王世榮 暢文軍 陳惠琴 戴好富 曾艷波


摘要:目的 對海綿共附生真菌Aspergillus candidus HM5-4的次生代謝產物及其生物活性進行研究。方法 綜合運用硅膠柱色譜、凝膠柱色譜以及半制備型高效液相色譜等分離技術對該菌株的大米發酵產物進行分離純化;通過波譜數據和理化常數分析,并結合文獻數據比對,鑒定化合物的結構;分別采用濾紙片法和MTT法對所分離鑒定的化合物進行抗菌和細胞毒活性測試。結果 從A. candidus HM5-4的發酵產物中共分離鑒定10個化合物,其結構分別為:氯黃菌素(1)、4"-deoxyterphenyllin(2)、薊黃素(3)、asperterphenyllin(4)、prenylcandidusin(5)、2,4-二甲氧基-1,10-二羥基對聯三苯(6)、(±)-2-羥基-3-苯基丁酸(7)、candidusin A(8)、candidusin B(9)和aspergivone(10),其中化合物7為新的天然產物。生物活性測試結果顯示,化合物1對火龍果潰瘍病原菌有很強的抑制作用,當供試濃度為10.0 ?g/disc時,其抑菌圈直徑為(41.67±2.36) mm;化合物8對白血病細胞K562、肝癌細胞BEL-7402、胃癌細胞SGC-7901、肺癌細胞A549和宮頸癌細胞Hela有一定的細胞毒活性,其IC50分別為(17.51±0.11)、(31.45±0.11)、(32.27±0.20)、(77.43±0.26)和(68.88±0.57) ?mol/L,化合物2對白血病細胞K562具有細胞毒活性,其IC50為(94.58±1.21) ?mol/L。結論 海綿共附生真菌A. candidus HM5-4具有生產抗菌、細胞毒活性先導化合物的潛在研究價值。
關鍵詞:海洋真菌;Aspergillus candidus;次生代謝產物;抑菌活性;細胞毒活性
中圖分類號:R9文獻標志碼:A
Study on secondary metabolites from marine-derived fungus
Aspergillus candidus HM5-4
Wang Shirong1,2, Chang Wenjun2, Chen Huiqin2, Dai Haofu2, and Zeng Yanbo1,2
(1 Ocean College of Hebei Agricultural University, Qinhuangdao 066000; 2 Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101)
Abstract Objective To investigate secondary metabolites and their biological activities from marine-derived fungus A. candidus HM5-4 from an unidentified sponge collected in the coast of Lingao, Hainan, China. MethodsComprehensive chromatography methods of silica gel column, Sephadex LH-20 gel column, and high-performance liquid chromatography were used to isolate and purify secondary metabolites from fermentation cultures of the marine-derived fungus A. candidus. Their structures were elucidated based on spectroscopic methods, physicochemical constants, as well as by comparison with published data. Bioactivities of compounds were tested by the filter paper method and the MTT assay. Results? ?Ten compounds were isolated and identified from fermentation cultures of A. candidus HM5-4, which were identified as chlorflavonin (1), 4''-deoxyterphenyllin (2), cirsimaritin (3), asperterphenyllin (4), prenylcandidusin (5), 2,4-dimethoxy-1,10-dihydroxy-p-terphenyl (6), (±)-2-hydroxy-3-phenylbutyric acid (7), candidusin A (8), candidusin B (9), and aspergivone (10), respectively. Compound 7 was a new natural product. Compound 1 showed a strong inhibitory effect on Neoscytalidium dimidiatum with an inhibition circle diameter of (41.67±2.36) mm at a concentration of 10.0 ?g/disc. Compound 8 displayed cytotoxic activity against human chronic myeloid leukemia cell line K562, human liver cancer line BEL-7402, human gastric cancer cell line SGC-7901, human lung cancer cell line A549, and human cervical cancer cell line Hela with IC50 values of (17.51±0.11), (31.45±0.11), (32.27±0.20), (77.43±0.26), and (68.88±0.57) ?mol/L, respectively. Compound 2 displayed cytotoxic activity against human chronic myeloid leukemia cell line K562 with an IC50 value of (94.58±1.21) ?mol/L. Conclusion? ? The secondary metabolites from sponge-derived fungus A. candidus HM5-4 have potential research values in fungicides and anti-cancer drugs.
Key words Marine fungus; Aspergillus candidus; Secondary metabolites; Antibacterial activity; Cytotoxic activity
海洋約占地球總面積的71%,其中包含著世界上80%以上的物種,是目前為止保存最完整且生物資源最豐富的天然寶庫[1]。與陸地相比,海洋具有非常特殊的生態環境,如高壓、高鹽、低溫、低含氧量以及寡營養等特點,因而海洋微生物的代謝方式和防御體系與陸地微生物相比有著明顯的區別,這使得其具有生產結構新穎、活性顯著先導化合物的潛力[2-4]。海洋來源真菌作為海洋微生物的一類,研究進展迅速[5]。研究人員從海洋真菌中分離出次級代謝產物的種類和數量也在逐年上升[6]。據統計,31%的新天然產物出自于曲霉屬真菌,是海洋真菌中研究最多的一屬[7]。從該屬真菌中分離出的新型次級代謝產物結構豐富多樣,主要包括聚酮類[8]、生物堿類[9]、肽類[10]、萜類[11]、甾體類[12]和內酯類[13],許多次級代謝產物表現出顯著的生物活性,包括抗菌[14]、抗腫瘤[8]、抗病毒[15]、抗氧化(自由基清除)[16]和抗寄生蟲[17]等。因此,從海洋曲霉屬真菌中尋找新的、具有顯著生物活性的次級代謝產物已成為海洋微生物天然產物研究的重要組成部分。
本文以海綿共附生真菌A. candidus HM5-4為研究對象,利用現代色譜分離技術及結構鑒定方法對菌株次級代謝產物進行分離鑒定,并對所分離鑒定的化合物進行生物活性測定,以期獲得具有顯著生物活性的化合物。
1 材料與方法
1.1 材料
1.1.1 實驗菌株
海洋真菌A. candidus HM5-4分離自海南省臨高縣沿海采集的海綿,該真菌菌種保藏于中國熱帶農業科學院熱帶生物技術研究所南海海洋真菌庫。
1.1.2 活性測試菌株
測試菌種:香蕉枯萎病原菌(Fusarium oxysporumf.sp.cubense)、菠蘿黑腐病原菌(Thielaviopsis paradoxa)、火龍果黑斑病原菌[Bipolaris cactivora (Petrak) Alcorn]、火龍果潰瘍病原菌(Neoscytalidium dimidiatum)、辣椒炭疽病原菌(Colletotrichum scovillei)、芒果炭疽病原菌(Colletotrichum gloeosporioides)、無乳鏈球菌(Streptococcus agalactiae)、副溶血弧菌(Vibrio parahaemolyticus)、溶藻弧菌(Vibrio alginolyticus)、殺魚愛德華菌(Edwardsieiella piscicida)、金黃色葡萄球菌(Staphylococcus aureus)和耐甲氧西林金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus),均由中國熱帶農業科學院熱帶生物技術研究所提供。
1.1.3 腫瘤細胞
白血病細胞K562、肝癌細胞BEL-7402、胃癌細胞SGC-7901、肺癌細胞A549和人宮頸癌細胞Hela均購自中國科學院上海生命科學研究院細胞庫。
1.1.4 培養基
PDA培養基:200 g馬鈴薯,20 g葡萄糖,20 g瓊脂粉,1 L蒸餾水,pH自然;NA培養基:10 g胰蛋白胨,3 g牛肉膏,15 g NaCl,1L蒸餾水,pH自然。固體培養基加入22~25 g瓊脂粉;LB培養基:10 g胰蛋白胨,5 g酵母浸粉,10 g NaCl,1L蒸餾水,pH自然。固體培養基加入18~20 g瓊脂粉;大米固體培養基(發酵用):80 g大米,120 mL人工海水。
1.1.5 主要試劑和儀器
柱層析硅膠(60~80目,200~300目,300~400目,青島海洋化工有限公司),薄層層析硅膠(青島海洋化工有限公司),Sephadex LH-20凝膠(Merck公司),SUMMIT P680A制備型高效液相色譜儀(美國Dionex公司),Agilent 1260分析型高效液相色譜儀(美國Agilent Technologies),旋轉蒸發儀(上海愛朗儀器有限公司),超凈工作臺(蘇州凈化設備有限公司),Bruker-AV-500M型超導核磁共振儀(德國Bruker公司),暗箱四用紫外分析儀(上海嘉鵬科技有限公司),分析型C18色譜柱(C18,250 mm×4.6 mm,5 ?m)和半制備型C18色譜柱(C18,250 mm×10 mm,5 ?m)(日本Nacalai Tesque公司),三氟乙酸(上海易恩化學技術有限公司),氘代氯仿、氘代丙酮、氘代甲醇和氘代DMSO(Merck公司),色譜甲醇(天津康科德公司),其余試劑均為工業級重蒸。
1.2 方法
1.2.1 菌株分離和鑒定
在超凈臺取適量海綿放入1 L燒杯內,倒入無菌水,用鑷子夾穩來回涮洗,瀝干水后放入裝有75%酒精的500 mL燒杯中,來回攪動充分消毒后取出,瀝干酒精并置于酒精燈下,使剩余酒精充分揮發后,放入無菌培養皿。用無菌剪刀將海綿剪碎后放入無菌研缽中搗碎。將研磨好的樣品用無菌鑷子取適量貼放在PDA培養基上,每個平板放5~6塊,盡量分布均勻。剩余研磨好的樣品置于50 mL無菌離心管中,加入1.5倍體積的無菌水,震蕩,取1 mL浸出液注入9 mL無菌水中稀釋,則該稀釋液為10-1梯度,以此類推稀釋到10-2或10-3,在固體培養基中加入浸出液和各梯度稀釋液0.20~0.25 mL,每個濃度設置至少3個重復,涂布,用保鮮膜封邊,28℃倒置培養。定期觀察、轉接和純化。
以引物ITS1(TCCGTAGGTGAACCTGCGG)及ITS4(TCCTCCGCTTATTGATATGC)對菌株進行分子序列克隆,并測定該菌株的ITS序列。將所測得的序列提交至NCBI中BLAST數據庫(序列號:OP550289)進行同源對比,發現其與A. candidus(MH398542.1)同源性達100%,結合該真菌的菌落形態,鑒定該真菌為Aspergillus candidus。
1.2.2 菌株培養與發酵
從-80℃冰箱中取出保存的菌株,放置至室溫,用平板劃線法將菌液涂于PDA培養基上,在28℃下,倒置培養2~3 d,獲得純菌落,配3瓶100 mL的PDB培養基,121℃滅菌30 min,冷卻室溫后接種適量培養好的菌落,28℃、180 r/min震蕩培養3 d獲得種子液。
采用大米固體培養基(在裝有80 g大米的三角瓶中倒入120 mL左右人工海水,封裝,121℃,20 min滅菌)進行大發酵,在已滅菌的大米固體培養基三角瓶中加入2 mL搖好的種子液,接種100瓶,28℃靜置培養30 d。
1.2.3 化合物的分離提純
將乙酸乙酯加入發酵后的大米固體培養基中,混勻后靜置12 h,然后超聲處理,過濾得到濾液。重復提取3次后,合并濾液,在旋轉蒸發儀上減壓濃縮得到乙酸乙酯粗提取物(30.0 g)。將粗提物均勻分散在水中,分別用石油醚、乙酸乙酯、正丁醇各萃取3次,然后將萃取液分別減壓濃縮獲得石油醚萃取物(12.0 g),乙酸乙酯萃取物(10.0 g),以及正丁醇萃取物(2.0 g)。將乙酸乙酯萃取物減壓柱層析,用石油醚-乙酸乙酯(V/V, 1:0, 9:1, 8:2, 7:3, 6:4, 5:5, 3:7和0:1)和二氯甲烷-甲醇(V/V, 4:1和1:1)梯度洗脫,洗脫液在旋轉蒸發儀上減壓濃縮后通過薄層層析硅膠檢測,合并得到21個組分(Fr. 1~Fr. 21)。Fr. 3(157.4 mg)以石油醚-二氯甲烷(V/V, 1:1)為流動相,經正向硅膠柱洗脫得到化合物1(1.5 mg)。Fr. 13(1.3 g)以石油醚-乙酸乙酯(V/V, 5:2)為流動相,經正向硅膠柱洗脫得到8個組分(Fr. 13.1~Fr. 13.8)。Fr. 13.2以石油醚-二氯甲烷(V/V, 1:5)為流動相,經正向硅膠柱洗脫得到化合物2(4.9 mg)。Fr. 13.6(501.7 mg)以二氯甲烷-甲醇(V/V, 185:1)為流動相,經正向硅膠柱洗脫得到化合物3(18.7 mg)。Fr. 13.8(572.9 mg)通過以甲醇為洗脫劑的Sephadex LH-20凝膠柱層析后,合并得到7個組分(Fr. 13.8.1~Fr. 13.8.7),其中Fr. 13.8.3(18.1 mg)以二氯甲烷-甲醇(V/V, 75:1)為流動相,經正相硅膠柱洗脫得到化合物4(1.4 mg),Fr. 13.8.6(14.9 mg)經半制備高效液相色譜儀制備后得到化合物5(4.2 mg,70% MeOH/H2O,tR=26.0 min)。Fr. 15(4.6 g)通過石油醚-乙酸乙酯(V/V, 1:0, 20:1, 10:1, 3:1, 1:1和0:1)為流動相的正向硅膠柱梯度洗脫,合并得到13個組分(Fr. 15.1~Fr. 15.13)。其中Fr. 15.6(32.6 mg)經半制備高效液相色譜儀制備后分別得到化合物6(2.6 mg,65% MeOH/H2O,tR=14.0 min)和化合物7(6.0 mg,65% MeOH/H2O,tR=9.9 min),Fr. 15.9(394.1 mg)經半制備高效液相色譜儀制備得到化合物8(8.4 mg,60% MeOH/H2O,tR =10.5 min);Fr. 15.10(2.0 g)通過以甲醇為洗脫劑的Sephadex LH-20凝膠柱層析后,合并得到10個組分(Fr. 15.10.1~Fr. 15.10.10),其中Fr. 15.10.10(129.6 mg)以二氯甲烷-甲醇(V/V, 44:1)為流動相,經正相硅膠柱洗脫得到化合物9(25.8 mg)。Fr. 18(152.8 mg)通過以甲醇作為洗脫劑的Sephadex LH-20凝膠柱層析后合并得到4個組分(Fr. 18.1~Fr. 18.4),其中Fr. 18.2(29.3 mg)以二氯甲烷-甲醇(V/V, 100:1)為流動相,經正向硅膠柱洗脫得到化合物10(1.2 mg)。
1.2.4 抗菌活性測試
采用濾紙片法[18]測定化合物的抑菌活性。將測活菌株用相應的液體培養基于搖床28℃培養24 h,觀察渾濁程度。將已滅菌的固體培養基在超凈工作臺內倒平板,凝固后使用。吸取250 ?L種子液于對應的固體培養基上,用棉簽將其均勻涂布。用甲醇將化合物和陽性對照藥品溶解,每個化合物配制成1.0 mg/mL和3.0 mg/mL濃度的溶液,以鹽酸萬古霉素(1.0 mg/mL)、多菌靈(1.0 mg/mL)、百菌清(1.0 mg/mL)、氨芐西林(10.0 mg/mL)和氯霉素(3.0 mg/mL)做陽性對照,甲醇做空白對照,將10 ?L溶液加到直徑為6.0 mm的已滅菌濾紙片上,置于已涂菌的平板中,使其緊貼培養基。每個化合物設置3次重復,28℃下培養1~2 d。對出現抑菌圈的化合物再做3次重復實驗,用刻度尺測量抑菌圈直徑。
1.2.5 抗腫瘤細胞毒活性測試
采用MTT法[19]測定化合物對白血病細胞K562、肝癌細胞BEL-7402、胃癌細胞SGC-7901、肺癌細胞A549和人宮頸癌細胞Hela的體外抗細胞毒活性。將細胞活化傳代后,培養至增殖期后配置成單細胞懸浮液,接種100 ?L細胞懸浮液于96孔板中(每孔約含4500個癌細胞),待測化合物用DMSO溶液分別稀釋為1.0、0.5、0.25、0.125、0.063、0.032 mg/mL 6個濃度梯度,K562細胞直接加10 μL待測化合物溶液,其余細胞于37℃、5.0% CO2培養24 h后加入10 μL待測化合物溶液,以等濃度的順鉑(cisplatin)作為陽性對照,DMSO作為空白對照,每個組設置4個重復。培養72 h后,加入20 ?L MTT溶液 (5.0 mg/mL用0.1 mol/L PBS配置,pH=7.4),孵育4 h,將上清液去除,加入150 ?L DMSO溶液,振蕩混勻至固體溶解,用波長為492 nm酶標儀測定每個孔的吸光度值(A),抑制率為50%對應的濃度即為IC50。
2 結果與分析
2.1 化合物理化性質及結構鑒定
化合物1:黃色固體,經HR-ESI-MS分析可知m/z: [M+Na]+ 401.0402,Exact Mass值為401.0399,結合其1H NMR和13C NMR數據確定該化合物分子式為C18H15ClO7。化合物核磁數據如下:1H NMR (500 MHz, CDCl3) δH: 7.64 (1H, dd, J=8.0, 1.6 Hz, H-6'), 7.57 (1H, dd, J=7.9, 1.5 Hz, H-4'), 7.06 (1H, t, J=7.9 Hz, H-5'), 6.44 (1H, s, H-6), 3.95 (3H, s, H-7-OMe), 3.90 (3H, s, H-3-OMe), 3.85 (3H, s, H-8-OMe); 13C NMR (125 MHz, CDCl3) δC: 56.61 (C-7-OMe), 61.87 (C-8-OMe), 62.33 (C-3-OMe), 96.02 (C-6), 105.46 (C-4a), 119.72 (C-1'), 121.38 (C-5'), 124.05 (C-3'), 128.76 (C-6'), 129.16 (C-8), 133.26 (C-4'), 138.08 (C-3), 149.12 (C-8a), 151.04 (C-2'), 154.86 (C-2), 157.62 (C-5), 159.08 (C-7), 178.08 (C-4), 該結構的譜圖數據與對文獻[20]報道的一致,確定該化合物為chlorflavonin(圖1)。
化合物2:淡黃色固體,經HR-ESI-MS分析可知m/z: [M+Na]+ 345.1087,Exact Mass值為345.1097,結合其1H NMR和13C NMR數據確定該化合物分子式為C20H18O4。化合物核磁數據如下:1H NMR (400 MHz, C3D6O) δH: 7.66 (2H, d, J=7.3 Hz, H-2'', 6''), 7.46 (2H, t, J=7.6 Hz, H-3'', 5''), 7.38 (1H, m, H-4''), 7.26 (2H, d, J=8.6 Hz, H-2, 6), 6.86 (2H, d, J=8.6 Hz, H-3, 5), 6.52(1H, s, H-5'), 3.73 (3H, s, H-6'-OMe), 3.37 (3H, s, H-3'-OMe); 13C NMR (125 MHz, C3D6O) δC: 56.18 (C-3'-OMe), 60.92 (C-6'-OMe), 104.43 (C-5'), 115.18 (C-3), 115.27 (C-5), 118.51 (C-1'), 125.90 (C-1), 128.06 (C-1''), 129.17 (C-3'', 5''), 129.67 (C-2'', 6''), 132.98 (C-2, 6), 133.54 (C-4'), 139.51 (C-3'), 140.36 (C-4''), 149.17 (C-2'), 154.65 (C-6'), 157.06 (C-4), 該結構的譜圖數據與對文獻[21]報道的一致,確定該化合物為4''-deoxyterphenyllin(圖1)。
化合物3:淡黃色固體,經HR-ESI-MS分析可知 m/z: [2M+Na]+ 651.1462,Exact Mass值為651.1473,結合其1H NMR和13C NMR數據確定該化合物分子式為C17H14O6。化合物核磁數據如下:1H NMR (500 MHz, DMSO-d6) δH: 12.92 (1H, s, H-5-OH), 10.39 (1H, s, H-4'-OH), 7.95 (2H, d, J=8.1 Hz, H-2', 6'), 6.93 (2H, d, J=8.1 Hz, H-3', 5'), 6.90 (1H, s, H-8), 6.84 (1H, s, H-3), 3.91 (3H, s, H-7-OMe), 3.73 (3H, s, H-6-OMe); 13C NMR (125 MHz, DMSO-d6) δC: 56.43 (C-7-OMe), 60.03 (C-6-OMe), 91.54 (C-8), 102.67 (C-3), 105.06 (C-10), 115.96 (C-3', 5'), 121.09 (C-1'), 128.51 (C-2', 6'), 131.85 (C-6), 152.07 (C-5), 152.60 (C-9), 158.59 (C-7), 161.29 (C-4'), 164.03 (C-2), 182.20 (C-4), 該結構的譜圖數據與對文獻[22]報道的一致,確定該化合物為cirsimaritin(圖1)。
化合物4:棕色固體,經HR-ESI-MS分析得m/z: [2M+Na]+ 759.2395,Exact Mass值為759.2412,結合其1H NMR和13C NMR數據確定該化合物分子式為C21H20O6。化合物核磁數據如下:1H NMR (500 MHz,DMSO-d6) δH: 9.53 (1H, s, H-4''-OH), 8.84 (2H, s, H-3, 4-OH), 7.40 (2H, d, J=8.2 Hz, H-2'', 6''), 6.83 (2H, d, J=8.1 Hz, H-3'', 5''), 6.74 (1H, d, J=8.0 Hz, H-5), 6.67(1H, s, H-5'), 6.66 (1H, s, H-2), 6.54 (1H, d, J=8.03, H-6), 3.65 (3H, s, H-6'-OMe), 3.50 (3H, s, H-2'-OMe), 3.48 (3H, s, H-3'-OMe); 13C NMR (125 MHz, DMSO-d6) δC: 55.76 (C-6'-OMe), 60.26 (C-3'-OMe), 60.28 (C-2'-OMe), 107.68 (C-5'), 114.95 (C-5), 115.01 (C-3'', 5''), 117.94 (C-2), 121.42 (C-6), 123.93 (C-1'), 124.50 (C-1), 128.52 (C-1''), 130.00 (C-2'', 6''), 133.69 (C-4'), 144.11 (C-3'), 144.19 (C-4), 144.36 (C-3), 151.44 (C-2'), 152.76 (C-6'), 156.72 (C-4''),該結構的譜圖數據與對文獻[23]報道的一致,確定該化合物為asperterphenyllin(圖1)。
化合物5:綠色油狀,經HR-ESI-MS分析得m/z: [M+Na]+ 443.1439, Exact Mass值為443.1465,結合其1H NMR和13C NMR數據確定該化合物分子式為C25H24O6。化合物核磁數據如下:1H NMR (500 MHz, CD3OD) δH: 7.45 (1H, s, H-2), 7.31 (1H, s, H-2''), 7.25 (1H, d, J=8.2 Hz, H-6''), 7.03 (1H, s, H-5), 6.84 (1H, d, J=8.2Hz, H-5''), 6.68 (1H, s, H-5'), 5.40 (1H, t, J=7.1 Hz, H-2'''), 4.01 (3H, s, H-6'-OMe), 3.81 (3H, s, H-3'-OMe), 3.37 (2H, d, J=7.3 Hz, H-1'''), 1.77 (6H, s, H-4''', 5'''); 13C NMR (125 MHz, CD3OD) δC: 17.89 (C-5'''), 25.97 (C-4'''), 29.32 (C-1'''), 56.28 (C-6'-OMe), 61.30 (C-3'-OMe), 98.95 (C-5), 106.51 (C-5'), 108.51 (C-2), 115.55 (C-5''), 115.84 (C-1'), 116.12 (C-1), 124.06 (C-2'''), 128.78 (C-6''), 128.88 (C-3''), 131.04 (C-1''), 131.68 (C-2''), 132.96 (C-4'), 133.06 (C-3'''), 137.61 (C-3'), 143.35 (C-3), 146.74 (C-6), 150.52 (C-2'), 151.38 (C-4), 151.64 (C-6'), 155.49 (C-4''), 該結構的譜圖數據與對文獻[24]報道的一致,確定該化合物為prenylcandidusin(圖1)。
化合物6:白色固體,經HR-ESI-MS分析得m/z: [M+Na]+ 345.1080, Exact Mass值為345.1097,結合其1H NMR和13C NMR數據確定該化合物分子式為C20H18O4。化合物核磁數據如下:1H NMR (500 MHz, DMSO-d6) δH: 9.30 (1H, s, H-10-OH), 8.58 (1H, s, H-1), 7.61 (2H, d, J=7.7 Hz, H-14, 18), 7.46 (2H, t, J=7.6 Hz, H-15, 17), 7.37 (1H, t, J=7.4 Hz, H-16), 7.11 (2H, d, J=8.5 Hz, H-8, 12), 6.76 (2H, d, J=8.6 Hz, H-9, 11), 6.44 (1H, s, H-5), 3.65 (3H, s, H-19), 3.30 (3H, s, H-20); 13C NMR (125 MHz, DMSO-d6) δC: 55.62 (C-19), 60.30 (C-20), 103.20 (C-5), 114.30 (C-9, 11), 117.75 (C-6), 124.33 (C-7), 127.14 (C-16), 128.28 (C-15, 17), 128.61 (C-14, 18), 131.76 (C-8, 12), 132.34 (C-3), 138.19 (C-13), 139.45 (C-2), 148.14 (C-1), 153.12 (C-4), 155.93(C-10), 該結構的譜圖數據與對文獻[25]報道的一致,確定該化合物為2,4-dimethoxy-1,10-dihydroxy-p-terphenyl(圖1)。
化合物7:無色晶體,[α]25 D 0 (c 0.1, CH3OH),HR-ESI-MS分析得m/z: [M+Na]+ 203.0690, Exact Mass值為203.0679,結合其1H NMR和13C NMR數據確定該化合物分子式為C10H12O3。化合物核磁數據如下:1H NMR (500 MHz, CD3OD) δH: 7.31 (2H, d, J=7.3 Hz, H-6, 10), 7.27 (2H, t, J=7.6 Hz, H-7, 9), 7.18 (1H, t, J=7.2 Hz, H-8), 4.21 (1H, d, J=4.5 Hz, H-2), 3.22 (1H, m, H-3), 1.30 (3H, d, J=7.1 Hz, H-4); 13C NMR (125 MHz, CD3OD) δC: 15.23 (C-4), 44.35 (C-3), 76.47 (C-2), 127.51 (C-8), 129.00 (C-6, 10), 129.20 (C-7, 9), 144.78 (C-5), 177.08 (C-1), 該結構的譜圖數據與對文獻[26]報道的一致,確定該化合物為(±)-2-hydroxy-3-phenylbutyric acid(圖1)。
化合物8:綠色油狀,HR-ESI-MS分析得m/z: [M+Na]+ 375.0836, Exact Mass值為375.0839,結合其1H NMR和13C NMR數據確定該化合物分子式為C20H16O6。化合物核磁數據如下:1H NMR (500 MHz, CD3OD) δH: 7.43 (1H, s, H-2), 7.42 (2H, d, J=8.6 Hz, H-2'', 6''), 7.01 (1H, s, H-5), 6.86 (2H, d, J=8.6 Hz, H-3'', 5''), 6.68 (1H, s, H-5'), 3.99 (3H, s, H-6'-OMe), 3.79 (3H, s, H-3'-OMe); 13C NMR (125 MHz, CD3OD) δC: 56.29 (C-3'-OMe), 61.28 (C-6'-OMe), 98.95 (C-5), 106.51 (C-1, 5'), 108.53 (C-2), 115.98 (C-1', 5''), 116.09 (C-3''), 131.14 (C-1''), 131.62 (C-2'', 6''), 132.59 (C-4'), 137.63 (C-3'), 143.35 (C-3), 146.77 (C-4), 150.46 (C-2'), 151.41 (C-6'), 151.65 (C-6), 157.77 (C-4''), 該結構的譜圖數據與對文獻[27]報道的一致,確定該化合物為candidusin A(圖1)。
化合物9:紫色油狀,HR-ESI-MS分析得m/z: [2M+Na]+ 759.1663, Exact Mass值為759.1684,結合其1H NMR和13C NMR數據確定該化合物分子式為C20H16O7。化合物核磁數據如下:1H NMR (600 MHz, CD3OD) δH: 7.43 (1H, s, H-6), 7.08 (1H, d, J=2.1 Hz, H-2''), 7.01 (1H, s, H-3), 6.92 (1H, dd, J=8.1, 2.1 Hz, H-6''), 6.84 (1H, d, J=8.1 Hz, H-5''), 6.67 (1H, s, H-5'), 3.98 (3H, s, H-6'-OMe), 3.80 (3H, s, H-3'-OMe); 13C NMR (150 MHz, CD3OD) δC: 56.24 (C-6'-OMe), 61.30 (C-3'-OMe), 98.92 (C-3), 106.47 (C-5'), 108.48 (C-6), 115.84 (C-1'), 116.06 (C-1), 116.12 (C-5''), 117.77 (C-2''), 122.11 (C-6''), 131.68 (C-1''), 132.71 (C-4''), 137.59 (C-3''), 143.32 (C-5), 145.72 (C-4''), 145.85 (C-3''), 146.71 (C-4), 150.47 (C-2'), 151.31 (C-6'), 151.61 (C-2), 該結構的譜圖數據與對文獻[28]報道的一致,確定該化合物為candidusin B(圖1)。
化合物10:白色顆粒,HR-ESI-MS分析得m/z: [2M+Na]+ 807.1190,Exact Mass值為807.1218,結合其1H NMR和13C NMR數據確定該化合物分子式為C19H17ClO7。化合物核磁數據如下:1H NMR?(500 MHz, CDCl3) δH: 8.37 (1H, s, H-2'-OH), 7.72 (1H, dd, J=8.0, 1.6, H-6'), 7.58 (1H, dd, J=7.9, 1.6, H-4'), 7.07 (1H, t, J=7.9 Hz, H-1'), 6.47 (1H, s, H-6), 4.04 (3H, s, H-7-OMe), 4.03 (3H, s, H-5-OMe), 3.95 (3H, s, H-3-OMe), 3.89 (3H, s, H-8-OMe); 13C NMR (125 MHz, CDCl3) δC: 56.56 (C-5-OMe), 56.77 (C-7-OMe), 61.60 (C-8-OMe), 62.22 (C-3-OMe), 92.75 (C-6), 109.24 (C-4a), 120.09 (C-1'), 121.18 (C-5'), 124.29 (C-3'), 128.42 (C-6'), 130.76 (C-8), 133.02 (C-4'), 139.76 (C-3), 151.18 (C-2'), 151.64 (C-8a), 151.73 (C-2), 156.70 (C-5), 157.01 (C-7), 173.02 (C-4), 該結構的譜圖數據與對文獻[29]報道的一致,確定該化合物為aspergivone(圖1)。
2.2 化合物生物活性測試結果
2.2.1 抗菌活性
采用濾紙片法測定了化合物1~10對上述12種致病菌的抑菌活性,結果表明,化合物1對火龍果潰瘍病原菌有著明顯的抑制作用,當供試濃度為10.0 ?g/disc時,其抑菌圈直徑為(41.67±2.36) mm。多菌靈為陽性對照,當供試濃度為10.0 ?g/disc,其抑菌圈直徑為(55.00±0.82) mm。其余化合物均未顯示出抑菌活性。
2.2.2 抗腫瘤細胞毒活性
采用MTT法測定化了化合物2、3、5、7、8和9的腫瘤細胞毒活性,結果顯示,化合物2對白血病細胞K562具有細胞毒活性,化合物8對白血病細胞K562、肝癌細胞BEL-7402、胃癌細胞SGC-7901、肺癌細胞A549和人宮頸癌細胞Hela均具有細胞毒活性(表1),順鉑為陽性對照。
3 討論
海綿是海洋生態系統的重要組成部分,由于獨特的生理構造和攝食方式,使其成為海洋微生物的良好載體。而海綿共附生真菌次生代謝產物的研究是海洋天然產物研究的重要組成部分。本文綜合運用各種柱色譜分離技術在海綿共附生真菌A. candidus HM5-4中分離得到10個化合物,通過對化合物的波譜數據和理化性質進行分析,并對比相應文獻數據,確定了化合物的結構。這10個化合物包括6個三聯苯類化合物,3個黃酮類化合物,1個苯基丁酸類化合物。據報道,化合物chlorflavonin (1)對鹵蟲和藤壺幼蟲均有明顯的致死活性,其IC50分別為16.53和1.1 ?g/mL[30]。化合物4"-deoxyterphenyllin (2)對神經氨酸酶具有中等程度的抑制活性,其IC50為4.34 ?mol/L[31]。化合物cirsimaritin (3)對人結腸癌COLO-205細胞具有中等的抗增殖活性,其IC50為13.1 ?mol/L[32]。化合物2,4-dimethyl-1,10-dihydroxy-p-terphenyl (6)對白色念珠菌具有較高的抑制活性,抑制率達到了92.25%[25]。化合物candidusin A (8)和candidusin B (9)均具有較強的α-葡萄糖苷酶抑制活性,其IC50分別為(13.1±0.2)和(7.9±0.3) ?mol/L;同時,化合物8和9也都具有較強的抗氧化活性,其ORAC值分別為(2.1±0.06)和(2.0±0.06) ?mol/L TE/?mol/L[33]。本研究首次發現,當化合物供試濃度為10.0 ?g/disc時,化合物1對火龍果潰瘍病原菌有著非常明顯的抑制作用,抑菌圈直徑達到了(41.67±2.36) mm[陽性對照多菌靈的抑菌圈直徑為(55.00±0.82) mm]。細胞毒性測試結果顯示,化合物8對白血病細胞K562、肝癌細胞BEL-7402、胃癌細胞SGC-7901、肺癌細胞A549和宮頸癌細胞Hela有一定的細胞毒活性,其IC50分別為(17.51±0.11)、(31.45±0.11)、(32.27±0.20)、(77.43±0.26)和(68.88±0.57) ?mol/L,化合物2對白血病細胞K562具有細胞毒活性,其IC50為(94.58±1.21) ?mol/L。該研究結果進一步豐富了曲霉屬真菌活性次級代謝產物的結構類型,為進一步研究海綿共附生真菌A. candidus HM5-4抗菌、細胞毒活性次生代謝產物提供了科學依據。
參 考 文 獻
Newman D J, Cragg G M. Natural products as sources of new drugs over the last 25 years[J]. J Nat Prod, 2007, 70(3): 461-477.
Blunt J W, Copp B R, Hu W P, et al. Marine natural products[J]. Nat Prod Rep, 2009, 26(2): 170-244.
Qian P Y, Xu Y, Fusetani N. Natural products as antifouling compounds: Recent progress and future perspectives[J]. Biofouling, 2009, 26(2): 223-234.
Shao C L, Xu R F, Wang C Y, et al. Potent antifouling marine dihydroquinolin-2 (1H)-one-containing alkaloids from the gorgonian coral-derived fungus Scopulariopsis sp.[J]. Mar Biotechnol, 2015, 17(4): 408-415.
張宇, 孔凡棟, 馬青云, 等. 海洋真菌Aspergillus sp. SCS-KFD03的化學成分分析[J]. 熱帶生物學報, 2017, 8(3): 248-254.
Carroll A R, Copp B R, Davis R A, et al. Marine natural products[J]. Nat Prod Rep, 2022, 39: 1122-1171.
趙成英, 朱統漢, 朱偉明. 2010—2013之海洋微生物新天然產物[J]. 有機化學, 2013, 33(6): 1195-1234.
El-Kashef D H, Youssef F S, Reimche I, et al. Polyketides from the marine-derived fungus Aspergillus falconensis: In silico and in vitro cytotoxicity studies[J]. Bioorg Med Chem Lett, 2021, 29: 115883.
Li P H, Zhang M Q, Li H N, et al. New prenylated indole homodimeric and pteridine alkaloids from the marine-derived fungus Aspergillus austroafricanus Y32-2[J]. Mar Drugs, 2021, 19(2): 98.
Hou X M, Zhang Y H, Hai Y, et al. Aspersymmetide A, a new centrosymmetric cyclohexapeptide from the marine-derived fungus Aspergillus versicolor[J]. Mar Drugs, 2017, 15(11): 363.
Wen H L, Yang X L, Liu Q, et al. Structurally diverse meroterpenoids from a marine-derived Aspergillus sp. fungus[J]. J Nat Prod, 2019, 83(1): 99-104.
Xu P, Ding L J, Wei J X, et al. A new aquatic pathogen inhibitor produced by the marine fungus Aspergillus sp. LS116[J]. Aquaculture, 2020, 520: 734670.
Saetang P, Rukachaisirikul V, Phongpaichit S, et al. Aspertamarinolides AC: γ-butenolides from the marine-derived fungus Aspergillus tamarii PSU-MF90[J]. Tetrahedron Lett, 2020, 61(46): 152529.
Song F H, Lin R, Yang N, et al. Antibacterial secondary metabolites from marine-derived fungus Aspergillus sp. IMCASMF180035[J]. Antibiotics, 2021, 10(4): 377.
Ding Y, Zhu X J, Hao L L, et al. Bioactive indolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635[J]. Mar Drugs, 2020, 18(7): 338.
Bao J, Li X X, He F, et al. Asperbutenolide A, an unusual aromatic butenolide dimer with diverse bioactivities from a marine-derived fungus Aspergillus terreus SCAU011[J]. Tetrahedron Lett, 2020, 61(32): 152193.
Haritakun R, Rachtawee P, Chanthaket R, et al. Butyrolactones from the fungus Aspergillus terreus BCC 4651[J]. Chem Pharm Bull, 2010, 58(11): 1545-1548.
Gong B, Chen S, Lan W W, et al. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China[J]. Iran J Pharm Res, 2018, 17(4): 1339-1346.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays[J]. J Immunol Methods, 1983, 65(1-2): 55-63.
Watanabe S, Hirai H, Kato Y, et al. CJ-19, 784, a new antifungal agent from a fungus, Acanthostigmella sp.[J]. J Antibiot, 2001, 54(12): 1031-1035.
Shan T J, Wang Y Y, Wang S, et al. A new p-terphenyl derivative from the insect-derived fungus Aspergillus candidus Bdf-2 and the synergistic effects of terphenyllin[J]. PeerJ, 2020, 8: e8221.
Hasrat J A, Pieters L, Claeys M, et al. Adenosine-1 active ligands: Cirsimarin, a flavone glycoside from Microtea debilis[J]. J Nat Prod, 1997, 60(6): 638-641.
Zhou G L, Zhang X M, Shah M, et al. Polyhydroxy p-Terphenyls from a mangrove endophytic fungus Aspergillus candidus LDJ-5[J]. Mar Drugs, 2021, 19(2): 82.
Cai S X, Sun S W, Zhou H N, et al. Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07[J]. J Nat Prod, 2011, 74(5): 1106-1110.
劉芬, 夏金梅, 王偉毅, 等. 亮白曲霉代謝物中兩種聯苯化合物的分離鑒定[J]. 廈門大學學報(自然科學版), 2013, 52(5): 670-674.
Bühler H, Miehlich B, Effenberger F. Inversion of stereoselectivity by applying mutants of the hydroxynitrile lyase from Manihot esculenta[J]. Chem Biol Chem, 2005, 6(4): 711-717.
Peng G Y, Kurtán T, Mándi A, et al. Neuronal modulators from the coral-associated fungi Aspergillus candidus[J]. Mar Drugs, 2021, 19(5): 281.
Kobayashi A, Takemura A, Koshimizu K, et al. Candidusin A and B: New p-terphenyls with cytotoxic effects on sea urchin embryos[J]. Agric Biol Chem, 1982, 46(2): 585-589.
Ma J, Zhang X L, Wang Y, et al. Aspergivones A and B, two new flavones isolated from a gorgonian-derived Aspergillus candidus fungus[J]. Nat Prodt Res, 2017, 31(1): 32-36.
馬潔, 鄭紀勇, 孫澤濤, 等. 1株花柳珊瑚來源真菌Aspergillus candidus次級代謝產物及其生物活性研究[J].中國海洋藥物, 2016, 35(2): 18-22.
Guo Z K, Yan T, Guo Y, et al. p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3[J]. J Nat Prod, 2012, 75(1): 15-21.
Bai N, He K, Roller M, et al. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects[J]. Fitoterapia, 2011, 82(2): 168-172.
王立平, 許言超, 王永, 等. 一種對聯三苯類化合物及其制備方法和應用: CN, 112645913A[P]. 2021-04-13.