999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The least eigenvalue of the graph

2023-01-03 07:48:04GaoRunxiaYuGuidongCaiGaixiang
純粹數學與應用數學 2022年4期

Gao RunxiaYu GuidongCai Gaixiang

(1.Department of Social Undertakings,Anqing Vocational and Technical College,Anqing 246133,China;2.School of Mathematics and Physics,Anqing Normal University,Anqing 246133,China)

Abstract:Let G be a simple graph.The adjacency matrix is denoted by G.The least eigenvalue of A(G),denoted by λmin(G),is called the least eigenvalue of G.In this paper we first establish the relations between the number of edges and the least eigenvalue of the adjacency matrix of the graph,and then give some spectral conditions for a graph having Hamiltonian paths or Hamiltonian cycles,or being Hamilton-connected,or being traceable from every vertex in terms of the least eigenvalue of the adjacency matrix of the graph.This provides an effective method for us to study some properties for a graph.

Keywords:least eigenvalue,Hamiltonian path,Hamiltonian cycle,Hamilton-connected graph

1 Introduction

LetG=(V,E)be a simple graph of ordernwith vertex set

and edge setE=E(G).LetKnbe the complete graph of ordern.WriteKn?1+vforKn?1together with an isolated vertex,Kn?1+eforKn?1with a pendent edge,andKn?1+e+e′obtained fromKn?1+vby adding two edges betweenvand two vertices ofKn?1.The join ofGandH,denotedG∨H,is the graph obtained from disjoint union ofGandHby adding edges joining every vertex ofGto every vertex ofH.

The degree matrix ofGis denoted byD(G)=diag(dG(v1),dG(v2),···,dG(vn)),wheredG(v)denotes the degree of a vertexvin the graphG.The adjacency matrix ofGis defined to be a matrixA(G)=[aij]of ordern,whereaij=1 ifviis adjacent tovj,andaij=0 otherwise.The signless Laplacian matrix ofGis defined by

Obviously,A(G),Q(G)are real symmetric matrix.So their eigenvalues are real number and can be ordered.The largest eigenvalue ofA(G),denoted byλ(G),is said to be the spectral radius ofG.The least eigenvalue ofA(G),denoted byλmin(G),is said to be the least eigenvalue ofG.The unit eigenvector according toλmin(G)is said to be the first eigenvector ofG.The largest eigenvalue ofQ(G),denoted byq(G),is said to be the signless Laplacian spectral radius ofG.

LetGbe a simple graph of ordern.A Hamiltonian cycle of the graphGis a cycle of orderncontained inG,and a Hamiltonian path ofGis a path of orderncontained inG.A graph is traceable from every vertex if it contains a Hamilton path from every vertex.A graph is said to be Hamiltonian if it contains Hamiltonian cycles,and is said to be Hamilton-connected if every two vertices ofGare connected by a Hamiltonian path.The problem of deciding whether a graph is Hamiltonian is one of the most difficult classical problems in graph theory.Indeed,determining whether a graph is Hamiltonian is NP-complete.

Recently,the spectral theory of graphs has been applied to this problem.Reference[1]gives sufficient conditions for a graph to be traceable or Hamiltonian in terms of the spectral radius of the adjacency matrix of the graph or its complements.Reference[2]investigates the spectral radius of the signless Laplacian matrix of the complements of a graph,and present some conditions for the existence of Hamiltonian paths or cycles.The work motivated further research,one may refer to References[3-7].Reference[8]gives some(signless Laplacian)radius spectral conditions for a graph to be Hamiltonconnected.

However,until now there are few results about characterization the Hamiltonicity of a graph by least eigenvalue.In this paper,we still study the Hamiltonicity of a graph.However,we use the least eigenvalue of the adjacency matrix of the graph,and give some conditions for a graph having Hamiltonian paths or cycles,or being Hamilton-connected,or being traceable from every vertex.

2 Main results

主站蜘蛛池模板: 熟女成人国产精品视频| 日韩黄色在线| 国产区成人精品视频| 青草视频网站在线观看| 国产18在线| 亚洲性影院| 91精品国产一区自在线拍| 国产性生大片免费观看性欧美| 视频一本大道香蕉久在线播放| 亚洲精品不卡午夜精品| 久久久久久高潮白浆| 亚洲精品在线观看91| 女人av社区男人的天堂| 日韩黄色大片免费看| 国产三级精品三级在线观看| 狠狠亚洲婷婷综合色香| 国产凹凸视频在线观看| 国产小视频免费| 伊人狠狠丁香婷婷综合色| 国产视频 第一页| 欧美a级在线| 亚洲国产清纯| 亚洲国产精品人久久电影| 国产性爱网站| 亚洲欧美日韩综合二区三区| 超清无码熟妇人妻AV在线绿巨人| 亚洲AV无码乱码在线观看裸奔| 激情成人综合网| 国产精品区视频中文字幕| 精品视频福利| 精品成人免费自拍视频| 午夜高清国产拍精品| 国产成人欧美| 54pao国产成人免费视频| 欧美日韩精品综合在线一区| 美女无遮挡免费视频网站| 亚洲系列无码专区偷窥无码| 久久人与动人物A级毛片| 久久无码av一区二区三区| 一级成人欧美一区在线观看| 午夜不卡视频| 日本成人精品视频| 国产精品毛片一区| 久久精品日日躁夜夜躁欧美| 欧美日韩国产精品va| 欧美不卡在线视频| 美女高潮全身流白浆福利区| 麻豆国产在线不卡一区二区| 日韩一区二区三免费高清 | 国产欧美专区在线观看| 青青草原国产av福利网站| 日韩精品亚洲人旧成在线| 欧美日韩v| 色窝窝免费一区二区三区 | 国产高清又黄又嫩的免费视频网站| 国内精自线i品一区202| 亚洲日韩精品伊甸| 一区二区偷拍美女撒尿视频| 国产清纯在线一区二区WWW| 在线看片免费人成视久网下载| 91偷拍一区| 成·人免费午夜无码视频在线观看| 欧美中文字幕在线视频 | 国产欧美日韩视频怡春院| 国产激情无码一区二区APP | 在线观看免费国产| 亚洲欧洲一区二区三区| 国产精品美乳| 亚洲精品第一页不卡| Jizz国产色系免费| 亚洲电影天堂在线国语对白| 精品偷拍一区二区| 中文字幕人妻无码系列第三区| 亚洲日韩久久综合中文字幕| 国产成人乱无码视频| 国产无码网站在线观看| 国产在线观看一区二区三区| 国产一区在线视频观看| 国产白浆视频| 成人福利在线观看| 国产亚洲精品91| 亚洲欧洲日产国码无码av喷潮|