

Rodrigues, P. A., Zaninotto, A. L., Neville, I. S., Hayashi, C. Y., Brunoni, A. R., Teixeira, M. J., amp; Paiva, W. S. (2019). Transcranial magnetic stimulation for the treatment of anxiety disorder. Neuropsychiatric Disease and Treatment, 15, 2743?2761.

Rosa, M. A., amp; Lisanby, S. H. (2012). Somatic treatments for mood disorders. Neuropsychopharmacology, 37(1), 102?116.

Roth, Y., Amir, A., Levkovitz, Y., amp; Zangen, A. (2007). Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. Journal of Clinical Neurophysiology, 24(1), 31?38.

Ruffini, G., de Lara, C. M.-R., Martinez-Zalacain, I., Ripolles, O., Subira, M., Via, E., ... Cardoner, N. (2017). Optimized multielectrode tDCS modulates corticolimbic networks. Brain Stimulation, 10(1), e14.

Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C., amp; Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage, 89, 216?225.

Sanguinetti, J., amp; Allen, J. J. (2017). Transcranial ultrasound improves mood and affects resting state functional connectivity in healthy volunteers. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(2), 426.

Saunders, N., Downham, R., Turman, B., Kropotov, J., Clark, R., Yumash, R., amp; Szatmary, A. (2015). Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase, 21(3), 271?278.

Shin, L. M., Rauch, S. L., amp; Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of the New York Academy of Sciences, 1071(1), 67?79.

Smits, F. M., Schutter, D., van Honk, J., amp; Geuze, E. (2020). Does non-invasive brain stimulation modulate emotional stress reactivity? Social Cognitive and Affective Neuroscience, 15(1), 23?51.

Stefani, A., Peppe, A., Pierantozzi, M., Galati, S., Moschella, V., Stanzione, P., amp; Mazzone, P. (2009). Multi-target strategy for Parkinsonian patients: The role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Research Bulletin, 78(2-3), 113?118.

Sydnor, V. J., Cieslak, M., Duprat, R., Deluisi, J., Flounders, M. W., Long, H., ... Oathes, D. J.. (2022). Cortical- subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Science Advances, 8(25). doi: 10.1126/sciadv.abn580

Tendler, A., Barnea Ygael, N., Roth, Y., amp; Zangen, A. (2016). Deep transcranial magnetic stimulation (dTMS)–beyond depression. Expert Review of Medical Devices, 13(10), 987?1000.

Tzabazis, A., Aparici, C. M., Rowbotham, M. C., Schneider, M. B., Etkin, A., amp; Yeomans, D. C. (2013). Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients. Molecular Pain, 9, 33.

Urgesi, C., Mattiassi, A. D., Buiatti, T., amp; Marini, A. (2016). Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling. Neuroimage, 136, 26?36.

Valencia, A. L., amp; Froese, T. (2020). What binds us? Inter-brain neural synchronization and its implications for theories of human consciousness. Neuroscience of Consciousness, 2020(1). doi:10.1093/nc/ niaa010.

van Dam, W. O., amp; Chrysikou, E. G. (2021). Effects of unilateral tDCS over left prefrontal cortex on emotion regulation in depression: Evidence from concurrent functional magnetic resonance imaging. Cognitive, Affective, amp; Behavioral Neuroscience, 21(1), 14?34.

Van Erp, T. G., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn, D. C., ... Turner, J. A. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry, 84(9), 644?654.

Van't Wout, M., Longo, S. M., Reddy, M. K., Philip, N. S., Bowker, M. T., amp; Greenberg, B. D. (2017). Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain and Behavior, 7(5), e00681.

van't Wout, M., Mariano, T. Y., Garnaat, S. L., Reddy, M. K., Rasmussen, S. A., amp; Greenberg, B. D. (2016). Can transcranial direct current stimulation augment extinction of conditioned fear? Brain Stimulation, 9(4), 529?536.

Vergallito, A., Riva, P., Pisoni, A., amp; Lauro, L. J. R. (2018). Modulation of negative emotions through anodal tDCS over the right ventrolateral prefrontal cortex. Neuropsychologia, 119, 128?135.

Wang, H., Wang, K., Xue, Q., Peng, M., Yin, L., Gu, X., ... Wang, Y. (2022). Transcranial alternating current stimulation for treating depression: A randomized controlled trial. Brain, 145(1), 83?91.

Watts, B. V., Landon, B., Groft, A., amp; Young-Xu, Y. (2012). A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Brain Stimulation, 5(1), 38?43.

Winker, C., Rehbein, M. A., Sabatinelli, D., Dohn, M., Maitzen, J., Wolters, C. H., … Junghofer, M. (2018). Noninvasive stimulation of the ventromedial prefrontal cortex modulates emotional face processing. Neuroimage, 175, 388?401.

Wolkenstein, L., amp; Plewnia, C. (2013). Amelioration of cognitive control in depression by transcranial direct current stimulation. Biological Psychiatry, 73(7), 646?651.

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., ... Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031?1048.

Yu, L., Long, Q., Tang, Y., Yin, S., Chen, Z., Zhu, C., amp; Chen, A. (2021). Improving emotion regulation through real-time neurofeedback training on the right dorsolateral prefrontal cortex: Evidence from behavioral and brain network analyses. Frontiers in Human Neuroscience, 15, 620342.

Zaki, J., amp; Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13(5), 803?810.

Zhang, D., Ao, X., Zheng, Z., Shen, J., Zhang, Y., amp; Gu, R. (2022). Modulating social feedback processing by deep TMS targeting the medial prefrontal cortex: Behavioral and electrophysiological manifestations. Neuroimage, 250, 118967.

Zhang, D., Xu, F., Xie, H., Guo, T., Li, S., amp; Chen, Y. (2021). The role of dorsolateral prefrontal cortex on voluntary forgetting of negative social feedback in depressed patients: A TMS study. Acta Psychologica Sinica, 53(10), 1094?1104.

Zhang, Q., Li, X., Liu, X., Liu, S., Zhang, M., Liu, Y., … Wang, K. (2022). The effect of non-invasive brain stimulation on the downregulation of negative emotions: A meta-analysis. Brain Sciences, 12(6), 786.

Zhang, X., Liu, B., Li, Y., Duan, G., Hou, J., amp; Wu, D. (2021). Multi-target and multi-session transcranial direct current stimulation in patients with prolonged disorders of consciousness: A controlled study. Frontiers in Neuroscience, 15, 641951.

Zhao, J., Mo, L., Bi, R., He, Z., Chen, Y., Xu, F., … Zhang, D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. Journal of Neuroscience, 41(6), 1331?1339.

Zhou, S., amp; Fang, Y. (2022). Efficacy of non-invasive brain stimulation for refractory obsessive-compulsive disorder: A meta-analysis of randomized controlled trials. Brain Sciences, 12(7), 943.

Ziemann, U., Paulus, W., Nitsche, M. A., Pascual-Leone, A., Byblow, W. D., Berardelli, A., ... Rothwell, J. C. (2008). Consensus: Motor cortex plasticity protocols. Brain Stimulation, 1(3), 164?182.

Abstract: Accumulating evidence suggests that non-invasive brain stimulation (NIBS) techniques can effectively intervene in emotion regulation processes and down-regulate negative emotions. Summarizing the effects and applicability of NIBS for emotion regulation interventions is of great significance for enriching existing emotion regulation theories and promoting translational research. Through literature review, we found that when NIBS is used to modulate emotion regulation, it produces a top-down change in brain circuits, which has a positive effect on both explicit and implicit emotion regulation. Additionally, NIBS may potentially improve symptoms of psychiatric disorders by enhancing the emotion regulation processes. However, several existing problems need to be addressed. Firstly, the findings are mixed due to the heterogeneity of the studies. Secondly, the neural circuit mechanisms underlying the effects of NIBS on emotion regulation remain unclear, and measurements of emotion regulation effects need to be enriched. Moreover, previous NIBS protocols have several limitations, such as poor localization accuracy, weak effects due to single-session stimulation, inability to meet new needs, and inevitable side effects. Therefore, future studies could provide comprehensive quantitative summaries of existing literature, optimize the cortical targets with the help of neuronavigation techniques, investigate the changes in the brain neural circuit when applying NIBS in explicit and implicit emotion regulation, and measure the NIBS effect using a combination of subjective experience, physiological indexes, and neural characteristics. In the future, we believe that multi-target NIBS protocols, a combination of hyperscanning and NIBS, and NIBS-neurofeed back techniques can effectively improve the validity of the study, providing insights for relevant trans lational research and clinical therapeutics.

Keywords: non-invasive brain stimulation, prefrontal cortex, emotion regulation, neural circuit

主站蜘蛛池模板: 国产精品精品视频| 高潮爽到爆的喷水女主播视频 | 国产一二三区视频| 亚洲天堂精品在线| 茄子视频毛片免费观看| 欧美成人精品一级在线观看| 亚洲无码电影| 免费看av在线网站网址| 日韩国产黄色网站| 美女潮喷出白浆在线观看视频| 九九热这里只有国产精品| 久久综合伊人 六十路| 广东一级毛片| 日本午夜网站| 欧美日韩北条麻妃一区二区| 高清欧美性猛交XXXX黑人猛交| www.亚洲天堂| 在线观看欧美国产| 国产色婷婷| 亚洲国产精品人久久电影| 国产欧美日韩另类| 国产精品九九视频| 成人国产精品2021| AV片亚洲国产男人的天堂| 久久精品人人做人人综合试看| 亚洲国产精品日韩av专区| 亚洲国产天堂久久综合226114| 91国内视频在线观看| 一区二区理伦视频| 欧美日韩一区二区在线播放| 久热精品免费| 欧美午夜网| 免费一级毛片在线播放傲雪网| 欧美日韩亚洲综合在线观看| 狠狠综合久久| 日韩无码视频播放| 久久久久亚洲AV成人人电影软件 | 成人欧美日韩| 亚洲天堂高清| 久久综合成人| 2018日日摸夜夜添狠狠躁| www.日韩三级| 亚洲无限乱码一二三四区| jijzzizz老师出水喷水喷出| 精品久久蜜桃| 丁香婷婷激情网| 黄色福利在线| 狠狠色综合久久狠狠色综合| 香蕉蕉亚亚洲aav综合| 国产成人精品第一区二区| 五月天综合网亚洲综合天堂网| 日韩小视频在线播放| 无码中文字幕加勒比高清| 国产区在线看| 国产成人精品视频一区视频二区| 直接黄91麻豆网站| 在线国产91| 亚洲va欧美va国产综合下载| 99视频精品在线观看| 谁有在线观看日韩亚洲最新视频| 国产凹凸一区在线观看视频| 久久无码免费束人妻| 福利一区三区| 综合成人国产| 亚洲最大情网站在线观看| 久久精品国产免费观看频道| 国产欧美日韩视频怡春院| 久久无码av一区二区三区| 茄子视频毛片免费观看| 在线观看91香蕉国产免费| 国产视频久久久久| 97se亚洲综合| 亚洲欧美在线看片AI| 成人亚洲天堂| 国产欧美高清| 人与鲁专区| 天天色综网| 中文字幕人成人乱码亚洲电影| 久久久精品国产亚洲AV日韩| 国产一级妓女av网站| 老司国产精品视频| 91在线播放免费不卡无毒|