蘭玉彬,林澤山,王林琳,鄧小玲
·農業信息與電氣技術·
基于文獻計量學的智慧果園研究進展與熱點分析
蘭玉彬1,2,3,4,林澤山1,2,王林琳1,2,鄧小玲1,2,3,4※
(1. 華南農業大學電子工程學院、人工智能學院,廣州 510642; 2. 嶺南現代農業科學與技術廣東省實驗室,廣州 510642; 3.國家精準農業航空施藥技術國際聯合研究中心,廣州 510642;4.廣東省智慧農業工程技術中心,廣州 510642)
為了宏觀掌握智慧果園在國內外的研究動態、前沿和熱點,更好地推動智慧果園乃至智慧農業的發展,該研究采用文獻計量分析方法,以Web of science核心論文集為檢索平臺分析了智慧果園2002年1月1日—2022年8月累計20年的時空分布、主要研究內容以及前沿熱點。主要結論如下:智慧果園的研究自2014年起步入正軌,2018年起在人工智能技術推動下發展迅猛,2018-2021年總發文量占比37.5%;總體而言,作者(Lan Yubin、Chen Chao、Tang Yu等)、機構(華南農業大學、中國農業大學和佛羅里達大學等)、地域(中國、美國、西班牙等國)交流和合作均較為密切;中國、美國是開展智慧果園研究的主要國家,總發文量共占比58.2%;當前主要研究集中在果樹長勢和病蟲害識別和預警、無人化或智能化農機作業。根據研究目的細分的技術主要包含人工智能模型/算法、傳感、物聯和精準農業等。自2007年以來,研究熱點由柑橘病害、產量預估等對象研究逐步過渡到技術研究上,深度學習、無人機、人工智能的研究是當今智慧果園的發展前沿。智慧果園研究深受技術推動尤其在當前人工智能技術背景下方興未艾,而當前的環境復雜度高、種植欠規范等問題依舊制約著其進一步發展。星-空-地立體化果園感知、空-地協同無人化精準作業、水果采摘、果品的可視化溯源等方面將是未來智慧果園主要研究方向。
智能化;自動化;智慧果園;量化分析;Web of Science;Citespace;文獻計量分析
農業在人類歷史上經歷了從傳統農業到現代化農業的過程,現代化農業必將是集機械化、數字化、信息化和智能化于一體的智慧農業。智慧農業是以信息和知識為核心要素,通過將互聯網、數據挖掘、云計算等現代信息技術與農藝深度融合,實現信息智能感知、智能控制、定量決策、個性化服務的農業生產模式,將成為農業信息化農業數字化的高級階段[1-2]。
智慧果園是智慧農業的重要一環。智慧果園旨在通過宜機化樹形改造[3-4]、星-空-地立體化監測[5-11]、果樹全生長期精準管控[12-14]、病蟲害綠色防控[15-18]、空-地協同無人化作業[19-23]、云-邊-端協同智能計算[24-27]、智慧倉庫管理、可視化溯源[28-30]等技術體系,實現穩產優質化、調控精細化、省力高效化、綠色生態化、管理智能化、作業無人化的現代化農業生產模式。文獻計量學已成為對各個研究領域進行規律、熱點和趨勢分析的得力助手。為更好地對當前智慧果園的研究現狀進行分析,本文以Web of Science核心合集即累計20年來收錄的579篇智慧果園相關研究文獻作為研究對象,基于文獻計量學分析了智慧果園的研究信息上的時空分布,接著分析智慧果園的主要研究內容和前沿熱點,最后依據分析結果進行總結并做出展望。
本文以Web of science作為檢索平臺。智慧果園研究主要集中在龍眼、柑橘、荔枝和桃等重點作物上,為防止遺漏其他果樹作物在檢索詞中補充了“orchard”一詞。為提高檢索效率多次更換檢索詞,最終以“TI=(longan or citrus or litchi or peach or orchard) And AB=(growth or disease or growing or pest or insect or tree or fruit) AND AK=(drone or UAV or AI or intelligent or detection or segmentation or precision or spray or unmanned or robot or sensor or “deep learning” or “machine learning” or “Agricultural machinery”)”作為檢索項,將時間范圍設置為2002年1月1日至2022年8月31日,共篩選出598篇文獻;剔除無關文獻和經去重處理后最終得到579篇文獻。
本文通過文獻計量方法分析數據。利用數據處理軟件Excel和文獻計量分析工具Citespace 對論文檢索數據進行量化分析。先通過Excel和Web of science自帶數據庫得到2002—2022年的年度發文量,再利用Citespace和Excel統計分析工具得到核心作者、機構、地域和關鍵詞的共線知識圖譜,對檢索數據進行機構合作關系網絡、文獻共引分析、高頻詞聚類、關鍵詞共現、關鍵詞突現分析[31],借助知識圖譜梳理、歸納智慧果園的發展脈絡及累計20年間研究地域、機構等空間信息和研究技術及應用熱點。所采用的的計量文獻分析工具Citespace通過直觀的知識圖譜方式,展現研究領域的熱點關鍵詞、研究進展和前沿方向,其在科學和技術領域得到廣泛應用[32-34]。
對Web of science收集的2002年到2022年的579篇文獻進行發文時間的統計(見圖1),統計數據顯示:1)2002年至2013年的每年論文發表量均不超過20篇,且發文量有所波動,12年間發文總量僅占9.33%;2)2014至2021的8年間的論文發表量年增長較大,其中2019年年度發文增長量(19篇)和年增長率均達到了最高(41.5%),而后年度發文量繼續增長但增長率有所下降;3)2018年—2021年發文總量達到216篇,占比37.3%,而2022截至8月31日為止,該年度的發文量為67篇。該統計數據體現了智慧果園的研究從2018年開始進入了快速發展階段,這與人工智能第三次發展浪潮的時間節點高度吻合,意味著當前的智慧果園的快速發展主要得益于人工智能技術的推動[35-37]。

圖1 Web of science年度發文量統計
2.2.1 地域和機構分布
采用Citespace對文獻發布的地域分布進行分析,時間切片為1 a,將Node Types設置為“Country”,Pruning選擇“Pathfinder”和“Pruning sliced networks”,其余參數保持默認值,得到節點數為64,連線數117,密度為0.058的國家共線知識圖譜,如圖2a所示。知識圖譜上的連線表示彼此之間存在交流與合作,由圖可知,節點之間連線較為緊密,基本上沒有孤立的節點,可見中國、美國、巴西、西班牙、意大利等國聯系相對緊密,存在較多合作,而由節點的大小,發現超過一半的研究集中于中國(181篇)和美國(156篇),兩國的發文總量占比58.2%,其次主要在西班牙、意大利、印度,分別有61篇、41篇和28篇。

注:節點大小表示論文發表量,節點越大,發文量越多。
將節點設置為“Institution”,得到機構的共線知識圖譜,如圖2b所示。通過知識圖譜不難發現,盡管圖譜中均存在少數分散的節點,但基本上形成了一個較為整體的網絡,可見當前的智慧果園中大部分機構之間的交流與合作均較為密切,如華南農業大學、中國農業大學、佛羅里達大學之間存在交流與合作,華南農業大學與嶺南現代農業科學與技術廣東省實驗室和仲愷農業工程學院之間、佛羅里達大學與華中農業大學、農業農村部和西北農林科技大學之間的交流較為直接。
表1為論文發表量前15的機構,由表可知:發文量前15的機構中,有8個機構來自中國,6個來自美國,其總發文量在前15機構中分別占比22.72%和36.15%。結合地域分析,該統計數據體現出美國在智慧果園方面的研究更多集中于排名前2的佛羅里達州立大學和佛羅里達大學,分別為66篇和65篇,而中國除了排名第3的華南農業大學研究較多(44篇)之外,在其他機構的分布較為均衡。

表1 國際發表論文數量排名前15的機構
2.2.2 核心作者分布
將節點設置為“Author”,其余參數保持默認值,分別得到作者共線知識圖譜(見圖3所示)。節點和線條的顏色深度由淺到深表示時間年份的遠近程度,越深則表示越近期。由圖可知:1)大部分作者之間的交流與合作較為密切,如:作者方面,Lan Y B、Chen C、Tang Y、Li J之間存在交流與合作,而Lan Y B、Deng X L,Zheng Z之間,Tang Y、Wang H、Zhuang J之間合作較為直接和緊密;2)Lan Y B、Tang Y、Li J、Wang X等在近年來的研究較為突出。
表2為論文發表量前15的作者,由表可知:1)論文發表量前3的分別為Lan Yubin(14篇)、Lee Won Suk(13篇)、Xiong Juntao(11篇);2)結合機構分析,發文量前15的作者中,有14位所在機構來自發文量前15的機構中的4個機構:華南農業大學、佛羅里達大學、華盛頓州立大學、仲愷農業工程學院、北京農林科學院;3)發文量前15的作者中,有9人單位所在地是中國,5人單位所在地是美國。

注:節點和線條的顏色深度由淺到深表示時間年份的遠近程度,越深則表示越近期。

表2 國際發表論文數量排名前15的作者
2.2.3 出版期刊分布
基于Web of science統計文獻出版來源,發文量前15的分布情況如表3所示。由圖可得,累計20年來《Computers and Electronics in Agriculture》、《Sensors》、《Remote Sensing》、《Precision Agriculture》和《Frontiers in Plant Science》等期刊在智慧果園研究方面均有不少發文,而《Computers and Electronics in Agriculture》的發文量達到75篇(占據12.89%),排名第1并遙遙領先于其他出版期刊。

表3 刊發智慧果園主題論文數量前15名的期刊
將節點設置為“keyword”,其他參數不變,得到節點數為526,連線數1 387,密度為0.01的關鍵詞共線聚類圖譜,其模塊值和平均輪廓值分別為0.689和0.849(見圖4)。當>0.3時,表明圖譜結構較為成型,而當>0.7時,聚類效果較為理想。顯示12個聚類區域,每個區域分別0~11的數字標簽,數字標簽越小則包含的關鍵詞越多,聚類中心區域為研究重點[38]。依據標簽聚類結果:1)研究內容從大體上可分為兩大類:研究對象(#0柑橘黃龍病,#1水果檢測,#5葉面噴灑,#7油橄欖,#8天敵群落)和研究技術(#2 機器視覺,#3風助式噴霧器,#4 精準農業,#6重采樣驗證,#9機器學習,#10遙感,#11表面增強拉曼散射);2)機器學習、精準農業、機器視覺是當前在智慧果園領域的重點研究技術,而水果檢測、柑橘黃龍病是重點研究對象。
基于對數似然比計算(Log-likelihood Ratio,LLR)的關鍵詞聚類結果統計如表4所示。結合圖4和表4進行分析可得,當前研究對象可大致分為長勢監測、無人作業2類。長勢監測研究較多的有病蟲害研究(聚類#0、#2、#7、#10)、果實的檢測(聚類#2),病蟲害研究如柑橘黃龍病不僅包含了其表面特征的檢測[39-41],還有多光譜條件下的檢測和引發黃龍病的媒介的檢測[42-44],而果實的檢測需要考慮到識別、定位、高度等問題,主要用于產量預估[45-46]和后續的機械采摘[47-49];無人作業研究較多的有果園的施肥灌溉(聚類#5、#7、#10)、噴灑和施藥(聚類#3、#8)等,其中包含了果樹水分脅迫[50-51]、灌溉方式對果園的影響[52-53]、噴灑和施藥時的霧滴漂移和沉積分布[54-56]、噴霧器的設置及性能分析[57-58]等。

注:節點和連線分別代表對應聚類區域的關鍵詞及其關聯。

表4 基于對數似然比計算的關鍵詞聚類結果
當前智慧果園研究技術主要集中在算法(聚類#0、#1、#2、#4、#9、#10)、傳感(聚類#4、#10)、精準農業(聚類#3#4#7)、無損檢測(聚類#0、#2、#11)等多個方面,前三者的研究居多。算法方面的研究主要為基于雷達[59-60]、機器學習[61-62]、深度學習[63-65]、圖像處理等方面的識別和檢測;傳感的研究主要為無線傳感器[66]、地理信息系統、遙感[67-68]、圖像分辨率等;而精準農業在人工智能的基礎上還結合了農學、光學成像、作物科學等學科領域,如光譜、植被指數[69-70]、葉面積指數[71-72]等參數;無損檢測的研究則更傾向于光學、化學、環境科學等學科領域。
本研究采用Citespace進行共被引分析,以獲取智慧果園的研究脈絡和前言,再進行關鍵詞突現分析某一段時間內的研究熱點。通過Citespace進行共被引分析獲取引用頻次圖譜結果如圖5所示。根據圖譜聚類結果以及作者發文時間總結如下:1)由標簽和共被引時間得出,在2010年以前,由于該領域研究較少,技術也亟待發展,并沒有熱點出現。2010—2022年可大致分為3個階段,階段Ⅰ為2010—2014年(聚類#15、#16、#14、#19),該階段也出現圖像處理、精準農業、果園病蟲害(如柑橘病害)的研究;階段Ⅱ為2015—2017年(聚類#12、#13、#16、#14、#18),該階段同樣有圖像處理和精準農業,而深度學習和無人機開始在果園中開展應用;階段Ⅲ為2018—2022年(聚類#12、#13、#16、#17、#18),該階段還是有圖像處理和精準農業,而該時期深度學習和無人機出現頻次更多,同時出現了“人工智能”方面的詞匯。2)由標簽序號和圖譜位置得深度學習、精準農業、無人機是較為突出的研究熱點,在時期Ⅲ的論文發表數量增量也遠多于其他時期。

注:節點和連線分別代表對應聚類區域的作者(年份)及其關聯。
進一步進行共被引突現分析,得到11篇高突現值的被引文獻,如表5所示。結合圖5和表5,階段Ⅰ和階段Ⅱ一共只有2篇高被引文獻[73-74],均為柑橘黃龍病相關文獻,其中引用強度最高的是Gottwald TR的《Current Epidemiological Understanding of Citrus Huanglongbing》,該文從地域來源、病媒種群、進化的角度、和受感染后的影響對柑橘黃龍病的特征進行分析;階段Ⅲ有9篇高被引文獻[75-83],均為算法類文章,涉及了深度學習、深度相機、無人機和多光譜圖像的研究與應用,其中引用強度最高的2篇分別是He Kaiming的《Deep Residual Learning for Image Recognition》和Tian Yunong的《Apple detection during different growth stages in orchards using the improved YOLO-V3 model》,前者提出了殘差學習框架以簡化更深的網絡的訓練,分別在ImageNet測試集上和COCO對象檢測數據集上實現了3.57%的誤差和28%的改進,而后者提出了一種通過DenseNet方法處理的改進的YOLO-V3網絡,該網絡實現了對果園3個不同生長階段、高分辨率圖像中以及遮擋和重疊條件下的蘋果實時檢測。
通過Citespace進行關鍵詞突現分析,獲得8個聚類主題詞,如表6所示。依據關鍵詞突現分析可分為另外3個時期:2007—2014年的研究熱點是柑橘作物和果園噴霧器,其中該時期的柑橘作物研究為較為傳統的圖像處理和高光譜儀器在病蟲害上的檢測、產量預估的研究和柑橘果樹灌溉技術等方面的使用;2015—2017年的研究熱點是果園管理、病蟲害和圖像處理,該時期主要圍繞果園的病蟲害和長勢進行識別和管控;2018—2022年更多地利用無人機和機器學習特別是深度學習技術,其引用強度最高(11),遠高于其余7個主題詞的平均值(3.55)。

表5 高突現值的被引文獻

表6 高突現值的關鍵詞
綜合共被引分析和關鍵詞突現分析可知,在2007年之前并沒有熱點出現,2007年之后的16年間的可分為2007—2014年、2015—2017年、2018—2022年3個階段,在這3個階段中隨著時代發展和技術革新其研究熱點由對象研究(柑橘病害、產量預估)逐步過渡到技術研究上,其中精準農業、圖像處理是貫穿了3個階段的研究熱點,深度學習、無人機是該研究的進一步深入,人工智能的第三次浪潮推動了智慧果園研究的快速發展。
本文通過Web of science核心合集檢索2002年1月1日-2022年8月31日累積20年來智慧果園領域的文獻,基于Citespace文獻計量分析軟件和Excel軟件統計智慧果園的研究信息,分析主要研究內容和前言熱點,主要結論如下:
1)智慧果園的研究自2014年起步,在2018年后高速發展,至2021年的4年間發文總量占比為37.5%,其中2019年增長量和增長率均達到最高值,而后保持增勢但有所放緩;
2)整體而言,作者(Lan Yubin、Chen Chao、Tang Yu、Li Jun等)、機構(華南農業大學、中國農業大學和佛羅里達大學)、地域(中國、美國、西班牙意大利等國)均存在較為密切的交流和合作,其中中美的總發文量超過了其他國家和地區的總和;
3)發文量前15的機構中,分別有8個來自中國,6個來自美國,美國的佛羅里達州立大學和佛羅里達大學排名前2,中國的華南農業大學排名第3;發文量前15的作者中,分別有9位來自中國、5位來自美國,其中Lan Yubin、Lee Won Suk、Xiong Juntao發文量分列前3;
4)《Computers and Electronics in Agriculture》、《Sensors》、《Remote Sensing》等出版期刊均有較多發文,其中《Computers and Electronics in Agriculture》發文量最多,占比12.89%;
5)當前主要研究可分為研究對象和研究技術兩大類。研究對象中以長勢監測和無人作業為主,長勢監測以柑橘黃龍病和果實檢測居多,無人作業以施肥灌溉、噴藥居多;研究技術主要有算法、傳感、精準化作業和無損檢測等,前三者居多;
6)自2007年以來,可大致分為3個階段,在此過程中研究熱點由柑橘病害、產量預估等對象研究逐步過渡到技術研究,其中精準農業、圖像處理是持續性研究熱點,深度學習、無人機、人工智能的研究是2018年至今智慧果園的發展前沿。
隨著人工智能、大數據、無人機、無人車等前沿技術的成熟與發展,未來多學科交叉融合的研究熱點將更加突出。展望未來,智慧果園技術的研究將更注重農事生產實際需要并服務于農業生產過程。該領域的發文質量將取決于與農事生產環節的結合程度和實際應用效益。
從研究熱點上展望智慧果園的主要方向如下:
1)星空地立體化果園感知技術
衛星遙感技術可實現區域級果樹種植分布的分析,有利于政府對水果產業的扶持調控以及果品市場價格調控等;無人機遙感方式可替代人工巡園,大大提高巡園效率,減少勞動力的投入;近地觀測通過多種固定或移動攝像頭、氣象站、土壤墑情傳感器等,局部掌握果樹長勢和病蟲害情況,長期不間斷的監測,有利于果樹的精準植保和按需作業,是實現智慧果園精準管控的主要依據。此外,多源異構數據的融合,將提高多源遙感系統感知和決策的快速性和準確性。該方向的發文量預計呈爆發性增長。
2)空-地協同無人化精準作業技術
地面智能農機和農用無人機的協同作業,將是未來智慧果園中代替人工勞動的主要農事作業方式。其中,農用無人機可以在智慧果園中從事施藥、施肥、吹花、授粉、采摘、剪枝等多種農事操作。智慧果園的精準管控技術,有利于實現農事操作的按需和精準作業。利用遙感技術生成作業處方圖信息,結合變量控制技術和精準導航技術,可實現果樹的對靶和精準作業。該方向研究的熱點主要以農用無人機為研究對象。
3)水果采摘技術
自動采摘機器人是智慧果園無人化程度的最佳體現,對于樹體較高的果樹,未來期待無人機采摘方式在智慧果園的廣泛應用。集成計算機視覺、導航、平衡、操縱、感知和機械技術的無人機采摘方式,目前在蘋果、梨等果實采摘中已取得了突破性進展,但對于樹體較高且枝條較硬的嶺南水果如荔枝、龍眼等果樹,無人化的采摘難度大??偟膩碚f,無人機采摘技術是趨勢,但目前尚處于研究階段,離大面積應用尚有一段較長的距離。未來在該方向上的發文量有望呈上升趨勢。
4)果品的可視化溯源技術
消費者對水果質量和安全日益關注,對果品的生產環節的可視化、可溯源性提出了較高的需求。區塊鏈、二維碼等溯源技術是鏈接消費者和生產環節的紐帶,未來將作為智慧果園的重要技術環節,但該方向未來研究發文量仍較少,但其技術將愈加成熟,應用將愈加廣泛。
[1] 趙春江. 智慧農業發展現狀及戰略目標研究[J]. 智慧農業,2019,1(1):1-7.
Zhao Chunjiang. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. (in Chinese with English abstract)
[2] 李道亮,李震. 無人農場系統分析與發展展望[J]. 農業機械學報,2020,51(7):1-12.
Li Daoliang, Li Zhen. System analysis and development prospect of unmanned farming[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 1-12. (in Chinese with English abstract)
[3] 牛自勉,蔚露,李志強,等. 蘋果樹形結構變化對果園藥肥減施的影響[J]. 果樹資源學報,2021,2(2):15-20.
Niu Zimian, Wei Lu, Li Zhiqiang, et al. Effects of apple tree structure on the reductions in pesticide and fertilizer in the orchard[J]. Journal of Fruit Resources, 2021, 2(2): 15-20. (in Chinese with English abstract)
[4] 張天英,常乃軍,叢培建,等. 榮成市蘋果高光效樹形改造及其配套技術總結[J]. 煙臺果樹,2021(2):31-32.
[5] 劉羽. 基于衛星遙感的蘋果果園分類和估產模型研究[D].西安:西安科技大學,2021.
Liu Yu. Research on Apple Orchard Classification and Yield Estimation Model Based on Satellite Remote Sensing[D]. Xi'an:Xi'an University of Technology, 2021. (in Chinese with English abstract)
[6] 萬祖毅. 基于無人機遙感的柑橘果樹信息提取及應用研究[D]. 重慶:西南大學,2020.
Wan Zuyi. Extraction and Application of Citrus Fruit Tree Information Based on UAV Remote Sensing[D]. Chongqing:Southwest University, 2020. (in Chinese with English abstract)
[7] Tian H, Fang X, Lan Y, et al. Extraction of citrus trees from UAV remote sensing imagery using YOLOv5s and coordinate transformation[J]. Remote Sensing, 2022, 14(17): 4208.
[8] Zhu Y, Zhou J, Yang Y, et al. Rapid target detection of fruit trees using UAV imaging and improved light YOLOv4 algorithm[J]. Remote Sensing, 2022, 14(17): 4324.
[9] 殷獻博,鄧小玲,蘭玉彬,等. 基于改進YOLOX-Nano算法的柑橘梢期長勢智能識別[J/OL]. [2022-04-27]. 華南農業大學學報,2023(1):1-21.
Yin Xianbo, Deng Xiaoling, Lan Yubin, et al. Intelligent recognition of citrus shoot growth based on improved YOLOX-Nano algorithm[J/OL]. [2022-04-27]. Journal of South China Agricultural University, 2023(1): 1-21. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HNNB20220602003&uniplatform=NZKPT&v=lgXkAcVDmjQYjaifNS05GA30XcwR25Y9wouGKrQHTJURvb2g6QdEIcBua6qaK5_M. (in Chinese with English abstract)
[10] Hobart M, Pflanz M, Weltzien C, et al. Growth height determination of tree walls for precise monitoring in apple fruit production using UAV photogrammetry[J]. Remote Sensing, 2020, 12(10): 1656.
[11] Tariq S, Hakim A, Siddiqi A A, et al. An image dataset of fruitfly species (Bactrocera zonata and bactrocera dorsalis) and automated species classification through object detection[J]. Data in Brief, 2022(43): 108366
[12] Sabzi S, Nadimi M, Abbaspour-Gilandeh Y, et al. Non-destructive estimation of physicochemical properties and detection of ripeness level of Apples using machine vision[J]. International Journal of Fruit Science, 2022, 22(1): 628-645.
[13] Juillion P, Lopez G, Fumey D, et al. Shading apple trees with an agrivoltaic system: Impact on water relations, leaf morphophysiological characteristics and yield determinants[J]. Scientia Horticulturae, 2022(306): 111434.
[14] Xie B, Chen Y, Cheng C, et al. Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil[J]. Applied Soil Ecology, 2022, 180: 104627.
[15] 焦梓洲. 生物防治技術在農業病蟲害防治中的應用分析[J]. 種子科技,2020,38(3):85-86.
[16] 郝宇佳,李廣宇,徐鋒. 果園保護性耕作技術對比傳統種植探究[J]. 廣東蠶業,2020,54(4):55-56.
Hao Yujia, Li Guangyu, Xu Feng. Conservation tillage technology in orchard compared with traditional planting[J]. Guangdong Sericulture, 2020, 54(4): 55-56. (in Chinese with English abstract)
[17] 百度百科. 林下經濟[EB/OL]. (2022-01-01) [2022-04-27].https://baike.baidu.com/item/%E6%9E%97%E4%B8%8B%E7%BB%8F%E6%B5%8E?fromModule=lemma_search-box.
[18] 曹裕松,胡春琴,蘇啟陶,等. 生態學視野下的林下經濟[J]. 廣西林業科學,2022,51(1):142-146.
Cao Yusong, Hu Chunqin, Su Qihao, et al. Under-forest economy in ecological perspective[J]. Guangxi Forestry Science, 2022, 51(1): 142-146. (in Chinese with English abstract)
[19] Li S, Cui C. The effect of bait air broadcasting by unmanned aerial vehicles on the ant community diversity[J]. Journal of Applied Entomology, 2022:1-8.
[20] 王昌陵,何雄奎,曾愛軍,等. 基于仿真果園試驗臺的植保無人機施藥霧滴飄移測試方法與試驗[J]. 農業工程學報,2020,36(13):56-66.
Wang Changling, He Xiongkui, Zeng Aijun, et al. Measuring method and experiment on spray drift of chemicals applied by UAV sprayer based on an artificial orchard test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 56-66. (in Chinese with English abstract)
[21] Fei Z, Vougioukas S. Row-sensing templates: A generic 3D sensor‐based approach to robot localization with respect to orchard row centerlines[J]. Journal of Field Robotics, 2022, 39: 712-738.
[22] Suo R, Gao F, Zhou Z, et al. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking[J]. Computers and Electronics in Agriculture, 2021, 182: 106052.
[23] 蔡舒平,孫仲鳴,劉慧,等. 基于改進型 YOLOv4 的果園障礙物實時檢測方法[J]. 農業工程學報,2021,37(2):36-43.
Cai Shuping,Sun Zhongming,Liu Hui,et al. Real-time detection methodology for obstacles in orchards using improved YOLOv4[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 36-43. (in Chinese with English abstract)
[24] 張文利,陳開臻,劉鈺昕,等. 基于邊緣設備的輕量化小目標果實檢測模型[J]. 中國農業信息,2021,33(1):28-36.
Zhang Wenli, Chen Kaizhen, Liu Yuxin, et al. Lightweight small target fruit detection model based on edge devices[J]. China Agricultural Informatics, 2021, 33(1): 28-36. (in Chinese with English abstract)
[25] 焦合軍,周萬春,施進發,等. 基于云計算的果園移動機器人動態路徑規劃[J]. 機械設計與研究,2021,37(2):45-49,65.
Jiao Hejun, Zhou Wanchun, Shi Jinfa, et al. Dynamic path planning of orchard mobile robot based on cloud computing[J]. Machine Design & Research, 2021, 37(2): 45-49, 65. (in Chinese with English abstract)
[26] Wang R, Li Z, Li J, et al. Research on orchard water and fertilizer automatic control system based on service composition[C]//International Conference on Image Processing and Intelligent Control (IPIC 2021). Lanzhou, 2021, 11928: 228-231.
[27] Kalyani Y, Collier R. A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture[J]. Sensors, 2021, 21(17): 5922.
[28] 溫晗秋子,鄭永強,劉楊,等. 柑橘大數據研究與應用[J]. 農業大數據學報,2021,3(1):33-44.
Wen-Han Qiuzi, Zheng Yongqiang, Liu Yang, et al. Research and application of citrus big data[J]. Journal of Agricultural Big Data, 2021, 3(1): 33-44. (in Chinese with English abstract)
[29] Ruggiero L, Amalfitano C, Di Vaio C, et al. Use of near-infrared spectroscopy combined with chemometrics for authentication and traceability of intact lemon fruits[J]. Food Chemistry, 2022, 375: 131822.
[30] Graci S, Olivieri F, Barone A. Phenotypic and genotypic characterization to authenticate and trace a high-quality yellow tomato ecotype through the processing chain[J]. Scientia Horticulturae, 2022, 306: 111449.
[31] 李繼宇,胡瀟丹,蘭玉彬,等. 基于文獻計量學的 2001-2020 全球農用無人機研究進展[J]. 農業工程學報, 2021,37(9):328-339.
Li Jiyu, Hu Xiaodan, Lan Yubin, et al. Research advance on worldwide agricultural UAVs in 2001-2020 based on bibliometrics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 328-339. (in Chinese with English abstract)
[32] Azam A, Ahmed A, Wang H, et al. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis[J]. Journal of Cleaner Production, 2021, 295: 126496.
[33] 袁媛,白中科. 基于文獻計量分析的生態系統恢復力研究進展[J]. 農業工程學報,2020,36(3):271-278.
Yuan Yuan, Bai Zhongke. Research progress of ecosystem resilience based on bibliometric investigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 271-278. (in Chinese with English abstract)
[34] Wang X, Zhang Y, Zhang J, et al. Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis[J]. Journal of Cleaner Production, 2021, 281: 125224.
[35] 蘭玉彬,王天偉,陳盛德,等. 農業人工智能技術:現代農業科技的翅膀[J]. 華南農業大學學報,2020,41(6):1-13.
Lan Yubin, Wang Tianwei, Chen Shengde, et al. Agricultural artificial intelligence technology: Wings of modern agricultural science and technology[J]. Journal of South China Agricultural University, 2020, 41(6): 1-13. (in Chinese with English abstract)
[36] Thiebes S, Lins S, Sunyaev A. Trustworthy artificial intelligence[J]. Electronic Markets, 2021, 31(2): 447-464.
[37] 蔡靜穎. 計算機人工智能技術的應用與發展[J]. 產業創新研究,2022(14):78-80.
[38] 學術點滴. CiteSpace關鍵詞聚類圖譜含義詳細解析[EB/OL].(2020-02-21)[2022-04-27].https://blog.csdn.net/qq_39974284/article/details/104425964?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167145079716800186559380%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=167145079716800186559380&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-104425964-null-null.nonecase&utm_term=CiteSpace%E5%85%B3%E9%94%AE%E8%AF%8D%E8%81%9A%E7%B1%BB%E5%9B%BE%E8%B0%B1&spm=1018.2226.3001.4450.
[39] Lan Y, Huang Z, Deng X, et al. Comparison of machine learning methods for citrus greening detection on UAV multispectral images[J]. Computers and Electronics in Agriculture, 2020, 171: 105234.
[40] 蘭玉彬,朱梓豪,鄧小玲,等. 基于無人機高光譜遙感的柑橘黃龍病植株的監測與分類[J]. 農業工程學報,2019,35(3):92-100.
Lan Yubin, Zhu Zihao, Deng Xiaoling, et al. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 92-100. (in Chinese with English abstract)
[41] Yang D, Wang F, Hu Y, et al. Citrus huanglongbing detection based on multi-modal feature fusion learning[J]. Frontiers in Plant Science, 2021, 12: 809506.
[42] Dai F, Wang F, Yang D, et al. Detection method of citrus psyllids with field high-definition camera based on improved cascade region-based convolution neural networks[J]. Frontiers in Plant Science, 2021, 12: 816272.
[43] Wheatley M S, Duan Y P, Yang Y. Highly sensitive and rapid detection of citrus Huanglongbing pathogen (‘Candidatus Liberibacter asiaticus’) using Cas12a-based methods[J]. Phytopathology, 2021, 111(12): 2375-2382.
[44] Bassanezi R B, Primiano I V. Huanglongbing and citrus variegated chlorosis integrated management based on favorable periods for vector population increase and symptom expression[J]. Plant Disease, 2021, 105(10): 3037-3047.
[45] Gao F, Fang W, Sun X, et al. A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard[J]. Computers and Electronics in Agriculture, 2022, 197: 107000.
[46] Wang L, Zhao Y, Xiong Z, et al. Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model[J]. Frontiers in Plant Science, 2022, 13:1-16.
[47] Zhuang J, Hou C, Tang Y, et al. Computer vision-based localisation of picking points for automatic litchi harvesting applications towards natural scenarios[J]. Biosystems Engineering, 2019, 187: 1-20.
[48] Wang H, Lin Y, Xu X, et al. A study on long-Close distance coordination control strategy for litchi picking[J]. Agronomy, 2022, 12(7): 1520.
[49] Wang X, Kang H, Zhou H, et al. Geometry-aware fruit grasping estimation for robotic harvesting in apple orchards[J]. Computers and Electronics in Agriculture, 2022, 193: 106716.
[50] Park S, Ryu D, Fuentes S, et al. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV)[J]. Remote Sensing, 2017, 9(8): 828.
[51] Egea G, Padilla-Díaz C M, Martinez-Guanter J, et al. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards[J]. Agricultural Water Management, 2017, 187: 210-221.
[52] Provenzano G, Segovia-Cardozo D A. Detecting crop water requirements indicators in irrigated agro-ecosystems from soil water content profiles: An application for a citrus orchard[C]//EGU General Assembly Conference Abstracts, Gottingen, 2021: EGU21-9172.
[53] Hahn F, García J A. Mango stem response under different irrigation regimes[J]. International Journal of Fruit Science, 2022, 22(1): 35-56.
[54] Meng Y, Zhong W, Liu C, et al. UAV spraying on citrus crop: Impact of tank-mix adjuvant on the contact angle and droplet distribution[J]. PeerJ, 2022, 10: e13064.
[55] Guo S, Yao W, Xu T, et al. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant[J]. Pest Management Science, 2022, 78(8): 3564-3575.
[56] Wang C, Liu Y, Zhang Z, et al. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards[J]. Pest Management Science, 2022, 78(6): 2449-2466.
[57] Sahni R K, Ranjan R, Hoheisel G A, et al. Pneumatic spray delivery-based solid set canopy delivery system for oblique banded leaf roller and codling moth control in a high-density modern apple orchard[J]. Pest Management Science, 2022, 78(11): 4793-4801.
[58] Godoy-Nieto A, Miranda-Fuentes A, Grella M, et al. Assessment of spray deposit and loss in traditional and intensive olive orchards with conventional and crop-adapted sprayers[J]. Agronomy, 2022, 12(8): 1764.
[59] Gu C, Zhao C, Zou W, et al. Innovative leaf area detection models for orchard tree thick canopy based on lidar point cloud data[J]. Agriculture, 2022, 12(8): 1241.
[60] Raman M G, Carlos E F, Sankaran S. Optimization and evaluation of sensor angles for precise assessment of architectural traits in peach trees[J]. Sensors, 2022, 22(12): 4619.
[61] Ljubobratovi? D, Vukovi? M, Brki? Bakari? M, et al. Assessment of various machine learning models for peach maturity prediction using non-destructive sensor data[J]. Sensors, 2022, 22(15): 5791.
[62] Minamikawa M F, Nonaka K, Hamada H, et al. Dissecting breeders’ sense via explainable machine learning approach: Application to fruit peelability and hardness in citrus[J]. Frontiers in Plant Science, 2022, 13: 832749.
[63] Mo J, Lan Y, Yang D, et al. Deep learning-based instance segmentation method of litchi canopy from UAV-Acquired images[J]. Remote Sensing, 2021, 13(19): 3919.
[64] Dhiman P, Kukreja V, Manoharan P, et al. A novel deep learning model for detection of severity level of the disease in citrus fruits[J]. Electronics, 2022, 11(3): 495.
[65] Li D, Sun X, Elkhouchlaa H, et al. Fast detection and location of longan fruits using UAV images[J]. Computers and Electronics in Agriculture, 2021, 190: 106465.
[66] Dogan H. A new empirical propagation model depending on volumetric density in citrus orchards for wireless sensor network applications at sub-6 GHz frequency region[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(9): e22778.
[67] Zhang Y, Ta N, Guo S, et al. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard[J]. Remote Sensing, 2022, 14(5): 1063.
[68] Caruso G, Palai G, Gucci R, et al. Remote and proximal sensing techniques for site-specific irrigation management in the olive orchard[J]. Applied Sciences, 2022, 12(3): 1309.
[69] Deng X, Zhu Z, Yang J, et al. Detection of citrus huanglongbing based on multi-input neural network model of UAV hyperspectral remote sensing[J]. Remote Sensing, 2020, 12(17): 2678.
[70] Chang A, Yeom J, Jung J, et al. Comparison of canopy shape and vegetation indices of citrus trees derived from UAV multispectral images for characterization of citrus greening disease[J]. Remote Sensing, 2020, 12(24): 4122.
[71] Zhang Y, Ta N, Guo S, et al. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard[J]. Remote Sensing, 2022, 14(5): 1063.
[72] Liu Z, Guo P, Liu H, et al. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing[J]. Remote Sensing, 2021, 13(16): 3263.
[73] Qin J, Burks T F, Ritenour M A, et al. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence[J]. Journal of Food Engineering, 2009, 93(2): 183-191.
[74] Gottwald T R. Current epidemiological understanding of citrus huanglongbing[J]. Phytopathol, 2010, 48: 119-139.
[75] Sa I, Ge Z, Dayoub F, et al. Deepfruits: A fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): 1222: 1-23.
[76] Gongal A, Amatya S, Karkee M, et al. Sensors and systems for fruit detection and localization: A review[J]. Computers and Electronics in Agriculture, 2015, 116: 8-19.
[77] Stein M, Bargoti S, Underwood J. Image based mango fruit detection, localisation and yield estimation using multiple view geometry[J]. Sensors, 2016, 16(11): 1915.
[78] Nguyen T T, Vandevoorde K, Wouters N, et al. Detection of red and bicoloured apples on tree with an RGB-D camera[J]. Biosystems Engineering, 2016, 146: 33-44.
[79] Csillik O, Cherbini J, Johnson R, et al. Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks[J]. Drones, 2018, 2(4): 39.
[80] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04) [2022-04-27]. https://arxiv.org/abs/1409.1556.
[81] Ampatzidis Y, Partel V. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence[J]. Remote Sensing, 2019, 11(4): 410.
[82] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 770-778.
[83] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
Research progress and hotspots of smart orchard based on bibliometrics
Lan Yubin1,2,3,4, Lin Zeshan1,2,Wang linlin1,2, Deng Xiaoling1,2,3,4※
(1.,510642,;2.510642,; 3.(),510642,; 4.510642,)
In order to better promote the development of smart agriculture, this review aims to analyze the research trends, frontiers, and hotspots of the smart orchard at home and abroad using bibliometric analysis. The commonly-used tool (Citespace) of quantitative literature analysis was adopted as the bibliometric analysis in the fields of science and technology. Web of science was selected as the retrieval platform to analyze the temporal and spatial distribution of research publications, main research contents, and frontier hotspots of smart orchards published from January 2002 to August 2022. Keywords of crop mainly included the longan, citrus, lychee, and peach. In addition, the keyword "orchard" was added for spare. 579 documents were finally obtained after screening and preprocessing using the following retrieval items: " TI=(longan or citrus or litchi or peach or orchard) And AB=(growth or disease or growing or pest or insect or tree or fruit) And AK=(drone or UAV or AI or intelligent or detection or segmentation or precision or spray or unmanned or robot or sensor or "deep learning" or "machine learning" or "agricultural machinery") . The retrieved data was used to conduct the following steps: The data processing software (Excel) and the bibliometric analysis tool (CiteSpace) were selected to conduct the quantitative analysis. The annual publication from 2002 to 2022 were counted using Excel and the built-in Web of science database. The collinear knowledge map of core authors, institutions, regions, and keywords was then obtained using Citespace and Excel statistical analysis tools. The analysis was also performed on the institutional cooperation network, literature co-citation, high-frequency word clustering, keyword co-occurrence, and keyword emergence. The development history, research regions, institutions, and spatial information, research technologies, and application hotspots of smart orchards were sorted out and summarized over the past 20 years using knowledge graphs. The main conclusions were as follows: The research on smart orchards was on the right track since 2014. There was the rapid development under the promotion of artificial intelligence technology since 2018. Reports published from 2018 to 2021 accounted for 37.5% of the total. In general, there were a relatively close exchange and cooperation between the authors (Lan YB, Chen C, and Tang Y), institutions (South China Agricultural University, China Agricultural University, and Univ of Florida), and regions (China, the United States, and Spain). China and the United States were the major countries in the smart orchard research, accounting for 58.2% of the total. The current research topics were focused mainly on fruit tree growth monitoring, pest identification, and early warning, unmanned or intelligent agricultural machinery operation. The technologies were adopted, including artificial intelligence models/algorithms, sensing, Internet of Things, and Precision control, according to the subdivision of research purposes. The research of deep learning, UAV, and artificial intelligence was the frontier of smart orchard development. The development of smart orchards was deeply promoted by advanced technology, especially artificial intelligence. However, the current limiting steps were determined by the high complexity of the environment and the lack of standard planting in further development. The research directions of smart orchards can be expected as the star-sky-ground three-dimensional orchard perception, air-ground collaborative unmanned precision operation, fruit picking, and visual traceability of fruit products in the future.
intelligent; automatation; smart orchard; quantitative analysis; web of science; citespace; bibliometric analysis
10.11975/j.issn.1002-6819.2022.21.016
S126
A
1002-6819(2022)-21-0127-10
蘭玉彬,林澤山,王林琳,等. 基于文獻計量學的智慧果園研究進展與熱點分析[J]. 農業工程學報,2022,38(21):127-136.doi:10.11975/j.issn.1002-6819.2022.21.016 http://www.tcsae.org
Lan Yubin, Lin Zeshan, Wanglinlin, et al. Research progress and hotspots of smart orchard based on bibliometrics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 127-136. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.016 http://www.tcsae.org
2022-04-27
2022-10-03
廣東省重點研發計劃項目(2019B020214003);嶺南現代農業實驗室科研項目(NT2021009);廣州市重點研發計劃項目(202103000090);廣東高校重點領域人工智能專項項目(2019KZDZX1012);高等學校學科創新引智計劃資助(D18019);國家自然科學基金面上項目(61675003)
蘭玉彬,博士,教授,研究方向為精準農業航空及航空應用與遙感技術。Email:ylan@scau.edu.cn
鄧小玲,博士,副教授,研究方向為農業航空遙感應用。Email:dengxl@scau.edu.cn