項楠 林洪燕 萬阿英



摘要: 針對生化反應中的周期振蕩現象,討論一類具有齊次Neumann邊界條件的Schnakenberg模型. 利用Hopf分支理論、 中心流形理論、 規范型方法以及擾動理論等方法,給出反應擴散Schnakenberg系統的Hopf分支周期解的存在性、 穩定性以及圖靈不穩定性.
關鍵詞: Schnakenberg模型; 空間齊次周期解; Hopf分支; 圖靈不穩定性
中圖分類號: O193? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0259-06
Turing Instability of Periodic Solutions forReaction-Diffusion Schnakenberg System
XIANG Nan1,2,3,LIN Hongyan2,WAN Aying2
(1. College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China;
2. School of Mathematics and Statistics,Hulunbuir University,Hulunbuir 021008,Inner Mongolia Autonomous Region,China;
3. College of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China)
Abstract: We discussed a class of Schnakenberg models with homogeneous Neumann boundary conditions in view of the periodic oscillation
phenomenon in biochemical reactions. By using the? methods of Hopf bifurcating theory,center manifold theory,normal form method and perturbation theory,we gave
the existence,stability and Turing instability of the Hopf bifurcating periodic solutions of the reaction-diffusion Schnakenberg system.
Keywords: Schnakenberg model; spatially homogeneous periodic solution; Hopf bifurcation; Turing instability
收稿日期: 2022-05-11.
第一作者簡介: 項 楠(1987—),女,蒙古族,碩士,講師,從事微分方程與動力系統的研究,E-mail: xiangnanly@hrbeu.edu.cn. 通信作者簡介: 萬阿英(1967—),女,漢族,博士,教授,從事微分方程與動力系統的研究,E-mail: 41177650@qq.com.
基金項目: 國家自然科學基金(批準號: 12061033; 12261032)、 呼倫貝爾學院重點科研項目(批準號: 2021ZKZD03)和呼倫貝爾學院一般科研項目(批準號: 2022ZKYB05).
0 引 言
耦合的反應-擴散系統可用來描述生物系統中的分化和空間模式的形成,反應擴散系統中的空間擴散可使系統原來穩定的常數平衡解變得不穩定,從而產生新的非常穩態解,這種由擴散引起的不穩定性稱為圖靈不穩定性[1]. 圖靈不穩定性在生物和化學等領域應用廣泛. 但在實際應用中,系統空間齊次周期解的穩定性與不穩定性也是人們關注的問題. 例如,周期振蕩現象是化學反應中經常出現的現象[2]. 對于自組織的周期振蕩現象,Hopf分支理論是研究其存在性和穩定性的有利工具[3].
綜上所述,本文利用Hopf分支定理、 中心流形理論、 規范型方法以及正則擾動等方法,討論了一類反應擴散Schnakenberg模型空間齊次周期解的圖靈不穩定性問題,給出了系統擴散系數之間的關系,使得在該關系成立的條件下,反應擴散系統的空間齊次周期解經歷圖靈不穩定性. 所得結果有助于更清楚地認識該類反應擴散模型的動力學行為.
參考文獻
[1] TURING A M. The Chemical Basis of Morphogenesis [J]. Philos Trans Roy Soc London Ser B,1952,237: 37-72.
[2] TYSON J J. The Belousov-Zhabotinskii Reaction [M]. Berlin: Springer-Verlag,1976: 195-209.
[3] WIGGINS S. Introduction to Applied Nonlinear Dynamical Systems and Chaos [M].? New York: Springer-Verlag,1990: 378-387.
[4] SCHNAKENBERG J. Simple Chemical Reaction Systems with Limit Cycle Behavior [J]. J Theoret Biol,1979,81(3): 389-400.
[5] GAFFNEY E A,MONK N A M. Gene Expression Time Delays and Turing Pattern Formation Systems [J]. Bull Math Biol,2006,68(1): 99-130.
[6] YI F Q,GAFFNEY E A,SEIRIN-LEE S. The Bifurcation
Analysis of Turing Pattern Formation Induced by Delay and Diffusion in the Schnakenberg System [J]. Discrete Contin Dyn Syst Ser B,2017,22(2): 647-668.
[7] MAGINU K. Stability of Spatially Homogeneous Periodi
c Solutions of Reaction-Diffusion Equations [J]. J Differential Equations,1979,31(1): 130-138.
[8] RUAN S G. Diffusion-Driven Instability in the Giere
r-Meinhardt Model of Morphogenesis [J]. Natur Resource Modeling,1998,11(2): 131-142.
[9] ROVINSKü A B. Instability of Homogeneous Oscillations a
nd Formation of Chaotic Spatio-Temporal Patterns in the Belousov-Zhabotinskii Medium [J]. J Phys Chem,1990,94(18): 7261-7265.
[10] RICARD M R,MISCHLER S. Turing Instabilities at Hopf Bifurcation [J]. J Nonlinear Sci,2009,19(5): 467-496.
[11] WANG Q. Compound Operators and Infinite Dimensional Dynamical Systems [D]. Edmonton,AB: University of Alberta,2008.
[12] MULDOWNEY J S. Dichotomies and Asymptotic Behavior for Linear Differential Systems [J]. Trans Amer Math Soc,1984,283(2): 465-484.
[13] KUWAMURA M,IZUHARA H. Diffusion-Driven Destabiliz
ation of Spatially Homogeneous Limit Cycles in Reaction-Diffusion Systems [J]. Chaos,2017,27(3): 033112-1-033112-13.
[14] YI F Q. Turing Instability of the Periodic Solutions for Reaction-Diffusion Systems with Cross-Diffusion and the Patch Model
with Cross-Diffusion-Like Coupling [J]. J Differential Equations,2021,281: 397-410.
[15] HASSARD B D,KAZARINOFF N D,WAN Y H. Theory and Ap
plication of Hopf Bifurcation [M]. Cambridge: Cambridge University Press,1981: 1-290.
(責任編輯: 李 琦)