999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

蘆薈苦素和蘆薈凝膠對新月彎孢的抑菌活性

2021-04-06 08:10:28張國輝李榮玉吳小毛
關(guān)鍵詞:蘆薈

張國輝, 李榮玉, 吳小毛, 李 明

(1. 貴州大學(xué) 作物保護(hù)研究所,貴陽 550025;2. 貴州省山地農(nóng)業(yè)病蟲害重點(diǎn)實(shí)驗(yàn)室,貴陽 550025;3. 凱里學(xué)院 大健康學(xué)院,貴州 凱里 556000)

Rice (Oryza sativa L.) is an important food crop grown under worldwide,one of the major classes of organisms that cause plant disease are phytopathogenic fungi. Over the past decades, the actions of these organisms worldwide have caused millions of dollars[1-2],The diseases are spread worldwide, but its occurrence and severity vary by year, location and environmental conditions[3-5]. Curvularia leaf spot,caused mainly by Curvularia lunata, is a widespread plant disease in China. C. lunata could cause the seeds of the rice to lose the germination capacity and cause the seedling blight and leaf spot of the rice. In recent years, directional host selection by the pathogen, which likely results in the virulence differentiation in pathogen population, is widely reported[6-7]. This need further enough study establish a foundation for the effective managment of C.lunata.

Management of leaf spot is difficult because the pathogen is seed-borne. To date, management approaches have mainly focused on the use of synthetic chemicals and resistant rice varieties[8-10]. However,their efficacy can be limited by the rapid development of resistance to these chemicals, which applied as either seed dressing or spray, such as benomyl,benomyl + copper sulfate, probenazole, thiabendazole and pyroquilon fungicides, have been used in different rice growing countries to manage rice disease[11].

Many plant diseases caused by fungi have been controlled by plant extracts[12-16]. Plants produce a high diversity of natural products with a prominent function against pathogens on the basis of their toxic effect on growth and reproduction of microbes[17].Thus, the exploration of plant resources for their antifungal potential against pathogens is important for the sustainable and ecofriendly management of pathogens. Moreover, Prisana et al. reported that all the Streptomyces species inhibited the growth of C.lunata[18]. The application of the Streptomyces angustmyceticus NR8-2 spore suspension and cellfree culture filtrate reduced the disease severity index of leaf spots[18].

Aloe is rich in a variety of active ingredients,including anthraquinones, polysaccharides, active enzymes, amino acids and organic acids, antibiotics,and saponins[19-20]. Among these, anthraquinone compounds and anthraquinone derivatives have strong inhibitory action toward many fungi and bacteria[21]. Aloesin is an anthraquinone compound with a chemical structure of 2-acetyl-8-D-pyrrolidone-7-hydroxy-5-methylparaphthone that has antihepatitis, neutralizing toxin, anti-tumor, and leukemia effects[22]. Aloe gel is the most widely recognized herbal medicine in the world today because it contains a wide range of enzymes and provides preservative,anti-inflammatory, and anti-fungal benefits[23]. The main focus of this study was to evaluate the bioactivity of aloesin and aloe gel against C. lunata.

1 Materials and methods

1.1 Plant material and fungal material

Aloesin (95%) was obtained from Xi’an Yunyue Biotechnology Co., Ltd. Aloe gel (100%) was acquired from Yunnan Wan Green Biological Co.,Ltd. C. lunata was obtained from the Agricultural Products Quality Safety Laboratory of the College of Agriculture, Guizhou University. C. lunata was cultured on the Potato Sucrose Agar (PSA) at 28 ℃for 2-3 d; filter paper (6 mm in diameter) was sterilized at 121.3 ℃ for 20 min.

1.2 Inhibition effect of aloesin against C. lunata by filter paper method

The anti-fungal activity against C. lunata was tested by the disc diffusion method, and clear zones appeared around the treatment discs were recorded[24-25].But we were slightly modified. First, C. lunata discs were placed in the center of PSA plates. Next, filter paper containing three different plant extracts at three different concentrations (300, 200, or 100 mg/mL)was also placed around the fungal discs. In addition ,all experiments were repeated in triplicate and all plates were incubated at 28 ℃ for 2-3 d. Meanwhile,inhibition effect was assessed using conidial suspensions. A hemocytometer was used to adjust the conidial concentration to 3 × 104conidia/mL. After the medium solidified, conidial suspensions (0.1 mL)were then placed in treated PSA plates, filter papers of various concentrations were added to each dish. All experiments were repeated in triplicate and all plates were then incubated at 28 ℃ for 2-3 d.The width and the diameter of the inhibition zone were then measured, and the average value of the three treatments was taken.

1.3 Inhibition rate of mycelium growth against C. lunata by aloe gel

A series of sterile water containing different concentrations of aloe gel (10, 20, 40, 80, 160, 320 and 640 mg/mL) were prepared. Next, PSA(40℃)was melted in an electric furnace, after which 1 mL aliquots of test solution were mixed with 9 mL PSA agar and added to 90 mm culture dishes. The test compounds were present at concentrations of 1, 2, 4,8, 16, 32 and 64 mg/mL. In addition, untreated media was used as a CK. A piece of fungus disc was placed in each plate with five treatments (1, 2, 4, 8, 16, 32 and 64 mg/mL) and CK. Three piece of fungus disc was placed in each plate, and each treatment was performed in quadruplicate C. lunata was incubated at 28 ℃ for 5 d, and the colony diameters of the tested fungus were recorded[26]. SPSS 19.0 was used for analysis. The percent inhibition of fungal growth was estimated according to the Ogbeborand Adekunle[26]methods as formula (1).

In formula (1): I means mycelial inhibition, %;Dcmeans mycelial growth diameter in control, mm;Dtmeans mycelial growth diameter in treatment, mm;Ddmeans mycelia discs diameter, mm.

1.4 Microscopic examination

The spore morphology and germination of C.lunata in water were observed using a US3 multifunction digital microscope (400 × ). C. lunata was also observed in mixtures with aloesin and aloe gel. For clear observation, 0.05% aniline blue staining was conducted. In addition, the spore morphology and germination of C. lunata in aloesin and aloe gel were observed and recorded. The spore morphology and germination of C. lunata in water were observed using a US3 multifunction digital microscope (400 × ).C. lunata was also observed in 200 mg/mL aloesin and aloe gel. In addition, the spore morphology and germination of C. lunata in 200 mg/mL aloesin and aloe gel were observed and recorded. A piece of fungus disc was placed in each plate with three treatments.

2 Results and Analysis

2.1 Inhibition effect of aloesin against C. lunata by filter paper method

After 24 h, the filter paper with 300 mg/mL aloesin showed the best antimicrobial activity and could produce an obvious 3.37 mm inhibition zone(Fig.1a) that could persist for 40 h (Fig.1b). However,the filter paper with 100 and 200 mg/mL aloesin had low antimicrobial activity and did not produce obvious inhibition zones, and instead, only made colony color fade, and these inhibitory effects remained after 6 days (Fig.1c). The filter paper method showed that 300 mg/mL aloesin led to an obvious inhibitory band (Φ = 51.27 mm) against 3 ×104cfu/mL spores (Fig.1d).

2.2 Inhibitory effect of aloe gel on C. lunata mycelium growth

At the same concentration, the inhibitory effect was enhanced with time (2-5 d). As the aloe gel concentration increased, the rate of inhibition increased, too. Specifically, 64 mg/mL aloe gel showed the lowest inhibition rate of 9.25% at 2 d and the highest of 56.21% at 5 d, representing an increase in inhibition of 46.96% (Fig. 2).

2.3 Microscopic examination

2.3.1 Inhibition effect of aloesin against conidial germination The in-vitro antimicrobial activity of aloesin against C. lunata spores revealed that 200 mg/mL aloesin could cause both or one end of the C.lunata spores to break or rupture and 200 mg/mL aloesin also cause C. lunata spores to rupture, the broken ends could not germinate to produce germ tubes, and the unbroken ends could still germinate(Fig.3).

C. lunata spores could germinate at 4 h on onion skin. Appressoria development of C. lunata after 3 d with onion skin. After 4 d, a large number of appressoria were produced. C. lunata spores could germinate in water without appressorium produced.After 6 d, a new round of C. lunata spores were produced (Fig. 4).

After 22 d, the C. lunata spores on onion skin were essentially unchanged in response to 160 mg/mL aloesin. In addition, there were no appressoria produced, only a small amount of spores germinated,mycelial growth was weak, and the average diameter of hypanthium was 1.25 μm (Fig.5), which was weaker than control (3.75 μm).

2.3.2 Inhibition effect of aloe gel against C. lunata conidial germination Most C. lunata spores in CK could germinate in 6 h, the germinating of C. lunata were colorless and tubular, and the sporoduct length was 96.64-106.78 μm (16.11-17.80 μm/h). However,in aloe gel, the germinating C. lunata were colorless and sporoduct growth was very slow (Fig.6). The sporoduct length was 3.31-26.28 μm with in 6 h(0.55-4.38 μm/h) and the inhibitory rate was 75.39-96.58%. Because the sporoduct growth was slow, the total mycelium quantity was less than that of the CK.

3 Conclusions and Discussion

The pathogenic fungus C. lunata causes rice production serious loss, biological control technology to reduce the use of chemical fungicides has received a great deal of attention. Studies were conducted to determine the effects of aloesin and aloe gel on the control of C. lunata. Microscopic examination showed that there was an obvious inhibitory effect of aloesin against C. lunata spores. The spores of C.lunata were damaged and reduced the number of germinating spores and hyphae, only a small amount of spores could germinate in aloesin. Aloesin can inhibit appressorium, while the presence of melanin is a necessary condition for germination of C. lunata[27].Aloesin had long-term and stable inhibitory effects. In the aloesin and aloe gel treatments, spores were ruptured at one or both ends, leading to direct death of the spores. Aloesin and aloe gel have the potential for use as biocontrol materials, indicating that it is necessary to continue screening and add other components to improve the inhibitory effect as a biocontrol material. The inhibition effect of aloe was similar to that of antibiotics, but its function was superior[25].

Lynch et al. reported that aloesin may be useful as a functional food ingredient[28]. There were no toxicologically or statistically significant changes in body weight gain or in feed and water consumption and the no-observed-adverse-effect level was considered to be 1 000 mg/kg body weight/day, the highest dose tested, supporting the potential use of aloesin as a functional food ingredient[28]. Based on these advantages, further studies on the use of aloe to induce bacteriostasis of plant pathogens and the preservation of agricultural products are necessary. In this study, aloesin and aloe gel in aloe were studied,and their inhibitory effects on plant pathogenic microorganisms were evaluated. However, this study investigated the antimicrobial effects of specific components of A. vera against C. lunata. Chemical preservatives as traditional methods were often used for preservation, many of which are harmful to health.Therefore, it is important to identify new and highly efficient natural active substance to improve food safety. Moreover, consumers are increasingly choosing products with natural preservatives[29-30].Aloe active ingredients are nontoxic to humans and have been shown to have good efficacy. Therefore,they have the potential for use in the research and development of non-toxic and harmless food preservatives.

This study was reported that aloesin effectively inhibited mycelia growth, conidia germination, and that aloe gel effectively inhibited mycelia growth of the rice pathogen (C. lunata). The results presented herein supported that aloesin and aloe gel mostly control spore germination and inhibit spore formation,thereby effectively preventing spore germination and reducing the production of blast spots. The current findings suggest that the extracts from most of the tested plants possess antifungal properties and can be used as seed and foliar treatments against the pathogen C. lunata. These plant extracts are safe and eco-friendly when compared to synthetic chemicals.However, additional studies are required to identify and characterize the active antifungal compounds in the extracts of these plants, as well as their roles in Curvularia leaf spot control.

Overall, this is the first report of antifungal activity of aloesin and aloe gel against C. lunata. The results presented herein provide a basis for the investigation of biological control and food preservation of rice fungus. Fungicide application and planting resistant varieties are considered the two main methods to control disease[31]. Recently, the increasing environmental and economic concerns caused by synthetic fungicides have led to increased efforts to produce safer agricultural products and develop new and safer antifungal agents such as plant based essential oils and botanical extracts to combat fungal plant diseases[32]. The tendency towards application of natural products and botanical extracts as safer antimicrobial agents against plant pathogens has recently increased[33].

Conflicts of Interest: The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Acknowledgment: We would like to thank Dr.Liang-sheng Hu from Shantou University, China, for his advice and guidance.

猜你喜歡
蘆薈
探訪蘆薈
我的植物朋友——蘆薈
我愛蘆薈
小讀者(2021年6期)2021-07-22 01:50:02
母親的蘆薈
蘆薈
感悟生命
蘆薈護(hù)手霜制造記
蘆薈
蘆薈
蘆薈枸杞果凍的研制
主站蜘蛛池模板: 欧美a√在线| 99精品在线视频观看| 九色在线视频导航91| 激情国产精品一区| 嫩草影院在线观看精品视频| 一区二区影院| aa级毛片毛片免费观看久| 丁香婷婷在线视频| 亚洲天堂啪啪| 亚洲国产日韩欧美在线| 麻豆国产精品一二三在线观看| 亚洲人免费视频| 青青青亚洲精品国产| 久久特级毛片| 婷婷六月综合网| AV不卡在线永久免费观看 | 热久久综合这里只有精品电影| 正在播放久久| 国产a v无码专区亚洲av| 丝袜亚洲综合| 亚洲国产看片基地久久1024| a毛片基地免费大全| 欧美日韩国产在线播放| 久久网综合| 成年人福利视频| 久久亚洲日本不卡一区二区| 日韩一级二级三级| 欧美一级在线播放| 国产成人a在线观看视频| 成人欧美在线观看| 国产成人亚洲无吗淙合青草| 亚洲欧美人成电影在线观看| 国产在线观看高清不卡| 国产成人精品视频一区视频二区| 色婷婷电影网| 国产精品久久久精品三级| 中文字幕欧美日韩| 久久国产精品嫖妓| 亚洲成在人线av品善网好看| 九色免费视频| 干中文字幕| 亚洲v日韩v欧美在线观看| 免费Aⅴ片在线观看蜜芽Tⅴ| 中文字幕 91| 国产精品性| 久久精品91麻豆| 久久无码免费束人妻| 欧美日本一区二区三区免费| 国产尤物在线播放| 国产区91| 永久免费精品视频| 精久久久久无码区中文字幕| 国产亚洲美日韩AV中文字幕无码成人 | 亚洲成人一区在线| 色婷婷在线播放| 中文字幕日韩久久综合影院| 国产成人调教在线视频| 99re热精品视频国产免费| 欧美国产菊爆免费观看| 亚洲美女久久| 久久久精品国产SM调教网站| 久久香蕉欧美精品| 九九热视频在线免费观看| 亚洲动漫h| a级毛片网| 亚洲午夜18| 精品亚洲欧美中文字幕在线看| 国产精品yjizz视频网一二区| 夜精品a一区二区三区| 999福利激情视频| 亚洲日韩AV无码一区二区三区人| 亚洲日韩精品无码专区97| 四虎精品国产AV二区| 亚洲热线99精品视频| 538国产视频| 国产亚洲一区二区三区在线| 亚洲最大情网站在线观看| 国产精品久久国产精麻豆99网站| 视频一本大道香蕉久在线播放| 日韩国产一区二区三区无码| 538精品在线观看| 波多野结衣久久精品|