楊鈺潔 梁崗



摘 要: ?FIT是調控擬南芥鐵穩態的一個關鍵調控因子,它在轉錄水平上受到缺鐵誘導,但其背后的調控機制還不甚清楚。該研究以擬南芥bHLH38和FIT的單、雙過表達植物及bHLH Ib四突變體植物為材料,采用缺鐵(-Fe)處理實驗和定量RT-PCR的方法從RNA角度分析了FIT轉錄水平的變化。結果表明:(1)在鐵充足時,bHLH38過表達植物中FIT的轉錄水平顯著高于其在野生型中的水平。(2)在bHLH Ib四突變體植物中FIT的轉錄水平不受缺鐵誘導。(3)FIT單過表達不能激活內源FIT的轉錄,而在加鐵(+Fe)條件下bHLH38和FIT的雙過表達則可以激活內源FIT的轉錄。(4)在缺鐵條件下,所有植物中FIT的轉錄水平均與野生型中的FIT水平無明顯差異。基于以上結果認為,bHLH Ib轉錄因子是缺鐵誘導FIT轉錄的必要條件,而非充分條件。該研究結果為深入了解植物通過多種途徑共同維持鐵穩態提供了新的見解。
關鍵詞: 鐵, 轉錄調控, 缺鐵響應, 鐵穩態, 擬南芥
中圖分類號:? Q943
文獻標識碼:? A
文章編號:? 1000-3142(2023)02-0399-06
bHLH Ib transcription factors regulate the
transcription of FIT in Arabidopsis thaliana
YANG Yujie1,2, LIANG Gang1*
( 1. Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of
Sciences, Kunming 650223, China; 2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China )
Abstract:? FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is a key regulator of Fe homeostasis in Arabidopsis, which is upregulated under Fe deficiency condition, however, the underlying regulatory mechanism is still unclear. In this study, the single and dual overexpression plants of A. thaliana bHLH38 and FIT, as well as the bHLH Ib quadruple mutant plants, were used as research materials, and Fe deficiency test and quantitative RT-PCR were used to analyze the change of FIT transcription level from the perspective of RT-RNA. The results were as follows: (1) Under Fe sufficient condition, the transcription level of? FIT significantly increased in the bHLH38 overexpression plants compared with in the wild type plants. (2) The transcription of FIT did not respond to Fe deficiency in the bHLH Ib quadruple mutant plant. (3) The overexpression of FIT could not activate the transcription of native FIT, and the dual overexpression of FIT and bHLH38 promoted the transcription of native FIT under Fe sufficient conditions. (4) There was no significant difference for the expression of FIT between the transgenic or mutant plants and wild type plants under Fe deficiency condition. Taken together, these data suggest that bHLH Ib transcription factors are necessary, but not sufficient, for the upregulation of FIT by Fe deficiency. The results of this study provide new insights into the various ways that plants work together to maintain Fe homeostasis.
Key words: Iron, transcription regulation, Fe deficiency response, Fe homeostasis, Arabidopsis thaliana
鐵是植物生長發育的重要微量元素之一,它作為多種酶的輔助因子參與植物的光合作用、呼吸作用、葉綠素的生物合成、植物固氮以及植物激素合成等重要生命過程(Balk & Schaedler, 2014)。鐵是地殼中的第四大元素,易氧化形成沉淀,不易被植物利用,在pH較高的土壤中,鐵的利用率更低(Guerinot & Yi, 1994)。植物缺鐵常常導致缺鐵癥狀,如葉片脈間失綠黃化,而植物是人類獲取鐵的重要膳食來源,植物缺鐵會影響人類健康。植物為了從土壤中獲取足夠的鐵,已經進化出兩種不同的吸收策略,即非禾本科植物的策略I和禾本科植物的策略Ⅱ(Romheld & Marschner, 1986; Grillet & Schmidt, 2019)。模式植物擬南芥采用的策略I包括土壤酸化、Fe3+還原為Fe2+和鐵吸收3個步驟。擬南芥的根際土壤酸化主要由AHA2完成(Santi & Schmidt, 2009),之后Fe3+被鐵還原氧化酶2(ferric reduction oxidase 2,FRO2)還原為Fe2+(Robinson et al., 1999),最后由鐵調節轉運體1(iron-regulated transporter 1,IRT1)轉運進根細胞(Varotto et al., 2002; Vert et al., 2002)。禾本科植物如大麥(Hordeum vulgare)、玉米(Zea mays)和水稻(Oryza sativa)可以分泌高親和力的麥根酸(被稱為植物鐵載體)來直接螯合Fe3+(Walker & Connolly, 2008; Morrissey & Guerinot, 2009)。近年來的研究表明,擬南芥也能分泌鐵螯合物(Rodriguez-Celma & Schmidt, 2013; Fourcroy et al., 2014; Schmid et al., 2014; Siwinska et al., 2018; Tsai et al., 2018)。
FIT是策略I機制中的一個關鍵調控因子,其功能喪失會導致IRT1和FRO2表達水平的降低和嚴重的缺鐵癥狀(Vert et al., 2002; Colangelo & Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2005)。FIT與bHLH Ib亞家族的四個成員(bHLH38、bHLH39、bHLH100和bHLH101)相互作用調控缺鐵響應(Yuan et al., 2008; Wang et al., 2013)。這四個基因都受到缺鐵條件的誘導且它們的蛋白功能冗余(Wang et al., 2013)。FIT也是多種植物激素信號和細胞內信號與缺鐵信號聯系的中心樞紐。例如,FIT蛋白的穩定性受到乙烯和一氧化氮(NO)的調節(Garcia et al., 2010; Lingam et al., 2011; Meiser et al., 2011)。乙烯信號通路中的轉錄因子EIN3(ETHYLENE INSENSITIVE 3)和EIL1(ETHYLENE INSENSITIVE 3-LIKE1)與FIT互作,并增強其穩定性(Lingam et al., 2011)。NO能抑制FIT蛋白降解,促進其在缺鐵條件下的穩定(Meiser et al., 2011)。此外,NO通過GRF11(GENERAL REGULATORY FACTOR 11)調節FIT轉錄(Yang et al., 2013)。赤霉素是缺鐵反應的另一個正調控因子。DELLA蛋白作為赤霉素信號通路的負調控因子,與FIT蛋白相互作用并抑制FIT蛋白功能(Wild et al., 2016)。另外,茉莉酸通過誘導bHLH IVa亞家族基因(bHLH18、bHLH19、bHLH20和bHLH25)的表達負調控缺鐵反應,其產物與FIT相互作用并促進FIT的降解(Matsuoka et al., 2014; Cui et al., 2018)。FIT作為缺鐵響應信號中的關鍵調控因子,其轉錄也受到缺鐵誘導。Lei等(2020)的研究表明,bHLH121直接靶向FIT的啟動子,并正調控后者轉錄。
FIT作為鐵穩態信號中的一個關鍵調控因子,其自身的轉錄也受到缺鐵條件的誘導。已有的研究表明,FIT和bHLH Ib可以影響FIT的轉錄(Wang et al., 2007; Naranjo-Arcos et al., 2017),但它們是如何調控FIT表達的還不甚清楚。本研究重點關注bHLH Ib成員bHLH38及FIT轉錄因子對FIT轉錄水平的調控,探討bHLH38過表達是否可以激活FIT的轉錄,在bHLH Ib的四突變體植物中FIT轉錄是否再受缺鐵誘導,FIT過表達能否激活內源FIT的轉錄,以及bHLH38和FIT的雙過表達如何影響FIT的表達。
1 材料與方法
1.1 植物材料和生長條件
所用的擬南芥材料為Columbia-0生態型。播種前將種子用70%酒精浸泡15 min,之后用蒸餾水清洗至少3次。將種子鋪在培養基上,4 ℃冷藏2 d后移到溫室進行培養(22 ℃,光照16 h/黑暗8 h)。+Fe培養基,即1/2MS培養基(1%蔗糖、0.7%瓊脂A、0.1 mmol·L-1 Fe(Ⅱ)-EDTA、pH 5.8);-Fe培養基,即其培養基成分除了不加Fe(Ⅱ)-EDTA以外,與上面提及的+Fe培養基一樣。論文中所用的FIT過表達植物來自中國科學院遺傳發育研究所凌宏清研究組(Cui et al., 2018)。
1.2 載體構建及轉基因
提取野生型擬南芥根部的RNA,反轉錄成cDNA,通過PCR獲得了bHLH38的全長編碼區序列,并將其克隆到pOCA30雙元表達載體上。用載體來轉化農桿菌EHA105,并利用浸花法轉化野生型擬南芥。將T1代轉基因種子置于1/2MS+50 mg·L-1卡那霉素的平板上進行陽性苗篩選。
1.3 定量RT-PCR分析
將在+Fe(0.1 mmol·L-1 Fe(Ⅱ)-EDTA)垂直板上生長7 d的幼苗,分別移到+Fe和-Fe垂直板上生長3 d,之后分離根用液氮凍存。利用Trizol試劑盒提取根部的總RNA,用反轉錄試劑盒(TaKaRa)的oligo(dT)18引物反轉成cDNA。使用 SYBR Premix Ex TaqTM kit(TaKaRa)定量RT-PCR試劑盒在Roche Light Cycler 480 real-time PCR儀器上進行定量檢測,其中ACT2用作內參基因。
2 結果與分析
2.1 bHLH38過表達促進了FIT在加鐵(+Fe)條件下的表達
選擇bHLH38作為bHLH Ib轉錄因子的代表開展研究。IRT1和FRO2是FIT和bHLH Ib轉錄因子的靶基因,受到缺鐵條件的誘導。在我們的實驗里,IRT1和FRO2被用作陽性Marker基因。我們用定量RT-PCR檢測了缺鐵響應基因IRT1、FRO2和FIT的表達。圖1結果表明,在+Fe情況下IRT1、FRO2和FIT在bHLH38過表達植物中的表達水平均顯著高于它們在WT中的水平;而在-Fe情況下,它們在bHLH38過表達植物中的表達則類似于或略低于其在WT中的水平。
2.2 四突變體植物的FIT轉錄水平不受缺鐵(-Fe)誘導
對bHLH Ib的四突變體bhlh4x-1和bhlh4x-2進行缺鐵處理(Cai et al., 2021),并通過定量RT-PCR檢測IRT1、FRO2和FIT的表達。圖2結果表明,在+Fe情況下,IRT1和FRO2在bhlh4x-1和bhlh4x-2中的表達水平均顯著低于它們在WT中的水平,而FIT的表達水平則無明顯變化。相比較而言,在-Fe情況下,IRT1、FRO2和FIT在bhlh4x-1和bhlh4x-2中的表達水平均顯著低于它們在WT中的水平。
2.3 外源FIT過表達不能激活內源FIT的轉錄
對FIT過表達植物進行缺鐵處理并利用定量RT-PCR檢測IRT1、FRO2和內源FIT的表達(圖3)。我們用跨FIT基因最后一個外顯子與3UTR的一個片段來定量內源FIT的表達。圖3結果表明,無論是在+Fe還是-Fe的情況下,IRT1和FRO2的表達水平在FIT過表達植物中均輕微上調,而內源FIT的表達水平在FIT過表達植物和WT植物中則均無顯著差異。
2.4 在+Fe條件下bHLH38和FIT的雙過表達促進了內源FIT的增加
先分別對bHLH38和FIT的雙過表達植物進行缺鐵處理,再通過定量RT-PCR檢測IRT1、FRO2以及內源FIT的轉錄變化。圖4結果表明,在+Fe和-Fe的情況下,雙過表達植物中IRT1和FRO2的表達水平均高于WT中的表達水平。相比較而言,雙過表達植物的內源FIT水平只有在+Fe時才高于WT,而在-Fe時與WT的水平相近。
3 討論與結論
鐵是植物生長發育所必需的一種礦質元素,而鐵的可利用性主要依賴于土壤的pH值。在酸性土壤中部分鐵以離子形式存在被植物利用,但在堿性土壤中鐵主要以不溶的氧化狀態存在。由于植物固著生長無法移動,因此在堿性土壤中生長的植物不得不面對缺鐵脅迫。經過長期的進化,植物已經進化了一些特殊的機制來適應缺鐵環境。植物能感知鐵濃度的變化,并通過一套嚴密的鐵信號轉導系統來激活下游鐵吸收相關基因的表達以促進鐵的吸收。在擬南芥的缺鐵響應系統中,FIT是一個處于核心位置的調控因子,它直接控制了鐵吸收基因IRT1和FRO2的表達(Schwarz & Bauer, 2020)。但是,FIT自身的轉錄也受到缺鐵的誘導(Colangelo & Guerinot, 2004)。探究FIT在缺鐵條件下如何被激活已成為鐵信號研究領域的一個熱點。
過表達bHLH Ib亞家族的成員bHLH39可以在+Fe情況下激活FIT表達(Naranjo-Arcos et al., 2017),表明bHLH39在+Fe條件下正調控FIT的表達。我們分析了bHLH Ib中另一個成員bHLH38的過表達植物,發現FIT的表達趨勢類似于其在bHLH39過表達植物的情況,這證明bHLH Ib家族成員之間的功能冗余。由于較強的功能冗余性,因此bHLH Ib四個成員的單、雙突變體無明顯的缺鐵表型,三突變體表現出輕微的缺鐵表型(Sivitz et al., 2012; Wang et al., 2013; Maurer et al., 2014),而四突變體則表現出強烈的缺鐵癥狀(Cai et al., 2021)。本研究發現,四突變體中FIT的表達水平在+Fe時沒有顯著變化,但在-Fe時顯著低于其WT中的水平,這表明bHLH Ib對于-Fe時FIT的上調是必需的。
fit突變體中FIT的啟動子活性顯著低于WT中的水平(Wang et al., 2007),表明FIT對于其自身的轉錄是必需的。本研究結果表明,在FIT過表達植物里,內源FIT的表達與WT無顯著差異,這表明外源FIT過表達不足以促進內源FIT的轉錄。因此,FIT對于FIT自身轉錄雖是必要條件,但不是充分條件。在鐵穩態信號轉導途徑中,FIT通過與bHLH Ib成員形成異源二聚體共同激活下游基因IRT1和FRO2的表達(Yuan et al., 2018; Wang et al., 2013)。在WT背景下過表達bHLH39可以促進IRT1和FRO2的表達,而在fit突變體背景下bHLH39卻不能激活靶基因IRT1和FRO2(Naranjo-Arcos et al., 2017),這說明bHLH39激活IRT1和FRO2的轉錄需要FIT的參與。在+Fe情況下,bHLH38過表達及bHLH38和FIT雙過表達都可以促進IRT1、FRO2和內源FIT的轉錄。相比較而言,在-Fe情況下,雙過表達雖然促進了IRT1和FRO2的表達,但沒有促進FIT的表達,而bHLH38單過表達對IRT1、FRO2和FIT的表達影響不大。因此,我們得出結論:bHLH Ib是缺鐵誘導FIT的必要條件,而不是充分條件。
當外源FIT蛋白過量表達時,擬南芥會啟動體內的26S蛋白酶降解系統來促進FIT的降解,最終維持FIT的蛋白相對穩定(Meiser et al., 2011; Sivitz et al., 2011)。Sivitz等(2011)研究認為,在-Fe情況下,擬南芥植物需要維持穩定水平的、有活性的FIT蛋白,既可以保證植物吸收足夠的鐵,又可以保證植物不會因吸入過多鐵而對其產生毒害。本研究結果表明,FIT轉錄水平在缺鐵條件下已經達到最高值,即使額外增加正調控它的轉錄因子的水平也不能提高FIT的轉錄水平,這暗示植物不需要或不能維持太高的內源FIT轉錄本。這種內源FIT轉錄本的閾值現象與FIT蛋白的閾值現象非常類似。我們猜測,植物可能已經進化出了不同的方式來維持鐵穩態。從RNA和蛋白兩方面控制FIT的水平可能是植物維持鐵穩態的關鍵一環。除了這兩方面以外,擬南芥還能根據鐵濃度的變化調整FIT蛋白在細胞核與細胞質的比例以及調整FIT的磷酸化狀態(Gratz et al., 2019,2020),最終維持植物的鐵穩態。本研究從RNA角度研究了FIT的轉錄變化,這為今后深入了解植物通過多種途徑共同維持鐵穩態提供了新的見解。
參考文獻:
BALK J, SCHAEDLER TA, 2014. Iron cofactor assembly in plants? [J]. Ann Rev Plant Biol, 65: 125-153.
BUCKHOUT TJ, YANG TJW, SCHMIDT W, 2009. Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses? [J]. BMC Genomics, 10: 147.
CAI YR, LI Y, LIANG G, 2021. FIT and bHLH Ib transcription factors modulate iron and copper crosstalk in Arabidopsis? [J]. Plant Cell Environ, 44(5): 1679-1691.
COLANGELO EP, GUERINOT ML, 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response? [J]. Plant Cell, 16(12): 3400-3412.
CUI Y, CHEN CL, CUI M, et al., 2018. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis? [J]. Mol Plant, 11(9): 1166-1183.
FOURCROY P, SISO-TERRAZA P, SUDRE D, et al., 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency? [J]. New Phytol, 201(1): 155-167.
GARCIA MJ, LUCENA C, ROMERA FJ, et al., 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis? [J]. J Exp Bot, 61(14): 3885-3899.
GRATZ R, MANISHANKAR P, IVANOV R, et al., 2019. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling? [J]. Dev Cell, 48(5): 726-740.
GRATZ R, BRUMBAROVA T, IVANOV R, et al., 2020. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR? [J]. New Phytol, 225(1): 250-267.
GRILLET L, SCHMIDT W, 2019. Iron acquisition strategies in land plants: not so different after all? [J]. New Phytol, 224(1): 11-18.
GUERINOT ML, YI Y, 1994. Iron: Nutritious, noxious, and not readily available? [J]. Plant Physiol, 104(3): 815-820.
JAKOBY M, WANG HY, REIDT W, et al., 2004. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana? [J]. FEBS Lett, 577(3): 528-534.
LINGAM S, MOHRBACHER J, BRUMBAROVA T, et al., 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis? [J]. Plant Cell, 23(5): 1815-1829.
LEI RH, LI Y, CAI YR, et al., 2020. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis? [J]. Mol Plant, 13(4): 634-649.
MATSUOKA K, FURUKAWA J, BIDADDI H, et al., 2014. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis? [J]. Plant Cell Physiol, 55(1): 87-98.
MAURER F, NARANJO ARCOS MA, BAUER P, 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid [J]. PLoS ONE, 9(6): e99234.
MEISER J, LINGAM S, BAUER P, et al., 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide? [J]. Plant Physiol, 157(4): 2154-2166.
MORRISSEY J, GUERINOT ML, 2009. Iron uptake and transport in plants: The good, the bad, and the ionome? [J]. Chem Rev, 109(10): 4553-4567.
NARANJO-ARCOS MA, MAURER F, MEISER J, et al., 2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein? [J]. Sci Rep, 7: 10911.
ROBINSON NJ, PROCTER CM, CONNOLLY EL, et al., 1999. A ferric-chelate reductase for iron uptake from soils? [J]. Nature, 397(6721): 694-697.
RODRIGUEZ-CELMA J, SCHMIDT W, 2013. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds? [J]. Plant Signal Behav, 8(11): e26116.
ROMHELD V, MARSCHNER H, 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses? [J]. Plant Physiol, 80(1): 175-180.
SANTI S, SCHMIDT W, 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots? [J]. New Phytol, 183(4): 1072-1084.
SCHMID NB, GIEHL RFH, DOLL S, et al., 2014. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis? [J]. Plant Physiol, 164(1): 160-172.
SCHWARZ B, BAUER P, 2020. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures? [J]. J Exp Bot, 71(5): 1694-1705.
SIVITZ A, GRINVALDS C, BARBERON M, et al., 2011. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses? [J]. Plant J, 66(6): 1044-1052.
SIVITZ AB, HERMAND V, CURIE C, et al., 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway? [J]. PLoS ONE, 7(9): e44843.
SIWINSKA J, SIATKOWSKA K, OIRY A, et al., 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis? [J]. J Exp Bot, 69(7): 1735-1748.
TSAI HH, RODRGUEZ-CELMA J, LAN P, et al., 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization? [J]. Plant Physiol, 177(1): 194-207.
VAROTTO C, MAIWALD D, PESARESI P, et al., 2002. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana? [J]. Plant J, 31(5): 589-599.
VERT G, GROTZ N, DEALDECHAMP F, et al., 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth? [J]. Plant Cell, 14(6): 1223-1233.
WALKER EL, CONNOLLY EL, 2008. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants? [J]. Curr Opin Plant Biol, 11(5): 530-535.
WANG HY , KLATTE M, JAKOBY M, et al., 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana? [J]. Planta, 226(4): 897-908.
WANG N, CUI Y, LIU Y, et al., 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana? [J]. Mol Plant, 6(2): 503-513.
WILD M, DAVIERE JM, REGNAULT T, et al., 2016. Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses? [J]. Dev Cell, 37(2): 190-200.
YANG JL, CHEN WW, CHEN LQ, et al., 2013. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana? [J]. New Phytol, 197(3): 815-824.
YUAN YX, WU HL, WANG N, et al., 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis? [J]. Cell Res, 18(3): 385-397.
YUAN YX, ZHANG J, WANG DW, et al., 2005. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants? [J]. Cell Res, 15(8): 613-621.
(責任編輯 蔣巧媛 鄧斯麗)
收稿日期:? 2022-09-20
基金項目:? 云南省應用基礎研究計劃項目(2019FB028, 202001AT070131)。
第一作者: 楊鈺潔(1995- ),碩士研究生,主要從事植物鐵營養代謝研究,(E-mail)870417073@qq.com。
通信作者:? 梁崗,博士,研究員,主要從事植物礦質營養研究,(E-mail)lianggang@xtbg.ac.cn。