孫夫德 任美娜 趙麗娜 馬子祎 鮑宇



摘要 磷酸化修飾是膜蛋白翻譯后修飾的重要類型之一,由蛋白激酶和磷酸酶共同調節而保持一種動態平衡,在正常生命活動乃至腫瘤發生中發揮調控作用。磷酸化修飾誘導膜蛋白結構變化可調節蛋白之間結合活力,而關鍵磷酸化位點突變可破壞蛋白結合并解除相關信號傳導的調節。與其他蛋白不同,膜蛋白需要以質膜為介質發揮功能作用,由于膜組成復雜性和不對稱性,磷酸化修飾對膜蛋白的質膜定位以及表面貼附至關重要。膜蛋白磷酸化還調節周圍磷脂分子的熱力學性質和動力學特性,從而加劇對磷脂雙分子層有序度的影響。本文重點闡述了膜蛋白磷酸化的分子特征及調控機制,包括磷酸化位點分布,磷酸化修飾對膜蛋白結構調控以及特異膜環境依賴性;系統總結了膜蛋白磷酸化引發的結構變化在各種生物過程中的功能作用,旨在為膜蛋白磷酸化及相關靶向干預研究提供參考。
關 鍵 詞 磷酸化修飾;膜蛋白;質膜;結構變化;生物功能
中圖分類號 Q6? ? ?文獻標志碼 A
Structure and function of membrane proteins modulated by phosphorylation
SUN Fude, REN Meina, ZHAO Lina, MA Ziyi, BAO Yu
(Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China )
Abstract Phosphorylation modification is one of the main type of post-translational modification of membrane proteins. It is regulated by protein kinases and phosphatases to maintain a dynamic balance and play a role in normal life activities and even tumorigenesis. Phosphorylation induces structural changes in membrane proteins that regulate binding activity between proteins. Due to disease mutations, loss of phosphorylation sites may disrupt protein binding and deregulate signal transduction. Different from other proteins, membrane proteins require the plasma membrane as a medium to function. Because membrane composition is complex and asymmetrical, phosphorylation is crucial for the correct localization of membrane proteins. Phosphorylation of membrane proteins also greatly affects the thermodynamic and dynamics properties of the surrounding phospholipid molecules, which intensifies the influence on the order degree of the phospholipid bilayer. This paper focuses on the molecular characteristics and regulation mechanism of membrane protein phosphorylation, including the distribution of phosphorylation sites, the regulation of membrane protein structure and the dependence of phosphorylation on specific membrane environment. The functional roles of membrane protein phosphorylation induced structural changes in various biological processes were systematically summarized in order to provide theoretical references for a further study of membrane protein phosphorylation and relevant targeted intervention.
Key words phosphorylation modification; membrane protein; plasmolemma; structural change; biological function
0 引言
膜蛋白是一類能夠結合或整合到細胞膜或細胞器膜上蛋白質的總稱。在圍繞細胞和較小細胞區室的脂質膜層中發現了數百萬種膜蛋白,占所有編碼蛋白質的25%~30%。根據與膜結合強度以及位置的不同膜蛋白被歸為3類:外周膜蛋白、整合膜蛋白和脂錨定蛋白[1-2]。膜蛋白可以通過細胞外和細胞內的相互作用介導細胞與環境間物質及信號交換過程,如細胞信號傳導、膜不透性分子轉運和細胞間通訊等[3]。近年來,結構生物學的發展促使更多哺乳動物細胞膜蛋白的結構信息和生物關聯性得以良好表征,且有廣泛研究顯示,膜蛋白在癌細胞發生發展中扮演重要調節作用[4]。同時,膜蛋白還是十分重要的藥物靶標,目前所有可用藥物中有70%以上是通過膜蛋白起作用的,其中包括治療癌癥、心臟病和疼痛的藥物[5-6]。膜蛋白生物功能的充分發揮,大多需要由蛋白激酶和磷酸酶催化的可逆磷酸化修飾介導下的動態構象變化、配體結合以及亞細胞定位過程[7]。
磷酸化是一種生物體內重要的可逆性翻譯后修飾。人類基因組編碼的21 000種蛋白質中,超過三分之二被磷酸化,超過90%的蛋白會受到這種翻譯后修飾的影響[8]。這種可逆機制分別通過蛋白激酶(protein kinase)和蛋白磷酸酶(protein phosphatase)催化發生。在蛋白激酶催化下,三磷酸腺苷(ATP)的磷酸基被轉移至膜蛋白的氨基酸側鏈而發生磷酸化修飾,隨后磷酸化膜蛋白與下游磷酸化結合蛋白(phospho-binding proteins)相互作用。同時,磷酸化膜蛋白也可以在磷酸酶作用下發生去磷酸化(圖1)。目前已知可發生磷酸化修飾的天然氨基酸有9種(絲氨酸Ser、蘇氨酸Thr、酪氨酸Tyr、賴氨酸Lys、精氨酸Arg、天冬氨酸Asp、谷氨酸Glu、半胱氨酸Cys和組氨酸His),而其中絲氨酸磷酸化、蘇氨酸磷酸化以及酪氨酸磷酸化尤為常見[9]。在各種氨基酸的極性基團側鏈上添加或移除磷酸基團通常都會造成蛋白局域電荷變化,這是磷酸化影響蛋白結構性質、穩定性和動力學的重要原因[10]。磷酸化修飾對蛋白的調節機制是多樣的,磷酸化會使蛋白復合物不穩定,并可導致蛋白激活或失活。在其他誘導因素存在條件下,可介導異源蛋白復合物的形成,并通過蛋白類似物競爭性結合提供一種負調控機制。磷酸化還可通過誘導蛋白構象變化或蛋白之間結合的變構效應,調節蛋白間相互作用的性質和強度,從而協調不同的細胞反應途徑[11]。
除了直接影響蛋白質本身的動力學特性外,膜蛋白的不同磷酸化模式似乎具有不同的“磷酸化條形碼”,可以誘導配體呈現獨特的構象及活性,從而控制不同的細胞反應。典型的膜蛋白是G蛋白偶聯受體(G Protein-Coupled Receptor,GPCR),它可在C端和胞內環的多個殘基位點發生磷酸化,不同位點磷酸化可特異性地調控其配體β-抑制素的活性狀態,使下游信號蛋白的募集受到影響[12]。與水溶蛋白不同,膜蛋白磷酸化還會使其周圍磷脂分子的熱力學性質和動力學結構受到較大干擾,從而加劇對磷脂雙分子層有序度的影響。磷酸化后的負電荷排斥某些負電性磷脂分子,使膜表面磷脂分子的分布發生改變。值得注意的是,磷脂分子的分布狀態對生物膜的自組織結構、蛋白質-磷脂膜的相互作用、生物膜的融合分裂以及脂筏(lipid raft)的形成等具有重要的意義[13-14]。同時,磷酸化影響膜蛋白在細胞上形成團簇的形式以及在細胞膜上的結合取向,這種影響還與細胞膜本身的流動性有關[15]。大量報道顯示膜蛋白的磷酸化修飾參與了細胞癌化過程,且其修飾位點變化通常與癌癥患者的愈后相關[16]。因此,膜蛋白的磷酸化修飾可作為重要的愈后標志物,在腫瘤的治療及愈后評估具有重要價值。本文將重點闡述膜蛋白磷酸化的分子特征及調控,系統總結膜蛋白磷酸化的結構變化在各種生理病理過程中的功能作用,旨為膜蛋白磷酸化深入研究提供理論參考。
1 膜蛋白磷酸化修飾的特征及調控機制
膜蛋白的多種氨基酸都可以被磷酸化,但絲氨酸(86.4%)、蘇氨酸(11.86%)和酪氨酸(1.8%)殘基是最常見的磷酸化位點[9]。膜蛋白磷酸化發揮特定功能調控具有位點依賴性,這意味著磷酸化發生不是隨機的[17]。此外,不同位點的磷酸化修飾會調控膜蛋白的結構轉變,而磷酸化修飾引發的結構變化在翻譯后修飾中占比最高。對不同磷酸化修飾位點分析,揭示了其對膜蛋白結構影響的多樣性和異質性,磷酸化可以在局部和全局水平上影響膜蛋白結構[18]。
1.1 磷酸化區域界面及結構特性
許多細胞功能調控機制在蛋白質-蛋白質相互作用水平上運作,相關信號通路涉及蛋白質-蛋白質結合活性和磷酸化修飾下的作用網絡[19]。磷酸化修飾在某些情況下會調節膜蛋白同源寡聚和異源寡聚復合物中構象間或寡聚狀態間的轉變[20]。Nishi等[21]通過實驗將磷酸化位點映射到人類同源或異源蛋白寡聚體的晶體結構。結果表明,與非結合界面的蛋白表面位點相比,磷酸化位點傾向于分布在瞬時同源低聚物和異源低聚物的結合界面上。有研究指出,異源寡聚體結合界面上的磷酸化位點取代所產生的結合親和力變化更大,磷酸化可能直接調節結合界面上相互作用的強度。在界面上,磷酸化位點通過比非磷酸化位點形成更多的氫鍵和殘基接觸來促進復合物的穩定性。保持蛋白復合物結構完整性所必須的殘基被稱為結合熱點,基于磷酸化位點經常靶向結合熱點的觀察結果,可知磷酸化位點和結合熱點之間存在顯著關聯[22]。磷酸化可以提供膜蛋白間識別模式的多樣性,從而增加膜蛋白結合的選擇性[23]。界面上的磷酸化可以調節蛋白質與蛋白質之間的相互作用,這一調控功能與磷酸化位點傾向于位于蛋白寡聚體結合界面密切相關。
膜蛋白的N端和C端結構域在自然條件下多數是無序的,即它們不包含或很少包含明確定義的結構[24]。第一個系統性研究是對大量無序區域與實驗已知磷酸化蛋白質進行的親和力表征。該研究發現,本質上無序的區域更富集磷酸化位點[25]。磷酸化位點和無序膜蛋白質區域之間在序列復雜性、氨基酸組成、靈活性參數和其他特性具有一定的相似性。與有序界面殘基(8%)或無序非界面殘基(18%)相比,無序界面殘基的磷酸化位點(25%)比例更高,這表明磷酸化與無序界面殘基之間存在很強的關聯。無序界面中磷酸化的絲氨酸、蘇氨酸和酪氨酸比例分別為59%、26%、15%。磷酸化的酪氨酸更傾向分布在結構區域,而絲氨酸和蘇氨酸則常出現在無序靈活的區域[10,26]。一些關于p53[27]、囊性纖維化跨膜傳導調節因子(cystic fibrosis transmembrane conductance regulator,CFTR)[28]、p27[29]和其它膜蛋白[30]的實驗研究表明,無序區域通常包含磷酸化位點,同時(去)磷酸化修飾可以與膜蛋白結構無序-有序的轉變相耦合。預測完全無序蛋白質中的磷酸化位點比有序蛋白質中的磷酸化位點多10倍以上,這有力地支持了蛋白質磷酸化與無序結構之間緊密聯系的觀點。
1.2 磷酸化誘導的膜蛋白結構轉變機制
最近越來越多的證據表明,細胞表面膜蛋白的結構更具動態性,并且在不同時間尺度上以平衡的方式在多個構象之間相互轉換,例如活性和非活性構象間的動態轉變[31]。值得注意的是,磷酸化翻譯后修飾能夠多方位多角度地影響調控膜蛋白的結構性質[32-33]。
1.2.1 磷酸化修飾通過氫鍵和鹽橋調控膜蛋白結構
磷酸化基團在生理條件下是二價負電性的,可以與相同或不同鏈的相鄰殘基形成氫鍵和鹽橋。磷酸基與其他殘基之間最常見的作用模式是磷酸氧和精氨酸或賴氨酸側鏈之間形成氫鍵和鹽橋[34]。利用分子動力學模擬研究的結果顯示,磷酸化導致眾多膜蛋白結構發生封閉到開放的轉變,關鍵氫鍵和新形成的鹽橋是這些結構波動的潛在驅動因素[35-37]。Src蛋白酪氨酸激酶β3的賴氨酸(Lys298)與相鄰αC螺旋的谷氨酸(Glu313)之間鹽橋的形成是從自抑制狀態到激活狀態轉換的先決條件[38]。磷酸化絲氨酸氫鍵受體比磷酸化天冬氨酸受體形成更穩定的相互作用,氫鍵的強度一般取決于磷酸質子化狀態,質子化狀態對磷酸化天冬氨酸的影響比對磷酸化絲氨酸的影響更明顯[39]。磷酸化殘基通常與帶正電荷的側鏈形成鹽橋,鹽橋的能量依賴于參與的側鏈間的距離和取向[40]。綜上所述,在膜蛋白中添加或去除二價負電性磷酸基可能會顯著改變其局部的物理化學性質,并影響其穩定性和動力學屬性。
1.2.2 磷酸化修飾在局部和整體水平影響膜蛋白結構
對不同膜蛋白磷酸化分析,揭示了其對蛋白質結構影響的多樣性和異質性,磷酸化可以在局部和全局水平上影響膜蛋白結構[41-42]。我們通過粗粒化分子動力學模擬研究跨膜蛋白CD44(Cluster-of-Differentiation-44)胞質結構域2個保守位點絲氨酸Ser291和Ser325的磷酸化,發現Ser291的磷酸化使胞質結構域呈折疊構象,而Ser325磷酸化時胞質結構域整體表現為更延展的構象。2個磷酸化位點對CD44局部延展性調控的差異,將進一步影響下游細胞骨架結合蛋白ERM(Ezrin, Radixin and Moesin)與CD44的結合,這一發現強調了磷酸化對膜蛋白局部到整體的影響[43](圖2)。一項研究大規模比較了磷酸化和非磷酸化的蛋白質結構信息,并表明磷酸化產生了局部和整體的結構變化[44]。然而,只有13%的蛋白質在磷酸化和非磷酸化形式之間表現出大于2?的全局變化,磷酸化通過將整體構象異質性降低25%來穩定蛋白結構。有人認為磷酸化在許多情況下可能會限制膜蛋白單體的構象靈活性[45]。
1.2.3 磷酸化修飾誘導膜蛋白失活—活性狀態轉變
磷酸化可誘導具有不同活性或結合特異性的蛋白構象之間動態轉變,從而導致蛋白質的激活或失活[46]。膜蛋白失活—活性結構的轉變對于下游結合蛋白的細胞應答具有重要意義。CFTR是ABC超家族中的一種跨膜陰離子通道,CFTR活性具有PKA依賴性,主要歸因于其胞質區未磷酸化的調節結構域(Regulatory domain,RD)對通道門控的抑制影響,RD結構域磷酸化可打開陰離子孔,因此磷酸化會使得這種抑制作用得以緩解[47]。數據顯示陽離子鉀通道結構和功能的動態可逆變化也是主要通過通道復合物的磷酸化翻譯后修飾而實現的[48]。對于CD44而言,Ser291磷酸化使得CD44的CTD與內膜貼附,呈更卷縮的構象,此構象會掩蓋CTD與ERM的N端活性域FERM(N-terminal subdomain of ezrin-radixin-moesin)的結合位點,進而通過抑制CD44-FERM復合物的形成來抑制細胞增殖。S325磷酸化使CTD遠離內膜且呈延展構象,進而促進CD44與FERM的相互作用(圖2)。整合素特定位點的磷酸化在整合素活性的調節起著關鍵作用。最近的研究表明,如果整合素α鏈的磷酸化位點不含磷酸鹽,那么β鏈就不能被磷酸化,整合素就不具活性。只有當兩條鏈都被磷酸化時,整合素的細胞質部分區域打開,與高親和力的接頭蛋白結合,導致絲蛋白被釋放[49]。
1.3 特異膜環境依賴性
由于細胞膜組分的多樣性以及結構的非對稱性,膜蛋白在行使功能的過程中受細胞膜環境的密切調控。細胞膜生物物理特性,如膜厚度、流動性和表面電荷,同樣也潛在地影響著蛋白的翻譯后修飾,如棕櫚酰化,磷酸化和糖基化等[13]。磷酸化誘導膜蛋白的拓撲結構變化受脂質環境的影響,尤其細胞膜內小葉富含的負電性磷脂分子是磷酸化修飾引發蛋白結構轉變的重要因素。
目前研究最廣泛的負電磷脂分子是棕櫚油酰磷脂酰絲氨酸(palmitoyloleoyl-phosphatidylserine, POPS)和4,5二磷酸-磷脂酰肌醇(phosphatidylinositol-4,5-biphosphate, PIP2)。POPS與PIP2雖同為僅存在于細胞膜內葉的負電性脂質,但PIP2同樣擔任第二信使作用,在蛋白聚集和易位過程中發揮著更為特殊的功能[50-51]。Ezrin蛋白的Thr567磷酸化已被證明在其構象激活中起重要作用,但Ezrin N端與PIP2的相互作用是Thr567磷酸化的必要條件。通過分析Erzin N端與PIP2極性頭部復合物的晶體結構,發現Ezrin與PIP2的相互作用誘導了構象重排,從而實現Thr567位點的磷酸化[52]。鈣調蛋白CaM的Thr79位于PIP2結合位點附近,通過酪蛋白激酶2(CK2)磷酸化的Thr79可以顯著降低PIP2對其結合位點的親和力,增強PIP2對SK(small conductance Ca2+-activated potassium channels)通道的抑制作用。Thr79磷酸化不會影響蛋白整體的構象,但顯著改變了PIP2結合位點周圍氨基酸殘基之間的動態相互作用,例如形成新的鹽橋,導致PIP2與其結合位點之間的相互作用被減弱[53]。
隨著膜結構與功能研究的深入,脂筏的發現豐富了脂質膜對蛋白結構和功能的調控機制。脂筏是指膜脂雙分子層中富含鞘脂類和膽固醇的微區,不同脂質和蛋白質之間親和力差異導致膜域相分離,即形成脂筏(有序相)和非脂筏(無序相)結構域[54]。PIP2由于sn-2脂酰鏈的高不飽和度傾向分布在非脂筏域中,導致蛋白的膜區分配以及募集差異性[50,55]。脂筏結構域對磷酸化修飾調控影響的一個典型案例是低密度脂蛋白受體相關蛋白6(low density lipoprotein receptor related protein 6,LRP6),它與磷酸激酶同時定位至脂筏結構域,對于隨后磷酸化修飾的發生和下游的信號傳導至關重要。研究顯示,當模型中脂筏數量明顯超過通路特異性膜蛋白的數量時,LRP6磷酸化及下游通路活性顯著降低[56]。磷酸化修飾以特異膜環境依賴性方式調控膜蛋白功能的機制,擴大了我們對膜脂分子在膜蛋白磷酸化修飾的建立和維持中所起作用的認識。
2 膜蛋白磷酸化的生物功能及意義
膜蛋白磷酸化是協調細胞和機體功能的初始步驟之一,如調節代謝、增殖、凋亡、炎癥、亞細胞運輸和其它重要的生理過程[57]。膜蛋白的生物活性與其分子結構相關,磷酸化修飾調控的結構轉變是膜蛋白參與調節多種生物過程的重要方式,是介導細胞信號轉導和細胞內功能最常見的作用機制之一[58]。細胞粘附蛋白是最典型的膜蛋白之一,參與細胞增殖和遷移,與癌細胞的惡性增殖侵襲密切相關。表1列舉了目前研究比較清楚的細胞表面粘附蛋白磷酸化修飾參與調控的細胞生物功能。目前,有關膜蛋白磷酸化結構變化介導的生物功能研究主要集中在蛋白相互作用、信號轉導和質膜定位等方面。
2.1 膜蛋白互作的分子開關
在特定的激酶和磷酸酶作用下,許多膜蛋白通過磷酸化/去磷酸化修飾被激活或失活。磷酸化誘導的結構變化作為分子開關,控制不同途徑中的蛋白質活性以及與其它蛋白的結合模式,并調控細胞粘附、增殖和細胞免疫應答等[69-71]。目前,一些新的研究使用生物物理、結構和計算方法解釋了磷酸化修飾在蛋白互作中的調節機制,為膜蛋白變構機制提供了新見解,并為磷酸化修飾調節劑的開發提供了新機會。
我們利用高通量Martini粗粒化分子動力學模擬研究了在多種細胞類型中廣泛表達的Ⅰ型跨膜蛋白CD44,從非活性、低親和狀態到活性、高親和狀態的轉變需要胞質結構域特定絲氨酸殘基的磷酸化修飾[72]。Ser291和Ser325磷酸化使CD44胞質結構域形成封閉或開放構象,這兩種構象的選擇作為一種分子開關調控CD44與下游細胞骨架結合蛋白(α-actin)結合(圖2)。同樣在細胞極性發揮關鍵作用的Ⅰ型跨膜蛋白Crumbs,其胞質結構域Thr2118的磷酸化通過防止FERM結合基序β-折疊構象的形成,進而阻止Crumbs胞質結構域與FERM的結合[73]。在蛋白激酶C(PKC)和Rho激酶作用下,細胞骨架結合蛋白FERM-Moesin胞質結構域C端的Thr558殘基發生磷酸化(圖2),破壞了N端和C端之間的自抑制結合,從而使N端能夠與CD44或其他粘附蛋白相互作用,這與細胞-細胞和細胞-細胞基質粘附的形成和分解有關[74]。磷酸化修飾膜蛋白的結構在細胞效應過程的響應和啟動起著重要作用。磷酸化小分子GTP結合蛋白Rab(Ras genes from rat brain)與其效應器相互作用的影響也已在結構生物學的背景下進行了研究。Rab蛋白高度保守的開關Ⅱ區域磷酸化誘導的結構變化對Rab與其調節蛋白及效應蛋白之間的相互作用具有抑制作用,從而決定相關生物調節途徑[75]。該研究表明,Rab的調節功能可能通過動態的磷酸化實現,而不僅僅是與調節蛋白結合。
2.2 調控細胞信號通路
磷酸化介導的信號轉導依賴蛋白多種功能構象之間的精確轉換。膜蛋白的磷酸化修飾調節多種細胞信號途徑,精確控制磷酸化誘導的構象狀態對于維持細胞穩態至關重要[76-77]。
磷酸化修飾對膜蛋白的調控機制在各種細胞信號通路中發揮作用,蛋白激酶催化翻譯后磷酸化修飾,同時許多激酶本身受磷酸化調控,這導致復雜的信號傳導和調控網絡[78]。絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一種已知的參與磷酸化修飾級聯效應激活信號通路的蛋白,MAPK的活性被認為是由活化環的氨基酸序列TxY中的雙磷酸化位點所調控,這些位點的雙磷酸化使MAPK的活性增加一千倍以上[79-80]。抑制素β-arrestin與磷酸化GPCR的結合控制著細胞信號傳導的多個環節。最近,分子動力學模擬和氨基酸位點突變研究發現,不同的GPCR磷酸化位點匹配不同的抑制蛋白結構[81],不同匹配模式決定具體的信號傳導途徑(圖3)。蛋白質-蛋白質界面的磷酸化修飾是一種廣泛存在的現象,在調節多種信號級聯傳導中發揮著重要作用。微囊蛋白(caveolin-1)Tyr14的磷酸化參與整合素調節的細胞表面穴樣內陷(caveolae)以及遷移細胞中粘著斑處的信號傳導[82]。對磷酸化修飾介導的信號通路研究,以及通過分子模擬或者結構生物學可視化磷酸化膜蛋白特異構象調控信號通路的機制,潛在具有重大臨床治療用途,特別是因為某些信號蛋白磷酸化異常修飾直接影響的癌細胞生存和侵襲。
2.3 介導膜蛋白的質膜定位
膜蛋白的質膜定位對基本信號傳導和物質轉運過程至關重要,而它們的異常定位往往導致嚴重的疾病癥狀或發育缺陷[83-84]。膜蛋白的亞細胞定位是由翻譯后修飾動態調節的,磷酸化修飾通過可逆性和快速動力學實現對膜蛋白質膜定位的動態調節,主要發生在受體蛋白上具有分揀信號功能的胞質結構域。膜蛋白磷酸化修飾由于磷酸基負電荷的引入還會影響其周圍磷脂分子的分布狀態,進而調控脂質雙分子層的流動性。磷脂分子的分布狀態對于膜蛋白的質膜定位,以及與磷脂的相互作用具有重要意義[13,32,85]。下文將引用相關研究闡述膜蛋白磷酸化對其質膜定位的影響及生物功能調控。
Kristyna通過全原子動力學模擬對磷酸化和酸性脂質如何影響GPCR成員β-腎上腺素(β2AR)的結構和動力學進行了研究[81],結果顯示,位于胞內環(ICL3)Ser246、Ser261和Ser262殘基的磷酸化,可驅動ICL3釋放至細胞質與抑制素相互作用,但缺乏酸性脂質的環境會逆轉磷酸化調控作用(圖3)。這一研究結果表明,受體磷酸化和膜環境協同調節GPCR介導的信號轉導。在K-Ras4B的C末端高變多堿基區域發現了PKC依賴性的Ser181磷酸化。高變區賴氨酸Lys側鏈的正電性銨(RNH3+)與Ser181磷酸化后形成的負電性氧之間形成氫鍵,導致C端與質膜結合不穩定,增加了質膜的解離速率,誘導該蛋白從質膜快速易位到內膜,包括內質網和線粒體膜,使磷酸化的K-Ras與線粒體外膜上的Bcl-xL相互作用,參與細胞死亡調控[86-87]。磷酸化修飾還會導致K-Ras4B更依賴于膜的流動性環境,即更無序的脂質,以實現有效的膜分配[88]。磷酸化Ser367可能驅動L-selectin胞質尾從質膜內葉解吸附,以增強ERM的結合[66]。脂筏膜環境及脂筏相關蛋白內收蛋白β(β-adducin)在β2整聯蛋白介導的中性粒細胞遷移過程中起到重要的作用。通過免疫沉淀、免疫印跡等實驗發現,β-adducin與脂筏結構的共定位是通過β-adducin分子上的酪氨酸殘基磷酸化調控的[89]。
2.4 參與腫瘤調控及靶向干預
磷酸化修飾對膜蛋白的生物功能影響非常廣泛,不僅調控膜蛋白自身或配體的結構變化,介導膜蛋白的內在活性,還可通過質膜定位和復合物形成影響細胞信號傳導。磷酸化是參與調節激酶表達最常見的翻譯后修飾,磷酸化位點突變可導致激酶信號通路的異常激活或失調,這是多種腫瘤發生的基礎,使用激酶抑制劑對于腫瘤治療具有重要價值[90]。目前,許多激酶抑制劑已成功用于治療乳腺癌、慢性粒細胞白血病、急性粒細胞白血病和非小細胞肺癌[91]。因此,分析蛋白質磷酸化和相關酶活性已成為癌癥治療中的重要內容。有研究通過質譜多反應監測(MRM)技術,揭示了表皮生長因子(EGF)聯合吉非替尼誘導表皮生長因子受體(EGFR)S1166位點磷酸化,能夠明顯抑制肺癌細胞的生長增殖,該研究有效地證明了通過磷酸化位點實現肺癌靶向治療的可能[92]。隨著靶向質譜分析技術的進步,磷酸化蛋白還可作為神經系統疾病的潛在生物標志物,根據磷酸化程度描述疾病狀態[93]。例如,高分子量神經絲蛋白磷酸化用于表征克雅氏癥的病理狀態[94];酸性富脯蛋白和組胺素可作為自閉癥的標志物[95]。從阿爾茲海默癥患者腦中提取的Tau蛋白發現其磷酸化程度明顯增加,因此,大多靶向Tau治療阿爾茲海默癥的方法旨在抑制“病理誘導”激酶或靶向病理磷酸化位點[96]。基于磷酸化介導膜蛋白功能表達以及靶向阻斷磷酸化引發的病理通路研究,具有重要的臨床治療用途。
3 總結及展望
膜蛋白磷酸化修飾的物理化學效應非常多樣,本文依據最近的實驗和計算模擬研究回顧了磷酸化修飾膜蛋白的分子基礎和研究現狀,闡述了磷酸化調控膜蛋白結構的主要機制,包括磷酸化基團參與膜蛋白氫鍵網絡和鹽橋的形成或破壞,局部和整體水平對膜蛋白結構的調控,以及磷酸化修飾誘導膜蛋白失活–活性構象轉變。研究表明,磷酸化膜蛋白的結構與其生物功能的正常發揮以及細胞穩態的維持息息相關。其介導的生物功能主要包括:磷酸化誘導的結構變化會作為分子開關,控制不同生物反應中的膜蛋白活性,進而影響與其它蛋白的結合模式;磷酸化修飾誘導構象的精確轉換直接影響膜蛋白下游信號轉導途徑的選擇;磷酸化修飾影響膜蛋白在質膜上的準確定位,磷酸化和天然酸性脂質協同調節膜蛋白的結構和動力學等其它生理過程。翻譯后磷酸化修飾是膜蛋白功能調控的重要方式,其調控形式極其多樣,與諸多疾病密切相關。越來越多的證據表明膜蛋白磷酸化修飾位點的異常表達與腫瘤的代謝調控之間存在密切聯系[97],這為腫瘤發生發展的機制研究和靶向治療領域提供了一系列有價值的創新性研究思路。
在過去的十年,越來越多的整合膜蛋白結構已通過X射線、核磁共振及冷凍結晶等手段進行揭示[98-100],極大地提升了我們對整合膜受體信號傳遞過程的理解水平。然而,晶體結構代表晶格中靶蛋白的靜態快照,觀察到的構象可能不是脂質雙層中的主要狀態。由于膜蛋白所處位置的特殊性,傳統生物技術實驗也很難排除周圍脂質的干擾,探究磷酸化調控膜蛋白結構動態變化還存在一定的挑戰。計算模擬研究在闡明磷酸化修飾的原理和機制方面發揮核心作用,有助于彌合磷酸化膜蛋白結構與磷酸化修飾膜蛋白功能之間的差距[101-103]。使用計算機策略來研究膜蛋白結構,使我們能夠進一步理解膜蛋白如何執行其不同的功能,同時幫助開發新的預測工具探測特征的折疊[104]。人們曾多次嘗試預測由磷酸化或去磷酸化事件引起的結構重排,這種分析可以確定控制磷酸化和非磷酸化狀態之間轉變的潛在機制[105]。盡管目前已有大量與翻譯后磷酸化修飾相關的研究,但在大多數情況下,磷酸化的特定位點在膜蛋白功能中發揮的具體作用知之甚少。獲得的結構信息有限,部分原因是磷酸化等翻譯后修飾的存在,蛋白特性也可能存在潛在的異質性。在不同時空條件下,磷酸化修飾如何誘導其他膜蛋白的構象變化,如何影響膜蛋白與配體分子的相互作用,如何選擇性的調控下游細胞效應應答等作用機制,對于發現基于磷酸化修飾的普適性調控機制具有重要意義。距離完全理解內在的分子機制還有很長的路要走,探究各種類型膜蛋白的磷酸化調控機制將會長期作為翻譯后修飾研究領域的重點。
參考文獻:
[1]? ? RENARD K,BYRNE B. Insights into the role of membrane lipids in the structure,function and regulation of integral membrane proteins[J]. International Journal of Molecular Sciences,2021,22(16):9026.
[2]? ? CARPENTER E P,BEIS K,CAMERON A D,et al. Overcoming the challenges of membrane protein crystallography[J]. Current Opinion in Structural Biology,2008,18(5):581-586.
[3]? ? VIT O,PETRAK J. Integral membrane proteins in proteomics. How to break open the black box? [J]. Journal of Proteomics,2017,153:8-20.
[4]? ? CHITWOOD P J,HEGDE R S. The role of EMC during membrane protein biogenesis[J]. Trends in Cell Biology,2019,29(5):371-384.
[5]? ? AMARAVADI R K,KIMMELMAN A C,DEBNATH J. Targeting autophagy in cancer:recent advances and future directions[J]. Cancer Discovery,2019,9(9):1167-1181.
[6]? ? JANJI B,BERCHEM G,CHOUAIB S. Targeting autophagy in the tumor microenvironment:new challenges and opportunities for regulating tumor immunity[J]. Frontiers in Immunology,2018,9:887.
[7]? ? GAO T,ZHANG X H,ZHAO J,et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer[J]. Cancer Letters,2020,469:89-101.
[8]? ? LI X,WILMANNS M,THORNTON J,et al. Elucidating human phosphatase-substrate networks[J]. Science Signaling,2013,6(275):rs10.
[9]? ? FLOYD B M,DREW K,MARCOTTE E M. Systematic identification of protein phosphorylation-mediated interactions[J]. Journal of Proteome Research,2021,20(2):1359-1370.
[10]? NISHI H,SHAYTAN A,PANCHENKO A R. Physicochemical mechanisms of protein regulation by phosphorylation[J]. Frontiers in Genetics,2014,5:270.
[11]? SEOK S H. Structural insights into protein regulation by phosphorylation and substrate recognition of protein kinases/phosphatases[J]. Life (Basel,Switzerland),2021,11(9):957.
[12]? PATWARDHAN A,CHENG N,TREJO J. Post-translational modifications of G protein-coupled receptors control cellular signaling dynamics in space and time[J]. Pharmacological Reviews,2021,73(1):120-151.
[13]? VITRAC H,MACLEAN D M,KARLSTAEDT A,et al. Dynamic lipid-dependent modulation of protein topology by post-translational phosphorylation[J]. Journal of Biological Chemistry,2017,292(5):1613-1624.
[14]? BACKE S J,SAGER R A,WOODFORD M R,et al. Post-translational modifications of Hsp90 and translating the chaperone code[J]. Journal of Biological Chemistry,2020,295(32):11099-11117.
[15]? BOZELLI J C Jr,YUNE J,HOU Y H,et al. Regulation of DGKε activity and substrate acyl chain specificity by negatively charged phospholipids[J]. Biophysical Journal,2020,118(4):957-966.
[16]? HAINAUT P,PLYMOTH A. Targeting the hallmarks of cancer:towards a rational approach to next-generation cancer therapy[J]. Current Opinion in Oncology,2013,25(1):50-51.
[17]? KHALILI E,RAMAZI S,GHANATI F,et al. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network[J]. Briefings in Bioinformatics,2022,23(2):bbac015.
[18]? LU Z C,JIANG F,WU Y D. Phosphate binding sites prediction in phosphorylation-dependent protein-protein interactions[J]. Bioinformatics,2021,37(24):4712-4718.
[19]? BATCHELOR M,DAWBER R S,WILSON A J,et al. Α-Helix stabilization by co-operative side chain charge-reinforced interactions to phosphoserine in a basic kinase-substrate motif[J]. The Biochemical Journal,2022,479(5):687-700.
[20]? ?O?TARI\U0107 N,VAN NOORT V. Molecular dynamics shows complex interplay and long-range effects of post-translational modifications in yeast protein interactions[J]. PLoS Computational Biology,2021,17(5):e1008988.
[21]? NISHI H,HASHIMOTO K,PANCHENKO A R. Phosphorylation in protein-protein binding:effect on stability and function[J]. Structure,2011,19(12):1807-1815.
[22]? WANG X,ZHANG Z Y,ZHANG C G,et al. TransPhos:a deep-learning model for general phosphorylation site prediction based on transformer-encoder architecture[J]. International Journal of Molecular Sciences,2022,23(8):4263.
[23]? ZHOU M H,CHEN S R,WANG L,et al. Protein kinase C-mediated phosphorylation and α2δ-1 interdependently regulate NMDA receptor trafficking and activity[J]. J Neurosci,2021,41(30):6415-6429.
[24]? ARAI M,SUGASE K,DYSON H J,et al. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(31):9614-9619.
[25]? IAKOUCHEVA L M,RADIVOJAC P,BROWN C J,et al. The importance of intrinsic disorder for protein phosphorylation[J]. Nucleic Acids Research,2004,32(3):1037-1049.
[26]? HOERMANN B,K?HN M. Evolutionary crossroads of cell signaling:PP1 and PP2A substrate sites in intrinsically disordered regions[J]. Biochemical Society Transactions,2021,49(3):1065-1074.
[27]? LOUGHERY J,COX M,SMITH L M,et al. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters[J]. Nucleic Acids Research,2014,42(12):7666-7680.
[28]? BOZOKY Z,KRZEMINSKI M,CHONG P A,et al. Structural changes of CFTR R region upon phosphorylation:a plastic platform for intramolecular and intermolecular interactions[J]. The FEBS Journal,2013,280(18):4407-4416.
[29]? BENCIVENGA D,STAMPONE E,AULITTO A,et al. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue:a new mechanism for tumor suppressor loss-of-function[J]. Molecular Oncology,2021,15(4):915-941.
[30]? RAMASAMY P,TURAN D,TICHSHENKO N,et al. Scop3P:a comprehensive resource of human phosphosites within their full context[J]. Journal of Proteome Research,2020,19(8):3478-3486.
[31]? OGDEN D,MORADI M. Molecular dynamics-based thermodynamic and kinetic characterization of membrane protein conformational transitions[J]. Methods in Molecular Biology (Clifton,N J ),2021,2302:289-309.
[32]? VITRAC H,MALLAMPALLI V K P S,DOWHAN W. Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation[J]. Journal of Biological Chemistry,2019,294(49):18853-18862.
[33]? KHALED M,GORFE A,SAYYED-AHMAD A. Conformational and dynamical effects of Tyr32 phosphorylation in K-ras:molecular dynamics simulation and Markov state models analysis[J]. The Journal of Physical Chemistry B,2019,123(36):7667-7675.
[34]? VENER M V,ODINOKOV A V,WEHMEYER C,et al. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations[J]. The Journal of Chemical Physics,2015,142(21):215106.
[35]? JUR?SEK M,KUMAR J,PACL?KOV? P,et al. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3[J]. Scientific Reports,2021,11(1):1484.
[36]? RANI L,MITTAL J,MALLAJOSYULA S S. Effect of phosphorylation and O-GlcNAcylation on proline-rich domains of tau[J]. The Journal of Physical Chemistry B,2020,124(10):1909-1918.
[37]? WELKER LENG K R,CASTA?EDA C A,DECROOS C,et al. Phosphorylation of histone deacetylase 8:structural and mechanistic analysis of the phosphomimetic S39E mutant[J]. Biochemistry,2019,58(45):4480-4493.
[38]? ROSKOSKI R Jr. Src protein-tyrosine kinase structure,mechanism,and small molecule inhibitors[J]. Pharmacological Research,2015,94:9-25.
[39]? WI?NIEWSKA M,SOBOLEWSKI E,O?DZIEJ S,et al. Theoretical studies of interactions between O-phosphorylated and standard amino-acid side-chain models in water[J]. The Journal of Physical Chemistry B,2015,119(27):8526-8534.
[40]? RIELOFF E,SKEP? M. The effect of multisite phosphorylation on the conformational properties of intrinsically disordered proteins[J]. International Journal of Molecular Sciences,2021,22(20):11058.
[41]? KARASEV D A,VESELOVA D A,VESELOVSKY A V,et al. Spatial features of proteins related to their phosphorylation and associated structural changes[J]. Proteins:Structure,Function,and Bioinformatics,2018,86(1):13-20.
[42]? CRAVEUR P,NARWANI T J,REBEHMED J,et al. Investigation of the impact of PTMs on the protein backbone conformation[J]. Amino Acids,2019,51(7):1065-1079.
[43]? REN M N,MA Z Y,SHI S,et al. Molecular basis of PIP2-dependent conformational switching of phosphorylated CD44 in association with FERM[EB/OL]. SSRN Electronic Journal,2022:http://dx. doi. org/10. 2139/ssrn. 4089981.
[44]? XIN F X,RADIVOJAC P. Post-translational modifications induce significant yet not extreme changes to protein structure[J]. Bioinformatics,2012,28(22):2905-2913.
[45]? POURJAFAR-DEHKORDI D,ZACHARIAS M. Influence of a Ser111-phosphorylation on Rab1b GTPase conformational dynamics studied by advanced sampling simulations[J]. Proteins:Structure,Function,and Bioinformatics,2021,89(10):1324-1332.
[46]? ZHANG H M,HE J X,HU G,et al. Dynamics of post-translational modification inspires drug design in the kinase family[J]. Journal of Medicinal Chemistry,2021,64(20):15111-15125.
[47]? MIH?LYI C,IORDANOV I,T?R?CSIK B,et al. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(35):21740-21746.
[48]? ERDEM F A,SALZER I,HEO S,et al. Updating in vivo and in vitro phosphorylation and methylation sites of voltage-gated Kv7. 2 potassium channels[J]. Proteomics,2017,17(19):1700015.
[49]? GAHMBERG C G,GR?NHOLM M,MADHAVAN S,et al. Regulation of cell adhesion:a collaborative effort of integrins,their ligands,cytoplasmic actors,and phosphorylation[J]. Quarterly Reviews of Biophysics,2019,52:e10.
[50]? SUN F D,SCHROER C F E,PALACIOS C R,et al. Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2[J]. PLoS Computational Biology,2020,16(4):e1007777.
[51]? SUN F D,SCHROER C F E,XU L D,et al. Molecular dynamics of the association of L-selectin and FERM regulated by PIP2[J]. Biophysical Journal,2018,114(8):1858-1868.
[52]? LUBART Q,VITET H,DALONNEAU F,et al. Role of phosphorylation in moesin interactions with PIP2-containing biomimetic membranes[J]. Biophysical Journal,2018,114(1):98-112.
[53]? ZHANG M,MENG X Y,CUI M,et al. Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex[J]. Nature Chemical Biology,2014,10(9):753-759.
[54]? SVIRIDOV D,MUKHAMEDOVA N,MILLER Y I. Lipid rafts as a therapeutic target:thematic review series:biology of lipid rafts[J]. Journal of Lipid Research,2020,61(5):687-695.
[55]? TONG J H,NGUYEN L,VIDAL A,et al. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers[J]. Biophysical Journal,2008,94(1):125-133.
[56]? HAACK F,K?STER T,UHRMACHER A M. Receptor/raft ratio is a determinant for LRP6 phosphorylation and WNT/β-catenin signaling[J]. Frontiers in Cell and Developmental Biology,2021,9:706731.
[57]? ARDITO F,GIULIANI M,PERRONE D,et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review)[J]. Biomolecules & Therapeutics,2017,40(2):271-280.
[58]? ZHANG Q M,XIAO K H,PAREDES J M,et al. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport[J]. Journal of Biological Chemistry,2019,294(12):4546-4571.
[59]? B?TTCHER R T,STROHMEYER N,ARETZ J,et al. New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain[J]. Life Science Alliance,2022,5(4):e202101301.
[60]? GRIMM T M,DIERDORF N I,BETZ K,et al. PPM1F controls integrin activity via a conserved phospho-switch[J]. The Journal of Cell Biology,2020,219(12):e202001057.
[61]? MCEWEN A E,MAHER M T,MO R G,et al. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion[J]. Molecular Biology of the Cell,2014,25(16):2365-2374.
[62]? VERROU K M,GALLIOU P A,PAPAIOANNOU M,et al. Phosphorylation mapping of Laminin β1-chain:Kinases in association with active sites[J]. Journal of Biosciences,2019,44(2):1-17.
[63]? LIU G Q,VOGEL S M,GAO X P,et al. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2011,31(6):1342-1350.
[64]? ADAM A P. Regulation of endothelial adherens junctions by tyrosine phosphorylation[J]. Mediators of Inflammation,2015,2015:272858.
[65]? TSAKADZE N L,SEN U,ZHAO Z D,et al. Signals mediating cleavage of intercellular adhesion molecule-1[J]. American Journal of Physiology Cell Physiology,2004,287(1):C55-C63.
[66]? NEWE A,RZENIEWICZ K,K?NIG M,et al. Serine phosphorylation of L-selectin regulates ERM binding,clustering,and monocyte protrusion in transendothelial migration[J]. Frontiers in Immunology,2019,10:2227.
[67]? CHEN C,ZHAO S J,KARNAD A,et al. The biology and role of CD44 in cancer progression:therapeutic implications[J]. Journal of Hematology & Oncology,2018,11(1):64.
[68]? PONTA H,SHERMAN L,HERRLICH P A. CD44:from adhesion molecules to signalling regulators[J]. Nature Reviews Molecular Cell Biology,2003,4(1):33-45.
[69]? XIONG E H,CAO D,QU C X,et al. Multilocation proteins in organelle communication:based on protein-protein interactions[J]. Plant Direct,2022,6(2):e386.
[70]? RAJPOOT S,KUMAR A,ZHANG K Y J,et al. TIRAP-mediated activation of p38 MAPK in inflammatory signaling[J]. Scientific Reports,2022,12:5601.
[71]? T D,VENKATRAMAN P,VEMPARALA S. Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics[J]. Scientific Reports,2018,8:12976.
[72]? LI L,DING Q,CHEN S,et al. Biomechanics and functional regulations of CD44-ligand interactions[J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics,2021,53(2):539-553.
[73]? WEI Z Y,LI Y J,YE F,et al. Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin[J]. Journal of Biological Chemistry,2015,290(18):11384-11392.
[74]? MICHIE K A,BERMEISTER A,ROBERTSON N O,et al. Two sides of the coin:ezrin/radixin/moesin and merlin control membrane structure and contact inhibition[J]. International Journal of Molecular Sciences,2019,20(8):E1996.
[75]? XU L J,NAGAI Y,KAJIHARA Y,et al. The regulation of rab GTPases by phosphorylation[J]. Biomolecules,2021,11(9):1340.
[76]? GELENS L,SAURIN A T. Exploring the function of dynamic phosphorylation-dephosphorylation cycles[J]. Developmental Cell,2018,44(6):659-663.
[77]? DAY E K,SOSALE N G,LAZZARA M J. Cell signaling regulation by protein phosphorylation:a multivariate,heterogeneous,and context-dependent process[J]. Current Opinion in Biotechnology,2016,40:185-192.
[78]? LECHTENBERG B C,GEHRING M P,LIGHT T P,et al. Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker[J]. Nature Communications,2021,12(1):7047.
[79]? KOCIENIEWSKI P,FAEDER J R,LIPNIACKI T. The interplay of double phosphorylation and scaffolding in MAPK pathways[J]. Journal of Theoretical Biology,2012,295:116-124.
[80]? ZEKE A,MISHEVA M,REM?NYI A,et al. JNK signaling:regulation and functions based on complex protein-protein partnerships[J]. Microbiology and Molecular Biology Reviews,2016,80(3):793-835.
[81]? PLUHACKOVA K,WILHELM F M,M?LLER D J. Lipids and phosphorylation conjointly modulate complex formation of β2-adrenergic receptor and β-arrestin2[J]. Frontiers in Cell and Developmental Biology,2021,9:807913.
[82]? BUWA N,KANNAN N,KANADE S,et al. Adhesion-dependent Caveolin-1 Tyrosine-14 phosphorylation is regulated by FAK in response to changing matrix stiffness[J]. FEBS Letters,2021,595(4):532-547.
[83]? NWAMBA O C. Membranes as the third genetic code[J]. Molecular Biology Reports,2020,47(5):4093-4097.
[84]? FLUMAN N,TOBIASSON V,VON HEIJNE G. Stable membrane orientations of small dual-topology membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(30):7987-7992.
[85]? MAEDA R,SATO T,OKAMOTO K,et al. Lipid-protein interplay in dimerization of juxtamembrane domains of epidermal growth factor receptor[J]. Biophysical Journal,2018,114(4):893-903.
[86]? BUDAY L,VAS V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation[J]. Cancer Metastasis Reviews,2020,39(4):1067-1073.
[87]? LU H X,MART? J. Predicting the conformational variability of oncogenic GTP-bound G12D mutated KRas-4B proteins at zwitterionic model cell membranes[J]. Nanoscale,2022,14(8):3148-3158.
[88]? ZHANG S Y,SPERLICH B,LI F Y,et al. Phosphorylation weakens but does not inhibit membrane binding and clustering of K-Ras4B[J]. ACS Chemical Biology,2017,12(6):1703-1710.
[89]? LEE D H,MAUNSBACH A B,RIQUIER-BRISON A D,et al. Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution,phosphorylation,and membrane complex properties[J]. American Journal of Physiology Cell Physiology,2013,304(2):C147-C163.
[90]? TADDEI M L,PARDELLA E,PRANZINI E,et al. Role of tyrosine phosphorylation in modulating cancer cell metabolism[J]. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer,2020,1874(2):188442.
[91]? FABBRO D,COWAN-JACOB S W,M?BITZ H,et al. Targeting cancer with small-molecular-weight kinase inhibitors[J]. Methods in Molecular Biology (Clifton,N J ),2012,795:1-34.
[92]? ASSIDDIQ B F,TAN K Y,TOY W,et al. EGFR S1166 phosphorylation induced by a combination of EGF and gefitinib has a potentially negative impact on lung cancer cell growth[J]. Journal of Proteome Research,2012,11(8):4110-4119.
[93]? ARRINGTON J V,HSU C C,ELDER S G,et al. Recent advances in phosphoproteomics and application to neurological diseases[J]. The Analyst,2017,142(23):4373-4387.
[94]? VAN EIJK J J J,VAN EVERBROECK B,ABDO W F,et al. CSF neurofilament proteins levels are elevated in sporadic Creutzfeldt-Jakob disease[J]. Journal of Alzheimer's Disease:JAD,2010,21(2):569-576.
[95]? NGOUNOU WETIE A G,WORMWOOD K L,RUSSELL S,et al. A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder[J]. Autism Research,2015,8(3):338-350.
[96]? WEGMANN S,BIERNAT J,MANDELKOW E. A current view on Tau protein phosphorylation in Alzheimer's disease[J]. Current Opinion in Neurobiology,2021,69:131-138.
[97]? GERRITSEN J S,WHITE F M. Phosphoproteomics:a valuable tool for uncovering molecular signaling in cancer cells[J]. Expert Review of Proteomics,2021,18(8):661-674.
[98]? BERIASHVILI D,SCHELLEVIS R D,NAPOLI F,et al. High-resolution studies of proteins in natural membranes by solid-state NMR[J]. Journal of Visualized Experiments:JoVE,2021(169):doi:10. 3791/62197.
[99]? BAKER L A,SINNIGE T,SCHELLENBERGER P,et al. Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments[J]. Structure,2018,26(1):161-170.
[100]FUJIMURA S,MIO K,OHKUBO T,et al. Diffracted X-ray tracking method for measuring intramolecular dynamics of membrane proteins[J]. International Journal of Molecular Sciences,2022,23(4):2343.
[101]ROBICHON A. Protein phosphorylation dynamics:unexplored because of current methodological limitations[J]. BioEssays,2020,42(4):1900149.
[102]SINGH N,LI W. Recent advances in coarse-grained models for biomolecules and their applications[J]. International Journal of Molecular Sciences,2019,20(15):E3774.
[103]HOLLINGSWORTH S A,DROR R O. Molecular dynamics simulation for all[J]. Neuron,2018,99(6):1129-1143.
[104]KAWADE R,KURODA D,TSUMOTO K. How the protonation state of a phosphorylated amino acid governs molecular recognition:insights from classical molecular dynamics simulations[J]. FEBS Letters,2020,594(5):903-912.
[105]KAMACIOGLU A,TUNCBAG N,OZLU N. Structural analysis of mammalian protein phosphorylation at a proteome level[J]. Structure,2021,29(11):1219-1229.