張 彬,張喜清
(1.龍工(上海)機械制造有限公司,上海 201600;2.太原科技大學 機械工程學院,山西 太原 030024)
隨著社會經濟的發展,人們對裝載機產品的要求不斷提高,在保證作業的同時,還要為司機提供舒適的環境。因此,對裝載機駕駛室內流場進行研究,不僅能提高室內環境的舒適性,還能夠提高駕駛員工作效率。
國內外學者利用計算流體力學(CFD)方法對內流場進行數值模擬,取得了一定的成果。Kaynakli等[1]模擬制熱和制冷兩種工況下汽車駕駛室流場,對人體感知冷暖進行劃分;Kilic等[2]利用實驗,在人體上選取11個不同點,測試各點溫度和風速,采用熱舒適性評價的不均勻系數指標進行評價;楊娟[3]基于理論對空調轎車的室內溫度場進行數值模擬并分析多種典型工況下的溫度場和速度場;谷正氣等[4]利用流體計算軟件FLUENT對轎車空調管道進行計算,并提出在管道內通過添加導流片實現送風口風量優化分配來提高乘員的熱舒適性;陸斯媛[5]運用FLUENT軟件對汽車駕駛室內的流場和溫度場進行模擬,檢測駕駛室送風口和司機頭部降溫情況。
本文以某型裝載機駕駛室為研究對象,利用CFD對駕駛室內流場進行數值模擬分析,得出駕駛室內的溫度場和速度場分布情況,并通過實測結果驗證所建三維模型的準確性。
流體流動受物理守恒定律的支配,遵守的基本定律有質量守恒、動量守恒、能量守恒,這些守恒定律用控制方程來描述。
質量守恒方程又稱連續性方程,連續性方程的微分形式如下:
(1)
其中:ρ為密度;t為時間;ux、uy、uz分別為x、y、z三個方向的速度分量。
動量守恒的本質是牛頓第二定律,依據牛頓第二定律,能夠導出x、y、z三個方向的動量方程:

(2)

(3)
(4)
其中:u為速度矢量;p為微元體上的壓力;τxx、τxy和τxz分別是因分子黏性作用而產生的作用在微元體表面上的黏性應力的分量,分別表示微元體表面x、y、z三個方向的應力張量;fx、fy、fz均為微元體受到的體積力。
能量守恒方程實際上是熱力學第一定律,依據能量守恒定律,推導流體力學能量方程:
(5)

利用CATIA建立駕駛室三維模型,并簡化模型,然后抽取駕駛室流體域模型,設置流體域邊界條件,對駕駛室溫度場和速度場數值模擬進行求解設置。
裝載機駕駛室內部片碎化的零部件很多,空間結構比較復雜,會影響駕駛室的流場研究[6]。因此簡化對駕駛室內空氣流動和熱傳遞影響較小的部分,得到簡化模型,具體做如下簡化:
(1)駕駛室外表面凹凸不平的結構,如前大燈,外置鼓風系統及頂部插銷等結構可簡化為平面。
(2)空調風道部分簡化只保留送風口尺寸,保留送風口有效面積,將回風柵欄簡化為平面,以保證駕駛室的進排氣量。
(3)駕駛室室內部件,包括內部操縱機構、飾板、儲物盒、地板等凸起的零部件,在簡化中給予忽略。
(4)駕駛室內表面凹凸狀結構,可簡化為平面,玻璃傳熱對駕駛室影響較大,保留駕駛室各部分的玻璃尺寸。
用簡化的模型進行數值模擬,可大大提高計算效率。駕駛室模型如圖1所示,簡化模型如圖2所示。

圖1 駕駛室模型 圖2 駕駛室簡化模型 圖3 駕駛室抽取模型 圖4 駕駛室模型網格剖分
對簡化模型抽取流體域,抽取模型如圖3所示。考慮空調除霜口一般不用,可視為關閉狀態。風量經風道從送風口流入駕駛室,內循環后從駕駛室右側回風口流出。
網格劃分對數值模擬和結果比較重要,盡可能讓網格方向和流動方向一致,增加求解的收斂性和穩定性,減少偽擴散。為模擬駕駛室室內流場,對流體域模型進行網格劃分,單元尺寸為30 mm,采用四面體自適應網格劃分方法,生成非結構化網格,網格生成如圖4所示。
根據湍流模型,在FLUENT求解器中設置參數,湍流模型選擇標準k-ε模型,壁面函數選擇標準壁面函數,分析駕駛室內流場對司機的影響[7]。根據現場實測,調節駕駛室空調擋位為低擋,待發動機預熱15 min,空調送風口達到穩定后,利用熱敏風速儀測試送風口溫度和風速,將實測結果作為仿真模擬的初始值和邊界條件。送風口1、2、3和4的溫度分別為46.4 ℃、45.7 ℃、46.10 ℃和46.74 ℃,風速分別為14.78 m/s、12.54 m/s、12.94 m/s和12.18 m/s;回風口為壓力出口,壓力為零。
駕駛室內部氣體流速比較低,一般不大于50 m/s,假定駕駛室內空氣為不可壓縮氣體,且駕駛室密閉無泄漏,只有送風口和回風口進行氣體交換。為準確得到司機室內溫度和空氣流速的分布,按照GB/T13877.2-2003規定選取司機周圍附近的測點,各測點位置如圖5所示。7個點在人體附近,通過測試各點溫度和風速大小來反映裝載機駕駛室內流場的情況。

圖5 測點位置
裝載機駕駛室溫度場為復雜的湍流問題,對測點的仿真結果分析時,要選擇典型的面來反映整個駕駛室內部溫度分布,駕駛員周圍溫度差Δt≤5 ℃。因此,利用三個平面相交的方式描述各測點溫度。
圖6為駕駛室溫度云圖,送風口處的溫度最大,送風溫度平均為318 K左右(45 ℃),在穩態湍流的條件下,前擋風玻璃表面溫度大致為300 K(25 ℃)左右,如圖6四邊形標示區域。

圖6 駕駛室溫度云圖 圖7 測點6溫度云圖
創建三維空間x、y、z三個方向平面,得到測點6處溫度值范圍為[306.3,307.12] K,如圖7所示。同理,其他6個測點處的溫度范圍見表1。
由表1可知,各測點溫度約為307 K,測點1、2、3和4的溫度基本一致,且溫度值略高于其他點0.5 K。由于它們距離送風口較近,產生的局部溫度會升高。測點5和測點7處溫度略高于測點6,這是空調送暖風時室內熱空氣上升造成頂部溫度偏高。

表1 測點溫度值 K
駕駛室內空氣流速給人以直觀的感受,要求駕駛員頭部水平空氣流速v≤0.3 m/s,通過確定各測點位置,能準確模擬駕駛室整體空氣流動狀態。駕駛室室內速度流線圖如圖8所示。

圖8 駕駛室速度流線圖 圖9 測點6流速云圖
建立三維空間x、y、z三個方向的平面,可得測點6的空氣流速范圍為[0.22,0.30] m/s,如圖9所示。
同理得到其他6個測點處的風速值,見表2。

表2 各測點風速值 m/s
由表2知,測點1和測點2處空氣流速為1 m/s,明顯比其他測點高,這是因為測點1和2距離送風口3和4較近,其他測點流速相差不大,維持在0.3 m/s。
為驗證駕駛室內部溫度場和速度場數值模擬的正確性,實測駕駛室內部的溫度和速度,將試驗數據和數值模擬結果進行分析。
在無光照環境下試驗,環境溫度為-5 ℃,在駕駛室空調送風口持續送熱,裝載機發動機穩定后,利用熱敏風速儀測試各點溫度和風速,見表3,測試現場如圖10所示。

圖10 測試現場

表3 試驗測試各點溫度值和風速
實車測試結果與數值模擬結果對比見表4和表5。

表5 速度誤差
由表4知,數值模擬達到穩態時各測試點的溫度值約為32 ℃,與現場實測溫度值基本一致,最大溫度誤差為2.66%。

表4 溫度誤差
由表5可知,測點1和測點2處空氣流速最大,其他測點流速都小于0.3 m/s;測點7處的流速試驗值為0.28 m/s,模擬值為0.30 m/s,誤差為7.1%。最大速度誤差為測點5處8.7%,是由送風口1和2吹向駕駛室后壁形成渦流導致。
綜上所述,通過數值模擬和試驗進行對比分析,模擬溫度場和速度場數據和試驗比較吻合,數值模擬結果可以作為溫度場和速度場合理性判斷的依據,進一步驗證了駕駛室模型的合理性。
本文建立了某型裝載機駕駛室模型,對駕駛室內部流場進行了數值模擬,將模擬結果與實測結果對比分析,驗證了所建模型的準確性和合理性,并得出以下結論:
(1)通過試驗和數值模擬可得,在穩態湍流流動空調送風口持續制熱時,數值模擬各點溫度為32 ℃左右,與試驗各點溫度基本一致,溫度最大誤差值為2.66%。
(2)模擬各測點風速大小,測點1和測點2風速約為1 m/s,其余各測點風速小于0.3 m/s。駕駛員頭部水平測點7空氣流速實測為0.28 m/s,數值模擬為0.3 m/s,誤差為7.1%。
(3)通過數值模擬和試驗結果對比分析,模擬的溫度和速度與實測結果比較吻合,能驗證駕駛室模型的正確性和可行性,還為進一步研究駕駛室內流場瞬態問題和空調風道優化奠定了基礎。