王寧 呂月明



摘要: 通過研究周期演化區域上一類三種群互惠模型, 討論區域的周期演化對種群持續和滅絕的影響. 利用上下解方法、 比較原理、 擬單增系統理論及拋物方程的先驗估計理論,研究模型正周期解的存在性及穩定性問題. 記ρ為區域演化速率, ρ-2=1T∫T01ρ2(t)dt. 結果表明: 當ρ-2>1時, 區域周期演化對互惠種群持續性的影響是消極的;當ρ-2<1時, 區域周期演化對互惠種群持續性的影響是積極的; 當ρ-2=1時, 區域周期演化對互惠種群持續性沒有影響.
綜上,本文研究了周期演化區域上的一類三種群互惠模型. 首先,為克服由區域演化產生的對流項和稀釋項引起的分析困難,本文假設區域演化是周期的且各向同性的,并通過Lagrange變換將模型轉化為初始區域上的一類反應擴散方程模型,其擴散系數和反應項都依賴于區域演化速率. 其次,將模型在平凡平衡點處線性化,并研究相關的周期拋物特征值問題,獲得了主特征值對區域演化速率的依賴性及其他性質. 進一步,用上下解方法討論了模型正周期解的存在性及穩定性問題.
最后,根據所得結論和數值模擬,給出了區域周期演化對種群持續和滅絕影響的分析. 結果表明: 較大的區域周期演化率有利于互惠種群的持續生存,而較小的區域周期演化率則會促進種群的滅絕.
參考文獻
[1] 肖燕妮, 周義倉,唐三一. 生物數學原理 [M]. 西安: 西安交通大學出版社,2012: 25-32. (XIAO Y N,ZHOU Y C,TANG S Y. The Principles of Biomathmatics [M].
Xian: Xian Jiaotong University Press,2012: 25-32.)
[2] 孫儒泳. 動物生態學原理 [M]. 3版. 北京: 北京師范大學出版社,2001: 163-185. (SUN R Y. The Principles of Animal Ecology [M]. 3rd ed. Beijing: Beijing Normal University Press,2001: 163-185.)
[3] MAY R M. Simple Mathematical Models with Very Complicated Dynamics [J]. Nature,1976,261: 459-467.
[4] ZHOU H,LIN Z G. Coexistence in a Strongly Coupled System Describing a Two-Species Cooperative Model [J]. Appl Math Lett,2007,20(11): 1126-1130.
[5] KIM K I,LIN Z G. Blowup Estimates for a Parabolic System in a Three-Species Cooperating Model [J]. J Math Anal Appl,2004,293(2): 663-676.
[6] 凌智,林支桂. 三種群互惠模型拋物系統解的整體存在與爆破 [J].? 生物數學學報,2007,22(2): 209-214. (LING Z,LIN Z G.? Global Existence and Blowup of Solutions to a Parabolic System in
Three-Species Cooperating Model [J]. Journal of Biomathematics,2007,22(2): 209-214.)
[7] KIM K I,LIN Z G. A Degenerate Parabolic System with Self-diffusion for a Mutualistic Model in Ecology [J]. Nonlinear Anal: Real World Appl,2006,7(4): 597-609.
[8] RAI B,KRAWCEWICZ W. Hopf Bifurcation in Symmetric Configuration of Predator-Prey-Mutualist Systems [J]. Nonlinear Anal:
Theory,Method Appl,2009,71(9): 4279-4296.
[9] 陳蘭蓀. 數學生態學模型與研究方法 [M]. 2版. 北京: 科學出版社,2017: 36-62. (CHEN L S. Mathematical Ecological Models and Research
Methods [M]. 2nd ed. Beijing: Science Press,2017: 36-62.)
[10] 邢文淵,肖繼東,沙依然,等. 基于MODIS影像的湖泊動態變化遙感監測——以巴里坤湖為例 [J]. 草業科學,2009,26(7): 28-31.
(XING W Y,XIAO J D,SHA Y R,et al. Remote Sensed Monitoring of Lake Dynamic Change Based on MODIS Image [J]. Pratacultural Science,2009,26(7): 28-31.)
[11] JIANG D H,WANG Z C. The Diffusive Logistic Equation on Periodically Evolving Domains [J]. J Math Anal Appl,2018,458(1): 93-111.
[12] ZHU M,XU Y,CAO J D. The Asymptotic Profile of a Dengue Fever Model on a Periodically Evolving Domain [J]. Appl Math Comput,2019,362: 124531-1-124531-17.
[13] JOHNSON M L,GAINES M S. Evolution of Dispersal: Theoretical Models and Empirical Tests Using Birds and Mammals [J]. Annu Rev Ecol Syst,1990,21(1): 449-480.
[14] CRAMPIN E J,GAFFNEY E A,MAINI P K. Mode-Doubling and Tripling in Reaction-Diffusion Patterns on Growing Domains:
A Piecewise Linear Model [J]. J Math Biol,2002,44(2): 107-128.
[15] ACHESON D. Elementary Fluid Dynamics [M]. New York: Oxford University Press,1990:? 36-39.
[16] BAINES M J. Moving Finite Elements [M]. New York: Clarendon Press,1994: 66-70.
[17] BAKER R E,MAINI P K. A Mechanism for Morphogen-Controlled Domain Growth [J]. J Math Biol,2007,54(5): 597-622.
[18] MADZVAMUSE A,MAINI P K. Velocity-Induced Numerical Solutions of Reaction-Diffusion Systems on Continuously Growing Domains [J]. J Comput Phys,2007,225(1): 100-119.
[19] 陳亞浙.? 二階拋物型偏微分方程 [M].? 北京: 北京大學出版社,2003: 69-72. (CHEN Y Z. Nonlinear Second Order Parabolic Equations [M].
Beijing: Peking University Press,2003: 69-72.)
[20] WANG M X. Nonlinear Second Order Parabolic Equations [M]. Boca Raton: CRC Press,2021: 15-36.
[21] HESS P. Periodic-Parabolic Boundary Value Problems and Positivity [M]. New York: John Wiley & Sons,Inc,1991: 36-63.
[22] PAO C V. Stability and Attractivity of Periodic Solutions of Parabolic Systems with Time Delays [J]. J Math Anal Appl,2005,304(2): 423-450.
[23] ANTN I,LPEZ-GMEZ J. The Strong Maximum Principle for Cooperative Periodic-Parabolic Systems and the Existence of Principal
Eigenvalues [C]//Proceedings of the First World Congress on World Congress of Nonlinear Analysts92. [S.l.]: Walter? De Gruyter,1996:? 323-334.
(責任編輯: 趙立芹)