999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

八種方法求解一道希望杯經(jīng)典題

2021-05-30 14:06:54余鐵青
數(shù)理化解題研究·高中版 2021年12期
關(guān)鍵詞:思維

摘 要:一題多解,就是從不同角度、不同思路入手,運(yùn)用不同的方法解答同一問(wèn)題的思維活動(dòng).本文從一道希望杯試題入手,在解答中滲透一題多解思想的策略,以期培養(yǎng)學(xué)生審慎的解題習(xí)慣與開(kāi)闊的思維品質(zhì).

關(guān)鍵詞:希望杯;一題多解;思維;廣闊性

中圖分類號(hào):G632文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1008-0333(2021)34-0076-02

收稿日期:2021-09-05

作者簡(jiǎn)介:余鐵青(1990-),男,中學(xué)一級(jí)教師,從事高中數(shù)學(xué)教學(xué)研究.

一、問(wèn)題提出

一題多解沒(méi)有唯一和固定的模式,教師可以通過(guò)縱橫對(duì)比發(fā)散、知識(shí)串聯(lián)、綜合溝通等手段,由一題引發(fā)多種解答方法,為學(xué)生構(gòu)建完善的知識(shí)體系.教師可以引導(dǎo)學(xué)生從不同角度入手,用不同的解答方法完成解題,并以此來(lái)幫助同學(xué)們更加深刻地理解數(shù)學(xué)的本質(zhì)概念,掌握試題解答的思路與方法,幫助學(xué)生體會(huì)數(shù)學(xué)的多樣美感,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣,拓寬學(xué)生思維的廣闊度.

二、實(shí)例分析

題目(第九屆希望杯全國(guó)數(shù)學(xué)邀請(qǐng)賽高一試題)若二次函數(shù)fx=ax2+bx,恒有fx1=fx2x1≠x2,求fx1+x2的值.

策略1 利用已知條件,直接帶入化簡(jiǎn),常規(guī)操作.

解法1 一方面:由已知條件fx1=fx2,代入得到ax21+bx1=ax22+bx2,整理,得x1-x2ax1+x2+b=0.又因?yàn)閤1≠x2,所以ax1+x2+b=0.

另一方面:fx1+x2=ax1+x22+bx1+x2=x1+x2ax1+x2+b,所以fx1+x2=0.

評(píng)注 解數(shù)學(xué)題是有一定模式的,各種不同類型的題目有相應(yīng)的基本解題策略,這就是常說(shuō)的“套路”,實(shí)際上就是我們講的“通性通法”.當(dāng)學(xué)生在測(cè)試中面對(duì)一道試題的時(shí)候,如果不能很快思考出最優(yōu)的策略,那么切不可忽略本源,即常見(jiàn)常用的解題思路,在時(shí)間不充足的情況下快速找到解決問(wèn)題的策略是關(guān)鍵.畢竟時(shí)間有限,先得分,考完之后再進(jìn)行反思優(yōu)化是提高的必由之路,只會(huì)機(jī)械記住套路,甚至背套路是萬(wàn)萬(wàn)不提倡的,因?yàn)檫@會(huì)完全喪失解題的靈性.

策略2 進(jìn)行代數(shù)運(yùn)算時(shí),適當(dāng)進(jìn)行變形配方.

解法2 當(dāng)x1+x2=0時(shí),顯然fx1+x2=0; 當(dāng)x1+x2≠0時(shí),由fx1=fx2,即得 0=fx1-fx2=x1-x2ax1+x2+b=x1-x2x1+x2[ax1+x22+bx1+x2]=x1-x2x1+x2fx1+x2.

又因?yàn)閤1≠x2,所以fx1+x2=0.

評(píng)注 該解法使用配方法改變了代數(shù)式的原有結(jié)構(gòu),從一個(gè)要求的結(jié)論出發(fā),整理配湊出我們希望出現(xiàn)的結(jié)構(gòu),再利用整體代換的思想直接得出結(jié)果,而這種思維是在日常學(xué)習(xí)中要著重鞏固的,不僅在該題有著很好的應(yīng)用,在其它不等式等相關(guān)試題中的應(yīng)用也是十分廣泛的,所以工具越多,解題越從容.

策略3 聯(lián)想函數(shù)對(duì)稱軸,利用二次函數(shù)性質(zhì).

解法3 由于二次函數(shù)滿足fx1=fx2,則該函數(shù)圖象關(guān)于直線x=x1+x22對(duì)稱,而x1+x2與0也是關(guān)于直線x=x1+x22對(duì)稱的,那么fx1+x2=f0=0.

評(píng)注 函數(shù)諸多性質(zhì)中,筆者最為推崇對(duì)稱性,這是數(shù)學(xué)美學(xué)的最淺顯的外在表征,當(dāng)然在此處不過(guò)多去討論奇偶性、單調(diào)性、周期性等.此解法有諸多巧合重疊,從函數(shù)對(duì)稱軸出發(fā),結(jié)合離函數(shù)對(duì)稱軸距離相等的自變量所對(duì)應(yīng)函數(shù)值相等這一結(jié)論使得對(duì)稱之美展現(xiàn)得淋漓盡致!其中,在2017年新課標(biāo)Ⅲ卷理11中的應(yīng)用亦是美妙至極.

策略4 構(gòu)造方程的根結(jié)合韋達(dá)定理.

解法4 由已知條件fx1=fx2,不妨令fx1=

fx2=-c,于是有ax21+bx1+c=0,ax22+bx2+c=0.這樣就可以把x1,x2視作方程ax2+bx+c=0的兩根了,利用韋達(dá)定理知x1+x2=-ba,那么fx1+x2=f-ba=0.

評(píng)注 實(shí)際上,如果不設(shè)fx1=fx2=-c,直接將x1,x2代入fx的解析式得到方程組,亦可求得所要結(jié)果.這樣寫僅僅是為了和學(xué)生平時(shí)所認(rèn)知的一元二次方程形式進(jìn)行統(tǒng)一,做這樣的假設(shè)形式其實(shí)就是最近發(fā)展區(qū)理論,這能夠很好地和學(xué)生所固有的認(rèn)知契合,大家很容易接受,能夠有效提高教學(xué)效率.

策略5 利用抽象函數(shù)的廣義對(duì)稱性質(zhì).

解法5 由于二次函數(shù)滿足fx1=fx2,那么該函數(shù)圖象關(guān)于直線x=x1+x22對(duì)稱,所以f2·x1+x22-x=

fx,將x=0代入,立得fx1+x2=0.

評(píng)注 這種解法在于對(duì)抽象函數(shù)形式的理解和掌握,是前面解法的升華.因?yàn)樵擃惡瘮?shù)性質(zhì)實(shí)際上可以推廣到任意具備對(duì)稱性函數(shù)求值問(wèn)題,這就比直接考慮二次函數(shù)對(duì)稱性的思維更加深刻.

策略6 構(gòu)造直線共線向量.

解法6 由已知條件,得fxx=ax+b,不妨令fx1=fx2=t,fx1+x2=c,于

是得Ax1,tx1,Bx2,tx2,

Cx1+x2,cx1+x2.

所以AC=x2,cx1+x2-tx1,BC=x1,cx1+x2-tx2.

再由三點(diǎn)共線,知AC∥BC,所以x2cx1+x2-tx2=

x1cx1+x2-tx1.

整理,得cx2x1+x2=cx1x1+x2.

又x1≠x2,所以c=0.進(jìn)而fx1+x2=0.

評(píng)注 該解法筆者是基于微分思想的角度聯(lián)想到的,“點(diǎn)線面”,“一維二維三維”是典型的思維遷移的模范!筆者試圖將二次函數(shù)降次理解構(gòu)造共線向量進(jìn)行理解,試過(guò)之后,發(fā)現(xiàn)著實(shí)可以這么理解,在講解中注重靈感思路的來(lái)源分析,能很好地啟迪學(xué)生.

策略7 由外形結(jié)構(gòu)fx=ax2+bx類比等差數(shù)列性質(zhì).

解法7 在等差數(shù)列an中,Sn是其前n項(xiàng)和,若Sm=Snm≠n,那么Sm+n=0.

結(jié)合fx1=fx2x1≠x2,立馬可得fx1+x2=0.

評(píng)注 類似思想可以在此處得到最大的恩寵,一時(shí)間復(fù)雜的問(wèn)題在此刻得到了瞬間的釋放,這才是真正的秒解!是運(yùn)氣?是福氣?都不是,是能力的完美體現(xiàn)!

是日積月累的思考與探究!發(fā)現(xiàn)新的事物往往是由所熟悉的事物進(jìn)行遷移類比產(chǎn)生猜想,然后依賴于嚴(yán)謹(jǐn)?shù)耐评碚撟C進(jìn)行驗(yàn)證.猜想是做學(xué)問(wèn)和鍛煉創(chuàng)新思維的出發(fā)點(diǎn),證明則是推理驗(yàn)證的落腳點(diǎn)與最終歸宿.

策略8 利用行列式三角形面積公式.

解法8 由解法6,Ax1,tx1,Bx2,tx2,

Cx1+x2,cx1+x2,再由三點(diǎn)共線,知x1tx11x2tx21x1+x2cx1+x21=0,行列式展開(kāi),得cx2x1+x2=cx1x1+x2.下同解法6.

評(píng)注 基于教學(xué)實(shí)際,筆者認(rèn)為學(xué)生有必要掌握該方法.首先,從高考命題角度與考試大綱要求來(lái)看,初等數(shù)學(xué)之中融入高等數(shù)學(xué)思想是命題的重點(diǎn)方向,類似的還有洛必達(dá)法則、端點(diǎn)效應(yīng)、泰勒展開(kāi)等,這就是其中很好的一例!其次,從考試直接應(yīng)用來(lái)看,行列式求解三角形面積還廣泛存在于平面解析幾何之中,通過(guò)計(jì)算達(dá)到思路明晰,解題高效之效果.

縱觀以上八種不同解法,可以說(shuō)一種更比一種妙!實(shí)際上一題多解更能很好地幫助學(xué)生構(gòu)建更加完善的知識(shí)體系,通過(guò)比較分析,會(huì)進(jìn)一步認(rèn)清哪些只是較為一般的解法,哪些是比較有創(chuàng)新的思路,哪種解法更簡(jiǎn)單等,這樣能夠使得學(xué)生的思維更開(kāi)闊、更清晰,從而靈活地把握知識(shí)間的橫向關(guān)系與縱向聯(lián)系,提高解決問(wèn)題的能力,培養(yǎng)學(xué)生審慎的解題習(xí)慣,發(fā)揮學(xué)生的創(chuàng)造性.

參考文獻(xiàn):

[1]全剛.“一題多解”讓知識(shí)更系統(tǒng)[J].理科考試研究,2014,21(21):91.

[2]廣東省教育考試院.廣東高考年報(bào)(2019)[M].廣州:廣東高等教育出版社,2020.

[3]余鐵青.解題要有道 方法更重要——例談利用函數(shù)對(duì)稱性解高考題[J].中學(xué)數(shù)學(xué),2020(13):51-52.

[責(zé)任編輯:李 璟]

猜你喜歡
思維
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
主站蜘蛛池模板: 国产免费福利网站| 国产成人一级| 久草国产在线观看| 国产精品人人做人人爽人人添| 99国产精品免费观看视频| 一级成人a毛片免费播放| a毛片免费观看| 97国产在线观看| 午夜啪啪福利| 国产精品丝袜在线| 最新国产网站| 麻豆精品在线播放| 在线亚洲精品福利网址导航| 久久国产免费观看| 久久伊人久久亚洲综合| 国产手机在线观看| 国产高清免费午夜在线视频| 国产精品久久久久无码网站| 视频一本大道香蕉久在线播放| 中文字幕精品一区二区三区视频| 尤物亚洲最大AV无码网站| 久久国产亚洲欧美日韩精品| 朝桐光一区二区| a毛片在线免费观看| 波多野结衣一区二区三区88| 国产情精品嫩草影院88av| 亚洲青涩在线| 欧美成人免费午夜全| 免费毛片全部不收费的| 国产福利大秀91| 少妇精品在线| 国产AV无码专区亚洲A∨毛片| 日韩欧美中文亚洲高清在线| 中文字幕va| 大学生久久香蕉国产线观看| 亚洲香蕉伊综合在人在线| 国产丝袜一区二区三区视频免下载| 最新加勒比隔壁人妻| 综合亚洲色图| 久久99国产视频| 久久99蜜桃精品久久久久小说| 欧美日韩国产在线人| 亚洲三级影院| 人妻21p大胆| 久久成人免费| 无码专区在线观看| 五月天综合婷婷| 新SSS无码手机在线观看| 六月婷婷激情综合| 久久青草免费91线频观看不卡| 99久久国产综合精品女同| 69视频国产| 国产白丝av| 国产成年无码AⅤ片在线| 日韩大乳视频中文字幕| 国产成人精品三级| 免费AV在线播放观看18禁强制| 无码国内精品人妻少妇蜜桃视频| 精品伊人久久久香线蕉 | 欧美人人干| 色婷婷狠狠干| 无码网站免费观看| 日本少妇又色又爽又高潮| 中文字幕永久在线观看| 天天摸夜夜操| 一本久道热中字伊人| 久久国产乱子| 91网址在线播放| 久久综合丝袜长腿丝袜| 午夜欧美理论2019理论| 91视频首页| 午夜限制老子影院888| 毛片免费在线视频| 野花国产精品入口| 99re热精品视频国产免费| 欧美成在线视频| 国产精欧美一区二区三区| 国产91小视频在线观看| 国产精品成人第一区| 午夜少妇精品视频小电影| 91成人在线免费视频| 国模私拍一区二区三区|