奧蘇貝爾認為學習分為兩種:一種是機械式學習,一種是有意義地開展學習。教師在教學環節中要盡可能地避免學生機械式的學習,注重培養學生學習的主動性以及自主學習的能力。數學是一門抽象性學科,需要學生掌握基礎的數學知識,同時還要具備數學思維、舉一反三的能力,這就需要教師在教學環節中注重培養學生的數學遷移能力。
一、主題單元教學以及遷移能力的概述
(一)主題單元教學
單元教學是一個單位作為教學的基本單位,從整體出發,統籌安排,將基礎知識、實踐知識等各個環節有機地結合在一起,形成一個教學整體。單元主題教學,則需要根據單元的內容確定教學的主題,以主題為線索,以學生學習的一般規律為基礎,對教學內容開發和重組,進行課時的連續學習。單元式主題教學體現了學生學習領域、學生目標達成的針對性、知識技能教學的連貫性,有利于學生提升知識技能,對知識靈活應用。
(二)遷移能力
學習是一個持續、動態化的過程。任何學習都是學習者在已有的認知結構以及知識經驗基礎上進行的。通常新的學習過程以及結果,均會對學習者原有的經驗、技能以及態度產生影響。可見新舊知識之間是相關影響,共同遷移的。任何有意義的學習,本質上都會存在遷移的現象。遷移的本質就是兩種學習之間在認知、技能的相互影響和完善。在數學教學過程中,教師也應注重學生的遷移能力。
二、基于主題單元教學培養學生數學遷移能力的必要性以及意義
(一)基于主題單元教學培養學生數學遷移能力的必要性
數學本就是一門比較系統且嚴謹的學科,前面的知識是為后面的知識做鋪墊,后面的知識又可以達到對前面知識的延伸,可見前后知識具有密不可分、相互聯系的關系。在教學中,教師將前后教學的內容進行整合,設計成主題單元教學,可以實現系統化教學,符合了數學課程的特征。同時培養了學生的數學遷移能力,是數學教學的目標所決定的。數學課程的學習不是讓學生掌握概念、基礎知識即可,其需要學生能利用數學知識解決實際生活中存在的難題,能對知識活學活用,能具備終身學習的能力。因此在數學教學中,教師設計單元主題,培養學生的數學遷移能力就顯得尤其重要。
(二)基于主題單元教學培養學生數學遷移能力的意義
1.有利于培養學生學習數學的主動性及學習思維
遷移指的是利用已經獲得的知識、技能和動機在新的學習、任務或者是情境中進行支持,創造性地使用。遷移可以發生在對知識、動作、技能的學習中,也可以是情感態度的學習中。通過構建主題式單元教學,培養學生的數學遷移能力,需要教師為學生創造一個主題式的單元學習環境,使學生能在這樣的環境中學習數學知識,同時通過課堂的互動與趣味性的教學方法,培養學生數學學習的主動性。在這個過程中,學生的知識、技能和情感都得到了提升,數學學習思維也有所改善。
2.有利于鞏固舊知識,學習新知識
培養小學生的遷移能力是在原有知識的基礎上,運用舊知識孕育新知識。比如,在教學過程中,教師要以舊知識為固著點,運用轉化的思想,利用舊知識去認識新知識,逐步培養學生良好的心理,實現知識的遷移。在這個環節中,學生學習的舊知識得到了鞏固,并在舊知識的鋪墊下有了新知識學習的思路。
3.有利于提升學生的數學學習能力
主題單元教學是將同一個主題內容匯聚在一起開展教學,這個教學模式有利于實現知識的整合和分析,拓展學習的思維,實現知識的遷移。同時在主題單元教學中,教師通過各種教學方法,引導學生思維,實現知識、情感以及能力的遷移,在一定程度上可以提升學生的數學學習興趣以及學習能力。
三、基于主題單元教學培養學生數學遷移能力的策略
(一)選定單元式主題,明確教學目標
在單元式教學中,主題是整個活動的靈魂,其呈現的除了是知識本身外,還包含主題的把握,要呈現和主題有關的知識,同時又要超越教材本身,基于主題,在更大范圍內整合知識,突破學科教學中的知識碎片現象,將同一學科中的同一主題匯聚在一起,讓學生從多個視角、多個層次以及多個維度對事物進行把握,走出傳統教學的狹隘性以及片面性。以“多位數乘一位數”“兩位數乘兩位數”以及“三位數乘兩位數”內容為例,這三個教學內容跨度三年級上冊、下冊以及四年級上冊,可以將這三大內容整合,形成一個關于多位數乘以多位數的計算主題。在該教學中,明確教學目標:(1)鞏固舊知識,通過舊知識引出新知識。(2)理解三位數乘兩位數的算法和算理。(3)養成勤思考、會遷移的能力。該單元式主題教學的重難點在于如何掌握多位數相乘的計算方法。設置的主題單元式教學是從基礎到復雜、從簡單到難的一個過程,其中包含舊知識的復習,在復習過程中,讓學生回憶舊知識計算的相關方法,為新知識的學習打下基礎。這樣的主題單元式內容的設置,可以為培養學生的遷移能力打下基礎。
(二)鞏固舊知,夯實遷移基礎
小學生在開始學會學習之前,無論是認知結構還是潛能,幾乎都是一塊白板,并沒有被開發。但是只要學會了學習,學生的知識和經驗就會逐步積累,而原有的知識就會成為新知識的一塊跳板,學生后期的學習都將會成為有意義的學習,在整個過程中,遷移是學生有意義學習的一個重要載體。因此,教師要注重通過舊知識引導學生學會遷移,幫助學生學會克服學習過程中存在的惰性,實現知識之間的遞進和延伸。比如,在多位數乘以多位數的計算主題中,就引入了兩個舊的知識點,“多位數乘一位數”“兩位數乘兩位數”,在課堂開始之前,教師可以列出幾個算式,“35×5”“124×8”“15×13”“65×34”,教師可以讓學生根據所學習的知識計算這四個算式,要求將算式的整個過程列出來。在學生計算的過程中,教師可以走下講臺,看看學生的計算過程,在課堂中呈現不一樣的計算方法,并讓學生說出為什么。如有的學生在列35×5時,化為5×5=25,30×5=150,25+150=175。第二種將35×5用進位表示多出的2。第三種則是在列算式時,將十位上的0省略。每一種算法都是學生思維的體現,也為后期講解“三位數乘兩位數”的算理和算法做好了鋪墊。
(三)提問問題,為知識遷移搭建橋梁
教師所教授的新知識和舊知識之間存在一定的關系時,是需要借助橋梁紐帶將兩者建立聯系,實現遷移。而搭建橋梁是非常重要的一部分,需要學生的主動行為以及教師的合理引導。比如,在“多位數乘以多位數”的計算主題中,想要將“多位數乘一位數”“兩位數乘兩位數”,這兩個舊知識的算法和算理遷移到“三位數乘兩位數”的教學中,教師除了要對舊知識進行復習,還要通過提問的方式,引發學生思考,為遷移知識搭建橋梁。如在該單元主題教學中,教師可以提出幾個問題:(1)觀察“多位數乘一位數”“兩位數乘兩位數”,請學生總結計算規律。(2)請學生思考這兩類計算有何共同點。(3)請問這種計算的共同點,即算法和算理,能否遷移到“三位數乘兩位數”,為什么?每一個問題的提問,都是對學生思維的一種引導,學生在教師的提問中去思考、探究,逐步便對新的知識產生了一種新的認知,也在自我的思考和實踐中理解了“三位數乘兩位數”的計算方式。相比于教師直接傳遞知識,讓學生死記硬背算法和算理,教師搭建橋梁的方式更有利于培養學生的學習自信心以及數學核心素養。
(四)融入實踐活動,實現數學知識的遷移
數學是一門和生活息息相關的學科,學習數學的目的就是將知識在生活中活學活用。在基于主題單元教學中培養學生的遷移能力,除了可以通過舊知識向新知識的遷移外,還可以基于實踐探究活動的方式,實現基礎知識的遷移,培養學生知識的綜合運用能力。比如,“長方形和正方形”“面積”“平行四邊形和梯形”這三節課程的內容整合,形成一個關于平行四邊形和梯形面積的實踐探究課堂。教師可以先向學生展現各個圖形,引導學生分類,再讓學生回顧學過的圖形面積的推導過程以及計算公式。接著展示平行四邊形,讓學生在小組內部探討如何計算平行四邊形的面積,在探討之后,教師邀請小組上臺講解,其他小組評價,教師最后整合。在這樣的實踐活動中,學生在不斷的思考、學習和反思,數學知識、技能、思維也實現了遷移,且學生學習的主動性高,學習氛圍較好。
(五)合理評價,提升知識遷移的質量
在數學學習過程中,每一個環節可能都存在知識技能的遷移,這就需要數學教師了解學生以及學科的特點,從特點出發,不斷創新教學的方式,并合理引導學生。同時在學生完成一系列活動之后,要注重合理評價,這種評價可以是教師對整個教學過程的總結,也可以是學生對整個學習環節的反思,這種評價有利于培養學生對知識的整合能力,也能提升知識遷移的質量。
在小學數學教學中,遷移能力是必不可少的,其可以幫助學生掌握基礎概念,從多個角度對概念進行應用,挖掘數學對象的本質,也有利于促進學生對知識的全面化理解。因此數學教師在開展教學時,一定要注重舊知識和新知識之間的遷移、學生思維的培養、數學能力的提升,為構建高質量的小學數學課堂打下基礎。