崔道然 金胡日查 楊健 崔志明



[摘? ?要]? ?目的:研究轉(zhuǎn)化生長(zhǎng)因子β活化激酶1(transforming growth factor-β activated kinase 1,TAK1)在骨性關(guān)節(jié)炎中的表達(dá)及其作用。方法:收集20例全膝關(guān)節(jié)置換或截肢術(shù)患者手術(shù)標(biāo)本,分為正常組8例和退變組12例。對(duì)標(biāo)本切片進(jìn)行病理觀察和OARSI關(guān)節(jié)軟骨退變?cè)u(píng)分,免疫組化法檢測(cè)軟骨細(xì)胞中TAK1的表達(dá)。建立TNF-α(20 ng/mL)誘導(dǎo)的軟骨細(xì)胞凋亡模型,采用TUNEL檢測(cè)軟骨細(xì)胞凋亡,Western Blot檢測(cè)TNF-α誘導(dǎo)不同時(shí)間TAK1和活化Caspase-3的表達(dá)水平,免疫熒光染色顯示TAK1和活化Caspase-3在軟骨細(xì)胞中的定位,觀察轉(zhuǎn)染siRNA抑制TAK1表達(dá)對(duì)活化Caspase-3表達(dá)的影響。結(jié)果:手術(shù)標(biāo)本切片顯示,退變組軟骨表面出現(xiàn)較深裂隙,細(xì)胞體積縮小,大量軟骨細(xì)胞壞死。退變組OARSI評(píng)分3.50±1.00分,明顯高于正常組的0.50±0.54分,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。免疫組化顯示,退變組TAK1陽性細(xì)胞77.28%,高于正常組的15.35%,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。Western Blot檢測(cè)顯示,軟骨細(xì)胞在TNF-α誘導(dǎo)0 h TAK1低表達(dá),誘導(dǎo)后12 h TAK1表達(dá)開始上調(diào),36 h達(dá)到峰值,誘導(dǎo)后12 h、24 h、36 h、48 h TAK1表達(dá)水平高于0 h,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。活化Caspase-3表達(dá)在誘導(dǎo)12 h開始上調(diào),24 h達(dá)到峰值,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。TNF-α誘導(dǎo)后TUNEL陽性細(xì)胞數(shù)明顯增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。免疫熒光染色顯示,TAK1和活化Caspase-3在TNF-α誘導(dǎo)的軟骨細(xì)胞中共定位。siRNA轉(zhuǎn)染沉默TAK1后活化Caspase-3表達(dá)增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:TAK1在骨性關(guān)節(jié)炎中表達(dá)上調(diào),可能通過抑制Caspase-3的表達(dá)而發(fā)揮抑制軟骨細(xì)胞凋亡的作用,在骨性關(guān)節(jié)炎進(jìn)展過程中具有重要意義。
[關(guān)鍵詞]? ?轉(zhuǎn)化生長(zhǎng)因子β活化激酶1;Caspase-3;骨性關(guān)節(jié)炎;軟骨細(xì)胞;凋亡
[中圖分類號(hào)]? ?R684.3 [文獻(xiàn)標(biāo)志碼]? ?A [DOI]? ?10.19767/j.cnki.32-1412.2023.04.001
Expression and function of transforming growth
factor-β activated kinase 1 in osteoarthritis
CUI Daoran, JIN HU Richa, YANG Jian, CUI Zhiming
(Department of Orthopedics, Second Affiliated Hospital of Nantong University/the First Hospital of Nantong, Jiangsu 226001)
[Abstract]? ?Objective:To investigate the expression and role of transforming growth factor-β activated kinase 1 (TAK1) in osteoarthritis. Methods:Twenty knee joint samples from patients undergoing total knee arthroplasty or amputation were collected and divided into the normal group (8 cases) and the degenerative group (12 cases). Pathological examination and OARSI score were performed under microscope. The expression of TAK1 in chondrocytes was detected by immunohistochemistry. A TNF-α (20 ng/mL) -induced chondrocyte apoptosis model was established, and the apoptosis of chondrocytes was detected by TUNEL. The expression levels of TAK1 and activated Caspase-3 at different time points after TNF-α treatment were detected by Western Blot. Immunofluorescence staining was used to detect the localization of TAK1 and activated Caspase-3 in chondrocytes. The effect of inhibiting the expression of TAK1 by siRNA on the expression of activated Caspase-3 was observed. Results: The sections of surgical specimens showed that there were deep cracks on the cartilage surface in the degenerative group, the cell volume was reduced, and a large number of chondrocytes were necrotic. The OARSI score of the degenerative group (3.50±1.00) was significantly higher than that of the normal group (0.50±0.54), and the difference was statistically significant (P<0.05). Immunohistochemistry showed that the percentage of TAK1 positive cells in the degenerative group (77.28%) was significantly higher than that in the normal group(15.35%), and the difference was statistically significant (P<0.05). Western Blot showed that TAK1 expression was low at 0 hour after TNF-α induction, increased at 12 hours after induction, and reached the peak at 36 hours (P<0.05). The expression of activated Caspase-3 was upregulated at 12 h and peaked at 24 h. The number of TUNEL positive cells increased significantly after TNF-α induction (P<0.05). Immunofluorescence staining showed that TAK1 and activated Caspase-3 were co-localized in chondrocytes induced by TNF-α. The expression of activated Caspase-3 increased after silencing TAK1 by siRNA transfection (P<0.05). Conclusion:The expression of TAK1 is up-regulated in osteoarthritis, which may play a role in inhibiting chondrocyte apoptosis by inhibiting the expression of Caspase-3. TAK1 plays an important role in the progression of osteoarthritis.
[Key words]? ?transforming growth factor-beta activated kinase 1 (TAK1); Caspase-3; osteoarthritis; chondrocyte; apoptosis
骨性關(guān)節(jié)炎(osteoarthritis,OA)是人類關(guān)節(jié)最常見的退行性疾病,表現(xiàn)為骨贅形成、軟骨下骨增厚、軟骨侵蝕和關(guān)節(jié)間隙狹窄[1]。有研究認(rèn)為,OA為特異性免疫反應(yīng)[2],病理上具有細(xì)胞基質(zhì)損傷和組織細(xì)胞丟失特點(diǎn)。在OA病理進(jìn)展過程中,軟骨細(xì)胞凋亡增多,促炎細(xì)胞因子產(chǎn)生增加以及基質(zhì)退化[3-4]。促炎細(xì)胞因子的產(chǎn)生主要由異常激活的核因子-κB(NF-κB)途徑和有絲分裂原活化的蛋白激酶(MAPKs)途徑介導(dǎo)[5]。轉(zhuǎn)化生長(zhǎng)因子β激活激酶1(transforming growth factor-beta activated kinase 1,TAK1)是MAPK激酶(MAP3K)家族成員,通過激活下游效應(yīng)物(包括MAPKs和NF-κB)調(diào)節(jié)血管發(fā)育和激活細(xì)胞凋亡[6]。對(duì)基因工程小鼠的研究發(fā)現(xiàn),TAK1在維持器官組織穩(wěn)態(tài)方面起著不可或缺的作用[7]。另有研究發(fā)現(xiàn),在一定條件下軟骨中缺失TAK1小鼠表現(xiàn)出嚴(yán)重的軟骨不典型增生和關(guān)節(jié)異常,表明TAK1在軟骨形態(tài)的發(fā)生和維護(hù)中具有重要作用[8]。本研究收集我院2021年1月—7月行全膝關(guān)節(jié)置換或截肢術(shù)20例患者的膝關(guān)節(jié)手術(shù)標(biāo)本,建立TNF-α誘導(dǎo)的軟骨細(xì)胞凋亡模型,研究TAK1對(duì)凋亡相關(guān)蛋白Caspase-3的影響,探討TAK1在OA進(jìn)展中的作用。
1? ?材料與方法
1.1? ?材料和試劑? ?抗TAK1抗體(Abcam公司),抗cleaved-caspase-3抗體(Cell Signaling公司),抗GAPDH抗體(Sigma-Aldrich公司),Cy3-Goat anti-Mouse IgG、Alexa Fluor 488-conjugated Donkey anti-Rabbit IgG(Proper Tech公司),免疫組化工作液試劑盒(中杉金橋公司),TNF-α(Pepro Tech公司)。
1.2? ?關(guān)節(jié)軟骨組織切片H-E染色及OARSI關(guān)節(jié)軟骨退變?cè)u(píng)分? ?全膝關(guān)節(jié)置換術(shù)及截肢患者20例,根據(jù)影像學(xué)評(píng)估膝關(guān)節(jié)標(biāo)本退變程度,分為正常組8例和退變組12例。取膝關(guān)節(jié)手術(shù)組織標(biāo)本切片,置于60 ℃恒溫箱烘烤1 h,在二甲苯中浸泡15 min,更換二甲苯后再浸泡15 min,隨后分別在無水乙醇、95%乙醇、80%乙醇、70%乙醇中浸泡。蘇木精染色,1%鹽酸酒精分色,1%氨水返藍(lán),酒精伊紅染色。于不同梯度乙醇中脫水,二甲苯透明,中性樹膠封片。由3位病理醫(yī)生分別在光學(xué)顯微鏡下觀察關(guān)節(jié)軟骨組織結(jié)構(gòu)和細(xì)胞形態(tài),進(jìn)行OARSI關(guān)節(jié)軟骨退變?cè)u(píng)分[9],取平均值。OARSI關(guān)節(jié)軟骨退變?cè)u(píng)分標(biāo)準(zhǔn)見表1。
1.3? ?免疫組織化學(xué)染色? ?組織切片經(jīng)烘烤、二甲苯及不同濃度乙醇中浸泡后,置于枸櫞酸鈉緩沖液中浸泡,然后沸水煮10 min。切片上滴加3%過氧化氫(試劑A)去除內(nèi)源性過氧化物酶,37 ℃孵育10 min,PBS洗3次。滴加封閉液,室溫孵育15 min;滴加一抗,室溫下孵育1 h,PBS洗3次。滴加適量反應(yīng)增強(qiáng)液(試劑B),室溫孵育20 min,PBS洗3次;滴加增強(qiáng)酶標(biāo)山羊抗小鼠/兔IgG聚合物(試劑C),室溫孵育20 min,PBS洗3次。然后顯色、脫水透明、封片,顯微鏡下攝片。
1.4? ?軟骨細(xì)胞培養(yǎng)? ?永生化人軟骨細(xì)胞SV40(上海生物化學(xué)與細(xì)胞生物學(xué)研究所)加入含10%胎牛血清的Leibovitzs L-15培養(yǎng)液中,于37 ℃、5%CO2飽和濕度下培養(yǎng),每隔3~4天傳代1次。取SV40細(xì)胞加以TNF-α誘導(dǎo),建立軟骨細(xì)胞凋亡模型,進(jìn)行相關(guān)實(shí)驗(yàn)。
1.5? ?TUNEL染色檢測(cè)細(xì)胞凋亡? ?在24孔板各孔內(nèi)放置1片小圓玻片,按5×103個(gè)/mL密度將SV40細(xì)胞接種至板中,每孔100 μL。加入20 ng/mL TNF-α誘導(dǎo)36 h,另設(shè)對(duì)照組不予TNF-α處理。采用TUNEL染色檢測(cè)細(xì)胞凋亡,固定:使用預(yù)冷PBS清洗各孔,加入現(xiàn)配制的4%甲醛500 μL,室溫固定15 min。棄去甲醛,PBS清洗2次。破膜:各孔加入含0.3%TritonX-100的PBST 500 μL,室溫靜置5 min。棄去PBST,PBS清洗。平衡:各孔再次加入200 μL平衡緩沖液,室溫平衡處理8 min。配制反應(yīng)體系:在平衡處理細(xì)胞同時(shí),冰上將核苷混合物和rTdT酶解凍,按照配比配制反應(yīng)體系。染液配制及之后實(shí)驗(yàn)均需避光進(jìn)行。反應(yīng):平衡結(jié)束棄平衡液,取出玻片,小心滴加所配反應(yīng)體系51 μL,置于避光濕盒,37 ℃孵育1 h,使之發(fā)生加尾反應(yīng)。封片:棄去反應(yīng)體系,PBS清洗2遍,取潔凈載玻片,滴加熒光染料4′,6-二脒基-2苯基吲哚(DAPI)封片。顯色:熒光顯微鏡拍攝,或?qū)⒉F芄獗4嬗? ℃待檢,可放置1周左右,避免熒光淬滅。
1.6? ?Western Blot? ?TNF-α(20 ng/mL)誘導(dǎo)軟骨細(xì)胞0、12、24、36和48 h,分別提取各組細(xì)胞蛋白樣品50 μg,進(jìn)行SDS聚丙烯酰胺凝膠電泳,PVDF膜(Millipore公司)轉(zhuǎn)膜,250 mA,120 min,然后放入5%封閉緩沖液中,室溫?fù)u床封閉2 h。加入一抗,孵育過夜,再用辣根過氧化物酶標(biāo)記的二抗孵育,電化學(xué)發(fā)光試劑發(fā)光、顯影、定影,進(jìn)行圖像分析。
1.7? ?軟骨細(xì)胞siRNA轉(zhuǎn)染? ?按siRNA說明書配制轉(zhuǎn)染混合試劑,依次向RNase-free管內(nèi)加入Opti-MEM、siRNA以及siRNA轉(zhuǎn)染用RNAiMAX,輕輕混勻后于室溫靜置15 min。使用預(yù)溫的PBS清洗軟骨細(xì)胞后消化,稀釋細(xì)胞濃度為25~30萬個(gè)/mL。轉(zhuǎn)染混合試劑按說明書比例加入孔板中,每孔加入1 mL細(xì)胞懸液,混勻,置于細(xì)胞培養(yǎng)箱培養(yǎng)。為規(guī)避轉(zhuǎn)染試劑毒性,16 h后將培養(yǎng)基換成含雙抗的完全培養(yǎng)基。
1.8? ?統(tǒng)計(jì)學(xué)處理? ?應(yīng)用GraphPad Prism 6、ImageJ和SPSS 17.0統(tǒng)計(jì)學(xué)軟件分析數(shù)據(jù)。計(jì)量資料以±s表示,組間比較采用單因素方差分析及t檢驗(yàn)。P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2? ?結(jié)? ? ? 果
2.1? ?關(guān)節(jié)軟骨病理改變及OARSI評(píng)分? ?H-E染色切片顯示,正常組關(guān)節(jié)軟骨表面完整,軟骨細(xì)胞排列有序,而退變組軟骨表面出現(xiàn)較深裂隙,細(xì)胞體積縮小,大量軟骨細(xì)胞壞死。退變組OARSI評(píng)分3.50±1.00分,高于正常組的0.50±0.54分,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見圖1。
2.2? ?退變關(guān)節(jié)軟骨中TAK1表達(dá)? ?免疫組化結(jié)果顯示,退變組軟骨細(xì)胞TAK1陽性細(xì)胞百分率77.28%,高于正常組的15.35%,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),提示TAK1表達(dá)可能影響軟骨細(xì)胞生長(zhǎng)發(fā)育,進(jìn)而影響OA的發(fā)病。見圖2。
2.3? ?TAK1與Caspase-3在軟骨細(xì)胞凋亡模型中的表達(dá)及共定位? ?Western Blot檢測(cè)顯示,在TNF-α(20 ng/mL)誘導(dǎo)0 h TAK1表達(dá)低水平,誘導(dǎo)后12 h TAK1表達(dá)開始上調(diào),36 h達(dá)到峰值,誘導(dǎo)后12 h、24 h、36 h、48 h TAK1表達(dá)水平高于0 h,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)(圖3A、B)?;罨疌aspase-3表達(dá)在誘導(dǎo)12 h開始上調(diào),24 h達(dá)到峰值,差異均有統(tǒng)計(jì)學(xué)意義(P<0.001)(圖3C)。TUNEL檢測(cè)發(fā)現(xiàn),TNF-α誘導(dǎo)36 h后TUNEL陽性細(xì)胞數(shù)明顯增加[0 h陽性細(xì)胞率(21.2±1.8)%、36 h的陽性細(xì)胞率(42±5.3)%],差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3D)。免疫熒光染色顯示,TAK1和活化Caspase-3在TNF-α誘導(dǎo)的軟骨細(xì)胞中共定位(圖3E)。表明Caspase凋亡途徑可能在OA進(jìn)展中起重要作用,TAK1可能在調(diào)控軟骨細(xì)胞凋亡過程中發(fā)揮影響。
2.4? ?siRNA轉(zhuǎn)染抑制TAK1表達(dá)對(duì)Caspase-3表達(dá)的影響? ?為了進(jìn)一步確定TAK1與軟骨細(xì)胞凋亡的相關(guān)性,采用siRNA轉(zhuǎn)染方法抑制TAK1表達(dá)。我們?cè)O(shè)計(jì)3種siRNA片段,并通過Western Blot確定siRNA片段3具有最佳敲除效率(圖4A、B)。TAK1沉默后人軟骨細(xì)胞凋亡模型中活化Caspase-3蛋白表達(dá)增加(圖4C、D),差異有統(tǒng)計(jì)學(xué)意義(P<0.05),表明TAK1可能通過抑制Caspase-3的表達(dá)而發(fā)揮抑制軟骨細(xì)胞凋亡的作用。
3? ?討? ? ? 論
骨關(guān)節(jié)炎為慢性關(guān)節(jié)退行性疾病[2],目前尚無有效的保守治療方法,進(jìn)一步了解OA發(fā)病機(jī)理,發(fā)現(xiàn)潛在的治療靶點(diǎn)十分必要。本研究免疫組織化學(xué)顯示,退變組關(guān)節(jié)軟骨細(xì)胞中TAK1表達(dá)明顯增強(qiáng)。Western Blot檢測(cè)結(jié)果顯示,人軟骨細(xì)胞經(jīng)TNF-α處理后TAK1表達(dá)明顯增加,凋亡蛋白Caspase-3表達(dá)也上調(diào)。免疫熒光顯示,TAK1與活化Caspase-3共定位表達(dá)。siRNA沉默TAK1后,活化Caspase-3表達(dá)明顯上調(diào)。上述結(jié)果說明TAK1可能在抑制OA軟骨細(xì)胞凋亡過程中起著重要作用。
有證據(jù)表明,細(xì)胞因子、趨化因子、粘附分子和基質(zhì)降解酶等炎癥因子在OA發(fā)病中具有重要作用[10]。炎癥因子表達(dá)主要受NF-κB和MAPK途徑控制,過度機(jī)械壓力刺激、細(xì)胞外基質(zhì)降解產(chǎn)物和促炎性細(xì)胞因子的釋放均會(huì)導(dǎo)致炎癥因子表達(dá)增高[11]。TAK1可被多種信號(hào)分子激活,其中包括TNF-α和IL-1等細(xì)胞因子[12]?;罨腡AK1激活MAPK,同時(shí)NF-kB和MAPK誘導(dǎo)炎性細(xì)胞因子和下游抗凋亡蛋白的表達(dá),從而導(dǎo)致凋亡蛋白Caspase-3活化。
在無TAK1情況下,細(xì)胞對(duì)凋亡十分敏感。TAK1調(diào)節(jié)TNF-α誘導(dǎo)的細(xì)胞死亡,形成誘導(dǎo)死亡的信號(hào)復(fù)合物,包括TRADD、FAS相關(guān)蛋白和死亡結(jié)構(gòu)域FADD,RIPK1和Caspase-8[13]。在這些復(fù)合物中,Caspase-8被二聚化,進(jìn)行自我切割并被激活,可進(jìn)一步激活下游執(zhí)行者Caspase-3,從而導(dǎo)致細(xì)胞凋亡[14]。TAK1通常對(duì)TNF-α激活的Caspase-8/-3產(chǎn)生影響,抑制Caspase激活級(jí)聯(lián)反應(yīng),以阻止細(xì)胞凋亡性死亡[15]。TAK1抑制Caspase激活有兩條主要途徑,其一是TAK1-NF-kB途徑:TAK1是NF-kB通路上游的激酶[16],NF-kB轉(zhuǎn)錄過程中會(huì)產(chǎn)生相應(yīng)的細(xì)胞因子激活抗凋亡蛋白,如c-FLIP和IAP家族蛋白。IAP家族包括cIAP1、cIAP2和XIAP,它們抑制Caspase激活。c-FLIP結(jié)構(gòu)與Caspases-8類似,但不具有蛋白酶活性,能與Caspase-8形成異二聚體,從而抑制高活性Caspase形成。TAK1通過激活NF-kB從而抑制Caspase激活。TAK1抑制Caspase激活的另一個(gè)途徑是TAK1-ROS-cIAP途徑:先前有研究表明,TNF家族配體誘導(dǎo)的外源性激活途徑通常不依賴RIPK1,并且RIPK1激酶活性不是激活Caspase所必需的。只有當(dāng)cIAP被合成的IAP拮抗劑發(fā)揮拮抗作用,開始代謝或具有遺傳毒性時(shí),TNF-α才可以誘導(dǎo)有代謝活性的RIPK1,促進(jìn)Caspase-8激活。另外,有研究發(fā)現(xiàn),抑制TAK1會(huì)降低TNF-α刺激后cIAP蛋白含量。TAK1缺乏會(huì)影響TNF-α刺激、積聚活性氧(ROS)及ROS清除劑,從而誘導(dǎo)ROS降解cIAP[17]。實(shí)際上,ROS清除劑可以修復(fù)TAK1缺陷細(xì)胞,因?yàn)樵谂c去除TAK1相同的實(shí)驗(yàn)條件下,NF-kB的消耗僅會(huì)稍微增加ROS,所以TAK1-ROS-cIAP途徑可能獨(dú)立于TAK1-NF-kB途徑。這些途徑的激活以及細(xì)胞氧化還原系統(tǒng)的調(diào)節(jié)都是抑制細(xì)胞凋亡的關(guān)鍵。未來研究需要確定TAK1調(diào)節(jié)細(xì)胞氧化還原狀態(tài)的分子途徑。
綜上所述,TAK1在骨性關(guān)節(jié)炎中表達(dá)上調(diào),可能通過抑制Caspase-3的表達(dá)而發(fā)揮抑制軟骨細(xì)胞凋亡的作用,在骨性關(guān)節(jié)炎進(jìn)展過程中具有重要意義。
[參考文獻(xiàn)]
[1] HASHIMOTO M,NAKASA T,HIKATA T,et al. Molecular network of cartilage homeostasis and osteoarthritis[J]. Med Res Rev,2008,28(3):464-481.
[2] BERENBAUM F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis)[J]. Osteoarthritis Cartilage,2013,21(1):16-21.
[3] WANG L,GAI P,XU R,et al. Shikonin protects chondrocytes from interleukin-1beta-induced apoptosis by regulating PI3K/Akt signaling pathway[J]. Int J Clin Exp Pathol,2015,8(1):298-308.
[4] ZENG G,CUI X,LIU Z,et al. Disruption of phosphoinositide-specific phospholipases Cγ1 contributes to extracellular matrix synthesis of human osteoarthritis chondrocytes[J]. Int J Mol Sci,2014,15(8):13236-13246.
[5] ROMAN-BLAS J A,JIMENEZ S A. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis[J]. Osteoarthritis Cartilage,2006,14(9):839-848.
[6] RIGOGLOU S,PAPAVASSILIOU A G. The NF-κBsignalling pathway in osteoarthritis[J]. Int J Biochem Cell Biol,2013,45(11):2580-2584.
[7] MORIOKA S,INAGAKI M,KOMATSU Y,et al. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration[J]. Blood,2012,120(18):3846-3857.
[8] SHIM J H,GREENBLATT M B,XIE M,et al. TAK1 is an essential regulator of BMP signalling in cartilage[J]. EMBOJ,2009,28(14):2028-2041.
[9] PRITZKER K P,GAY S,JIMENEZ S A,et al. Osteoarthritis cartilage histopathology: grading and staging[J]. Osteoarthritis Cartilage,2006,14(1):13-29.
[10] MARCU K B,OTERO M,OLIVOTTO E,et al. NF-kappaB signaling: multiple angles to target OA[J]. Curr Drug Targets,2010,11(5):599-613.
[11] YAMAGUCHI K,SHIRAKABE K,SHIBUYA H,et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction[J]. Science,1995,270(5244):2008-2011.
[12] KAJINO-SAKAMOTO R,INAGAKI M,LIPPERT E,et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis [J]. J Immunol,2008,181(2): 1143-1152.
[13] MENONM B,GROPENGIE?ER J,F(xiàn)ISCHERJ,et al. p38M-APK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection[J]. Nat Cell Biol,2017,19(10):1248-1259.
[14] MCQUADE T,CHO Y,CHAN F K. Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis[J]. Biochem J,2013,456(3):409-415.
[15] MORIOKA S,BROGLIE P,OMORI E,et al. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation[J]. J Cell Biol,2014,204(4):607-623.
[16] NINOMIYA-TSUJI J,KISHIMOTO K,HIYAMA A,et al. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway[J]. Nature,1999,398(6724):252-256.
[17] OMORI E,MORIOKA S,MATSUMOTO K,et al. TAK1 regulates reactive oxygen species and cell death in keratinocytes,which is essential for skin integrity[J]. J Biol Chem,2008,283(38):26161-26168.
[收稿日期] 2022-09-20
(本文編輯? ?繆宏建)