楊 凡 (北京市通州區通運小學 101100)
康玥媛 (天津師范大學教育學部 300387)
近年來,教師專業發展已成為國際教師教育界的熱門話題,教學反思作為教師專業發展和自我成長的核心因素,在各國教師注冊和專業標準中被多次提及.“全美專業教學標準委員會”(NBPTS)制定的教師評價指標體系,強調教師應“系統地進行反思,并從經驗中學習”.加拿大BC省于2019年頒布了《不列顛哥倫比亞省教育者專業標準》,要求“教師要參加專業學習、教學實踐和教學反思,以支持自身的專業化發展”.
在我國,教育部2012年頒布了《中學教師專業標準(試行)》,要求教師“堅持實踐、反思、再實踐、再反思,不斷提高專業能力”[1].2017年,教育部辦公廳印發了《中小學幼兒園教師培訓課程指導標準(義務教育語文學科教學)》等3個文件,分別在實踐課程、教學研究與改進等專題強調了教學反思的重要性.2022年,教育部等八部門印發了《新時代基礎教育強師計劃》,提到要服務教育高質量發展要求,加強高質量教師隊伍建設.可見,教學反思作為教師的專業能力之一,對教師的專業化成長及教師隊伍建設起著重要作用.
就已有研究來看,有依據范梅南(Van Manen)對反思水平的劃分構建的教師課后反思評價指標體系[2],有從課程的構成要素出發構建的視頻分析框架支持下的中小學教師教學反思維度[3],再有結合“互聯網+”時代背景構建的鄉村教師教學反思能力檢核模型[4].但就已有的教學反思評價體系來看,存在缺少學科和學段劃分的有效凸顯、評價標準表述不明確等問題,故需進一步研制具有明確指向性的高中數學教師教學反思評價指標體系.
本研究在已有文獻的基礎上,聚焦數學學科,以高中學段為例,進行教師教學反思評價指標體系的構建研究,從而進一步豐富研究內容,提升教師教學反思評價的科學性.
從詞源的角度看,《現代漢語詞典》將“反思”解釋為“思考過去的事情,從中總結經驗教訓”.《柯林斯英漢雙解大詞典》中reflect或rethink都解釋為“反思”,前綴re-代表再一次,可以看出“反思”是再一次思考、回顧的意思.
從心理學的角度看,教師對教學實踐的反思是一種內隱的元認知過程,使教師能夠針對教學實踐及時進行評價、反饋教學活動中的有關信息及結果,從而發現問題,進行改正.
在學術界,國內外許多學者都對反思的概念進行了探索和研究.杜威(Dewey)最早提出了反思概念,即“個體在頭腦中對問題進行反復、嚴肅、執著的沉思”[5].我國學者趙明仁將教學后反思分為“回顧”“研究”“再理論化”三類[6].
與教師在教學活動中內隱的反思相比,教學后反思更具有外顯性、可測量性與可操作性.故本研究關注教后反思,以教學設計中最后的教學反思模塊為研究主體,選取教師的“回顧”維度,概括出教學反思的概念,即教師積極主動對已結束的教學活動進行評價、回顧并產生新理解的認知過程.
科學地評估高中數學教師教學反思離不開好的評價模型,研究選取CIPP評價模型作為理論基礎.
CIPP評價模型由美國學者斯塔弗爾比姆(D.L.Stufflebeam)提出(圖1).三個同心圓描繪了模型的基本元素,內圈代表核心價值.圍繞價值觀的圓環分為四個評價焦點:目標、計劃、行動和結果.外圓環表示服務于四個評價焦點的評價類型:背景評價(context evaluation)、輸入評價(input evaluation)、過程評價(process evaluation)和結果評價(product evaluation),雙向箭頭揭示了特定評價焦點和評價類型之間的關系[7].總之,CIPP評價模型符合教學反思評價的要求及目標,為構建高中數學教師教學反思評價體系提供了一個框架.

圖1 CIPP評價模型
通過對已有指標體系的梳理,遵循評價指標體系設計的系統性、科學性、導向性與可行性原則[8],以CIPP評價模型的四維度為框架,將高中數學教師教學反思評價體系的一級指標初步確定為:教學背景、教學準備、教學過程、教學成效.
以基于背景評價的教學背景為前提,對一節課的定位、背景和對象進行診斷性評價,將“教學背景”維度細化為課標要求、教材內容、學生情況3個二級指標.以基于輸入評價的教學準備為出發點,對教學方案的可行性與有效性進行評價,將“教學準備”維度細化為教學目標、重點難點、資源配置3個二級指標.以基于過程評價的教學過程為核心,根據教學活動的構成主體,對課堂中教師的教與學生的學進行形成性評價,將“教學過程”維度分解為教師教學、學生學習2個二級指標.以基于成果評價的教學成效為關鍵,根據課程的構成要素,對教學活動中的教師與學生的收獲、體驗,教學的效率與成果等進行總結性評價,將“教學成效”維度分解為教師發展、學生發展、教學效率和課堂文化4個二級指標.
基于理論分析初步擬定的高中數學教師教學反思評價體系由4個一級指標、12個二級指標構成(圖2).

圖2 高中數學教師教學反思評價指標
3.2.1專家組成
為了保證指標體系的科學性,采用德爾菲法向相關領域專家進行意見征詢,專家數量在10~50位為宜[9-10],專家的選取遵循以下要求:充分理解所調查的內容;在數學教育領域有所建樹,具有豐富的數學教育類理論或數學教學實踐經驗;具有作答和反饋時間.最終確定17位征詢專家,基本情況如表1.

表1 專家基本情況
3.2.2專家評價
采用Excel和SPSS軟件,計算專家的積極系數、專家的權威程度系數及專家意見的肯德爾協調系數,以保證德爾菲法運用的科學性與有效性.
(1)專家的積極系數.專家的積極系數用問卷的回收率來表示,第一輪運用德爾菲法向17位專家發放問卷,回收了14份有效數據,回收率為82.35%.第二輪發放了17份問卷,回收了14份有效數據,回收率為82.35%.在兩次意見征詢中,專家積極系數均大于70%,表明專家的參與度較高.
(2)專家的權威程度系數.專家對研究內容的熟悉程度(CS)及判斷依據(Ca),共同決定了專家的權威程度系數(Cr).依據統計學的要求,Cr≥0.70時數據具有較高的可信度[11].其中,熟悉程度系數與判斷依據系數的量化值見表2.

表2 熟悉程度與判斷依據的量化值
第一輪德爾菲法應用中,熟悉程度為0.74,表明專家對調查內容較為熟悉,判斷依據為0.88,體現判斷依據對專家的影響較大,第一輪的專家權威程度系數為0.81(>0.70),故專家對指標的評價具有較高的可信度.在第二輪德爾菲法的應用中,專家的熟悉程度為0.72,判斷依據為0.88,第二輪專家權威程度系數為0.80(>0.70),可見專家對指標的評價具有較高的可信度.
3.2.3第一輪結果分析
專家對各指標的合理性意見可以通過肯德爾協調系數每個指標的均值、標準差、變異系數和滿分頻率進行考察.意見表采用李克特四點量表對指標的合理性進行劃分.通過SPSS 13.0軟件對第一輪回收的數據進行分析,專家對一級指標設定合理性的意見均值為3.64,一級指標合理性較高.通過對二級指標意見的數據進行分析發現,資源配置、教學效率、課堂文化3個指標均值低于3.50,標準差大于0.5,變異系數大于0.2,較不合理,需要結合專家意見修訂.
修訂后,一級維度不變,刪除“資源配置”與“教學效率”兩個二級指標,將“教材內容”改為“教材理解”,在教學準備維度下加入“流程設計”,將“課堂文化”指標調至“教學過程”維度下.修訂后的體系由4個一級指標、11個二級指標構成.
3.2.4第二輪結果分析
將修改后的評價體系再次以電子郵件形式向專家發放問卷,得到第二輪數據結果.經統計,一級指標合理性的均值為3.71,標準差為0.47,變異系數為0.12,小于0.2,滿分數量多于一半以上,綜合兩輪調查判斷一級指標的設定合理.第二輪二級指標的分析結果如表3所示,各個指標的均值均大于3,標準差均小于1,變異系均數小于0.2,符合統計學要求.

表3 第一輪德爾菲法二級指標合理性的結果分析
第二輪意見征詢中,結合專家意見對“教學目標”“課堂文化”的評價標準進行了完善,最終形成了由4個一級指標、11個二級指標及指標評價標準所構成的評價指標體系(見附錄).
3.3.1反思文本的選取
為保證教學反思樣本的可分析性,以《普通高中數學課程標準(2017年版)》作為指導的三本出版物和在中國知網(CNKI)已公開發表的教學課例文章為載體,選取教學設計中的教學反思(或稱教學后記、教學感悟)部分作為編碼對象.所取樣本含蓋必修課程中預備知識、函數、幾何與代數、概率與統計四大主題,選擇性必修課程中函數、幾何與代數、概率與統計三大主題.在課程類型上,囊括了章引言課、概念課、命題課、復習課與探究課五種課型,覆蓋面廣,具有很好的代表性,樣本來源及數量見表4.

表4 教學反思樣本的選取
3.3.2編碼過程與結果
借助NVivo11軟件對73篇高中數學教學反思文本編碼的基本流程為:文本導入→文本編碼→編碼檢驗→匯總結果[12].
編碼過程中形成了一個多層級樹狀結構,其中一級節點對應評價體系的一級宏觀指標,二級節點是在其基礎上的細化,為體系中的二級指標,三級節點則是從教學反思樣本中所提取的原始信息.在完成編碼后,利用預留的8篇樣本進行飽和度檢驗,未發現新的維度,驗證了編碼結果的嚴謹性和解釋力.此外,研究由兩位編碼人員獨立進行編碼,經計算編碼一致性均在80%以上(表5),符合編碼要求.

表5 教學反思文本編碼的一致性檢驗
指標權重的計算是評價模型構建的一部分,研究選擇層次分析法進行權重的計算.以評價體系作為框架,將各級指標進行兩兩比較,編訂《高中數學教師教學反思評價指標權重問卷》,采取電子郵件的形式向高校中研究方向為數學教育(教師教育)的教授及副教授、有高級及以上職稱的高中數學教師共14位專家發放問卷,收回13份有效問卷,回收率為92.9%,計算流程如圖3.

圖3 基于層次分析法計算指標權重流程圖
選取其中一個原始矩陣(表6)詳細介紹一級指標權重的計算過程[13].

表6 專家W的一級指標判斷矩陣



第4步 進行一致性檢驗.


這說明該判斷矩陣相對合理,結果一致性較好,由專家W所確定的一級指標權重依次為0.072 1,0.072 1,0.392 0,0.463 8.根據以上方法,將所有專家的數據轉化為判斷矩陣進行計算和檢驗,最后將專家對每一個指標歸一化后的權重進行相加再除以專家總人數,得到相應指標的對應權重值.
為了保證計算結果的準確性,利用yaahp軟件加以驗證,如果某個判斷矩陣出現不一致的情況時,該軟件可以在最大限度保留專家決策數據的前提下標注需要修正的判斷矩陣,從而進一步進行自動修正,在一定程度上避免人工調整判斷矩陣的盲目性.根據計算后的一級、二級指標的權重值建立具有層級關系的評價模型(圖4).根據加權平均法,得到高中數學教師教學反思評價模型S=0.033 8B1+0.029 1B2+0.046 2B3+0.055 5B4+0.043 3B5+0.048 4B6+0.137 7B7+0.163 1B8+0.068 5B9+0.162 0B10+0.212 4B11.

圖4 層析分析法下高中數學教師教學反思評價結構模型
通過評分者一致系數對該評價指標體系的信度進行檢驗[14].將以上數據依次輸進SPSS軟件中,通過非參數檢驗計算肯德爾協調系數,結果為0.760(p=0.022<0.05),具體結果見表7,說明評分者一致性可以達到95%以上,一致性良好,具有良好的可信性,這代表《高中數學教師教學反思評價指標體系》信度合理.

表7 《基本不等式》教學反思指標評價結果統計
在此基礎上對內容效度進行檢驗.內容效度是指一個量表實際測到的內容與所要測量的內容之間的吻合程度[11],研究選擇通過計算量表的條目水平內容效度指數(I-CVI)和整個量表水平的內容效度指數(S-CVI),來進行指標體系內容效度的評估.
研究參照Lynn給出的I-CVI的判斷標準,當專家人數等于5人時,I-CVI的數值權威達到1.00,才認為這個條目的內容效度較好.考慮到存在隨機性的原因,根據不同專家人數下的I-CVI值估計表進行隨機一致性校正[9],得到指標模型內容效度的整體結果(表8).
由表8可知,進行隨機一致性校正后,K*為0.760(>0.740),所測內容與欲測量內容之間有較好的相關性,內容效度優秀,因而該高中數學教師教學反思評價模型可靠.

表8 評價模型內容效度整體結果
綜上,高中數學教師教學反思評價體系與評價模型的構建,不僅可以作為衡量教學反思現狀的工具,也可以作為教師教學反思能力發展的標尺.通過合理使用該工具,能較為客觀地評價和考核教學反思的現狀和發展趨勢,進而研究和把握高中數學教師教學反思發展的微觀特征與宏觀趨勢,借助結果反饋,推動教師的“思”“行”統一,促進專業發展.