999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMMON COUPLED FIXED POINT THEOREMS FOR CONTRACTIVE MAPPINGS OF MANY VARIABLES IN FUZZY METRIC SPACES

2021-01-16 09:59:26WANGShiboHUXinqi
數學雜志 2021年1期

WANG Shi-bo,HU Xin-qi

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

Abstract:In this paper,we propose a notion of coincidence point between mappings in any number of variables.The main results of this paper are generalizations of the main results of fixed point theorems in partially ordered fuzzy metric spaces from low dimension to high dimension.

Keywords: fixed point theorem;metric space;fuzzy metric space;partially ordered set;compatible mapping

1 Introduction

Since Zadeh[1]introduced the concept of fuzzy sets,many authors have extensively developed the theory of fuzzy sets and applications.George and Veeramani[2,3]gave the concept of fuzzy metric space and defined a Hausdorfftopology on this fuzzy metric space which have very important applications in quantum particle physics particularly in connection with both string and E-infinity theory.

The notion of coupled fixed points was introduced by Guo and Lakshmikantham[4]in 1987.In a recent paper,Gnana-Bhaskar and Lakshmikantham[5]introduced the concept of mixed monotone property for contractive operators of the formF:X×X→X,whereXis a partially ordered metric space,and the established some coupled fixed point theorems.Lakshmikantham and′Ciri′c[6]discussed the mixed monotone mappings and gave some coupled fixed point theorems which can be used to discuss the existence and uniqueness of solution for a periodic boundary value problem.

Shaban Sedghi et al[7]gave a coupled fixed point theorem for contractions in fuzzy metric spaces,and Jin-xuan Fang[8]gave some common fixed point theorems underφcontractions for compatible and weakly compatible mappings in Menger probabilistic metric spaces.Xin-Qi Hu[9]proved a common fixed point theorem for mappings under?contractive conditions in fuzzy metric spaces.B.S.Choudury et.al.[10]established coupled coincidence point and coupled fixed point results for compatible mappings in partially ordered fuzzy metric spaces and gave an example to illustrate the main theorems.In 2015,Jinxuan-Fang[11]generlized a crucial fixed point theorem for probabilistic?-contraction on complete Menger space.Other more works on this topic can be found in[12-23].

Now we propose a notion of coincidence point between mappings cases of these results that are already known under some contractive conditions.

2 Mathematical Preliminaries

First we give some definitions.

Definition 2.1(see[2])A binary operation?:[0,1]×[0,1]→[0,1]is continuoust-norm if?satisfies the following conditions:

(1)?is commutative and associative;

(2)?is continuous;

(3)a?1=afor alla∈[0,1];

(4)a?b≤c?dwhenevera≤candb≤dfor alla,b,c,d∈[0,1].

Thet?norm ?M=min is an example oft-norm of H-type,but there are some othert-norms?of H-type.

Obviously,? is a H-typetnorm if and only if for anyλ∈(0,1),there existsδ(λ)∈(0,1)such that?m(t)>1?λfor allm∈N,whent>1?δ.

Definition 2.3(see[2])A 3-tuple(X,M,?)is said to be a fuzzy metric space ifXis an arbitrary nonempty set,?is a continuoust-norm andMis a fuzzy set onX2×(0,+∞)satisfying the following conditions,for eachx,y,z∈Xandt,s>0,

(FM-1)M(x,y,t)>0;

(FM-2)M(x,y,t)=1 if and only ifx=y;

(FM-3)M(x,y,t)=M(y,x,t);

(FM-4)M(x,y,t)?M(y,z,s)≤M(x,z,t+s);

(FM-5)M(x,y,·):(0,∞)→[0,1]is continuous.

Let(X,M,?)be a fuzzy metric space.Fort>0,the open ballB(x,r,t)with a centerx∈Xand a radius 01?r}.

A subsetA?Xis called open if for eachx∈A,there existt>0 and 0

Example 2.4Let(X,d)be a metric space.De finet-norma?b=aband for allx,y∈Xandt>0,M(x,y,t)=.Then(X,M,?)is a fuzzy metric space.We call this fuzzy metricMinduced by the metricdthe standard fuzzy metric.

Letnbe a positive integer.Xwill benote a non-empty set andXndenote the product spaceXn=

Definition 2.5(see[6])LetXbe a non-empty set,F:X→Xandg:X→Xbe two mappings.We sayFandgare commutative(or thatFandgcommute)ifgFx=Fgxfor allx∈X.

Definition 2.6(see[6])The mappingsFandgwhereF:X→Xandg:X→X,are said to be compatible if limn→∞d(Fgxn,gFxn)=0 whenever{xn}is a sequence inX,such that limn→∞F(xn)=limn→∞g(xn)=xfor allx∈Xare satisfied.

Definition 2.7(see[6])Two mappingsFandgon a metric space(X,d)are said to be weakly compatible if they commute at their coincidence points,that is,ifFx=gxfor somex∈X,thenFgx=gFx.

Let Λn={1,2,···,n},A,Bsatisfy thatA∪B= ΛnandA∩B=?.We will denote?A,B={σ:Λn→Λn,σ(A)?Aandσ(B)?B},and={σ:Λn→Λn,σ(A)?Bandσ(B)?A}.

Let(X,≤)be a partially ordered space,x,y∈Xandi∈Λn.We use the following notation

Letσ1,σ2,···,σn,τ: Λn→Λnben+1 mappings and let Φ be the(n+1)-tuple(σ1,σ2,···,σn,τ).

Definition 2.8(see[13])LetF:Xn→X,g:X→X.A point(x1,x2,···,xn)∈Xnis called a Φ-coincidence point of the mappingsFandgif

Ifgis the identity mapping onX,then(x1,x2,···,xn)∈Xnis called a Φ- fixed point of the mappingF.

Definition 2.9Let(X,≤)be a partially ordered space.We say thatFhas the mixedg-monotone property ifFisg-monotone non-decreasing in argument ofAandg-monotone non-increasing in argument ofB,i.e.,for allx1,x2,···,xn,y,z∈Xand alli,

It is obvious that the above formula is equivalent to the following:

Definition 2.10LetF:Xn→Xandg:X→X.Fandgare called weakly compatible mappings if forx1,x2,···,xn,it satisfies it implies

3 Main Results

Lemma 3.1(see[23])Forn∈N,letgn:(0,+∞)→(0,+∞)andFn:R→[0,1].Assume that sup{F(t):t>0}=1 and for anyt>0,

If eachFnis nondecreasing,then limn→+∞Fn(t)=1 for anyt>0.

Theorem 3.2(see[21])Let(X,M,?)be a complete fuzzy metric space with ? a triangular norm of H-type.Let?∈Ψω,where Ψωis denoted as the class of all function?:[0,+∞)→[0,+∞)such that for eacht>0 there exists anrt≥tsatisfying limn→+∞?n(rt)=0.LetT:X→Xbe a mapping,M(Tx,Ty,?(t))≥M(x,y,t)for allx,y∈Xand allt>0.ThenThas a unique fixed pointx?.In fact,for anyx0∈X,limn→+∞Tnx0=x?.

ProofΨ is denoted as the class of all function?:[0,+∞)→[0,+∞)be continuous with?(t)0.Obviously,Ψ?Ψω.First we will prove Theorem 3.3 when?∈Ψ.

By Lemma 3.1,we have

Now letn∈Nandt>0,we show by induction that,for anyk∈,

This is obvious fork=0.Assume it holds for somek,by the monotonicity of?,we have

which completes the induction.By?n(1)=1 and?is a triangular norm of H-type,for anyt>0 andε>0,there isδ>0 such that ifs∈(1? δ,1],then ?n(s)>1? εfor alln∈N.

Let?∈Ψω.PutA={t>0:limn→+∞?n(t)=0},ift∈A,we denote byktthe first integer number such that

Ift∈[0,+∞)A,take anrt>tsuch thatrt∈A,and,again,denote byktthe first integer number such that

Now define a functionψ:[0,+∞)→[0,+∞)as follows:

It is proved thatψ∈Ψ(see[21]).Hence we can applyψand get theorem 3.3 proved by the condition that?∈Ψω.

Theorem 3.4Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare weakly compatible mappings and

ProofLetY=Xn.For(x1,x2,···,xn),(y1,y2,···,yn)∈Xn,t>0,M?and binary relationonYare defined as

It is easy to verify that(Y,)is a partially ordered set and(Y,M?,?)is a complete fuzzy metric space.Then(Y,M?,?,)is a complete ordered fuzzy metric space.

For(x1,x2,···,xn)∈Y,:Y→Y,:Y→Yare defined as

which implies that

Fori∈A,ifj∈A,then there existsk∈Asuch thatσi(j)=τ(k);ifj∈B,then there existsk∈Bsuch thatσi(j)=τ(k).So,we have

That is

That is,

Continuing in this way,we can get

Similarly,fori∈B,we can have

and

Then

that is,

Following all the conditions of Theorem 3.3 and the proof,we can haveFandg,at least,one Φ-coincidence point.

It is obvious that,ifFandgare compatible,then they are weakly compatible.So,we have the following theorem.

Theorem 3.5Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare compatible mappings and

Corollary 3.6Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.?:[0,+∞)→[0,+∞),?∈Ψω,LetF:X2→Xandg:X→Xbe two mappings,F(X2)?g(X),Fis continuous and has the mixedg-monotone property,Fandgbe weakly compatible mapping and

Similarly,in Theorem 3.5,letn=3,we have Λ3={1,2,3},A={1,3},B={2}.σ1,σ3∈?A,Bandσ2∈,thenσ1(1)={1},σ1(2)={2},σ1(3)={3},σ2(1)={2},σ2(2)={1},σ2(3)={2}andσ3(1)={3},σ3(2)={2},σ3(3)={1}.Then we have the following corollary.

Corollary 3.7Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.?:[0,+∞)→[0,+∞),?∈Ψω,LetF:X3→Xandg:X→Xbe two mappings,F(X3)?g(X),Fis continuous and has the mixedg-monotone property,Fandgbe weakly compatible mapping and

RemarkWhenFandgare commutative,they are weakly compatible,so we have the following theorem.

Theorem 3.8Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare commutative,and

RemarkLetk∈[0,1),taking?(t)=ktin Theorem 3.4,3.5,3.8,we obtain the following corollaries.

Corollary 3.9Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,LetF:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare weakly compatible mappings and

Corollary 3.10Let(X,M,?,≤)be a complete ordered fuzzy metric space with ?a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,LetF:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare compatible mappings and

Corollary 3.11Let(X,M,?,≤)be a complete ordered fuzzy metric space with ?a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare commutative,and

主站蜘蛛池模板: 91视频首页| 久久人人爽人人爽人人片aV东京热 | 狠狠干欧美| 久久久久久尹人网香蕉| 日本一区二区三区精品国产| 国产精品片在线观看手机版 | 五月激情综合网| 2021国产精品自产拍在线| 91久久偷偷做嫩草影院免费看| 日韩专区第一页| 中文字幕亚洲精品2页| 97成人在线观看| 免费中文字幕在在线不卡| 精品人妻一区二区三区蜜桃AⅤ | 久久免费成人| 综合色天天| 香蕉色综合| 日本精品αv中文字幕| 国产99免费视频| 在线观看国产精品日本不卡网| 国产丝袜第一页| 激情综合网激情综合| 国产精品九九视频| 欧美亚洲欧美| 欧洲免费精品视频在线| av色爱 天堂网| 亚洲精品久综合蜜| 91精品国产一区自在线拍| 青青草欧美| 性欧美久久| 人妻精品全国免费视频| 青青草原国产| 国产视频只有无码精品| 黄色网址免费在线| 亚洲狠狠婷婷综合久久久久| 国产在线观看第二页| 女人18一级毛片免费观看| 亚洲av中文无码乱人伦在线r| 亚洲精品卡2卡3卡4卡5卡区| a在线观看免费| 素人激情视频福利| 日韩性网站| 在线观看亚洲国产| 国产人碰人摸人爱免费视频| 啦啦啦网站在线观看a毛片| 国产在线麻豆波多野结衣| 伊人久久久大香线蕉综合直播| 五月婷婷欧美| 亚洲伦理一区二区| 一级一级一片免费| 国产在线精品人成导航| 色综合狠狠操| 日韩视频精品在线| 亚洲床戏一区| 99青青青精品视频在线| 国产精品成人一区二区| 无码专区国产精品第一页| 亚洲美女一区二区三区| 国产精品女主播| 波多野结衣爽到高潮漏水大喷| 国产一级毛片在线| 69av在线| 色婷婷综合在线| 欧美亚洲日韩中文| 精品超清无码视频在线观看| 亚洲永久免费网站| 草草影院国产第一页| 国产午夜不卡| 欧美精品成人一区二区视频一| 成人精品午夜福利在线播放| 久久一色本道亚洲| 国产成人凹凸视频在线| 国产欧美日韩va另类在线播放| 午夜啪啪网| 狠狠五月天中文字幕| 日韩精品亚洲一区中文字幕| 欧美成人怡春院在线激情| 欧美19综合中文字幕| 最新国产在线| 久久精品国产亚洲AV忘忧草18| 极品av一区二区| 国产拍在线|