
















摘要:針對現代物流業務不斷多樣化和細分化導致傳統的車貨匹配方法和配送方式難以滿足配送需求的問題,文章提出將大件貨物與應急零散貨物結合進行協同配送,構建以車主收益最大為目標的兩階段車貨匹配推薦模型,充分利用貨物階段性送達產生的的剩余空間,并且在模型中考慮時效、期望、激勵、貨損等現實因素提高模型可實施性。為了獲得不同貨種間協同配送的最優匹配推薦方案,提出一種改進的人工兔優化算法(ARO)進行求解,通過引入混沌反向學習、模擬退火和自適應擾亂因子提升性能,然后通過仿真實驗驗證模型和算法的有效性,最后基于供需雙方偏好的構建車貨推薦系統為其推薦配送方案。
關鍵詞:車貨匹配;兩階段; ARO;混沌映射;反向學習;模擬退火;擾亂因子
中圖分類號: F253;U492.3 文獻標志碼:A" DOI: 10.13714/j.cnki.1002-3100.2023.20.019
Abstract: Aiming at the problem that the traditional vehicle-cargo matching method and distribution method cannot meet the distribution demand due to the continuous diversification and subdivision of modern logistics business, it is proposed to combine large-scale cargo with emergency scattered cargo for collaborative distribution, and build a car owner's profit maximization.The two-stage vehicle-cargo matching recommendation model makes full use of the remaining space generated by the staged delivery of goods,and considers timeliness, expectations, incentives,cargo damage and other realistic factors in the model to improve the implementability of the model. In order to obtain the optimal matching recommendation scheme for collaborative delivery among different types of goods,an improved Artificial Rabbit Optimization Algorithm (ARO) is proposed to solve it, and the performance is improved by introducing chaotic anti-learning,simulated annealing and adaptive disturbance factors, and then through simulation experiments to verify the effectiveness of the model and algorithm,and finally build a vehicle and cargo recommendation system based on the preferences of both the supply and demand sides to recommend a delivery plan.
Key words:vehicle-cargomatching:two-stage;ARO;chaoticmapping:reverse learning; simulated annealing: disturbance factor
0引言
近年來,隨著物流行業的不斷發展,車貨匹配技術也得到了快速的發展,并成為物流企業提高運輸效率和降低運輸成本的重要手段。車貨匹配是一種將貨物和車輛進行精準匹配的技術,是物流行業的重要組成部分。在傳統的物流模式中,貨物通常需要通過中間商或物流企業來運輸,這種模式存在著運輸時間長、運輸成本高、信息不透明等問題。而車貨匹配技術通過利用信息技術手段,將貨物和車輛進行直接匹配,可以大幅提高物流運輸的效率和降低運輸成本。XIE Kunwei等\"把車貨匹配應用到應急救援中,研究了應急車輛與待運輸物資之間的一對多雙邊匹配問題,基于配送雙方的滿意度構建應急車輛匹配優化模型并通過改進的NIMP算法求解驗證了災害背景下車貨匹配的可行性。……