周麗青 趙 丹 吳 宙 吳 磊 楊金龍
主要經濟雙殼貝類性別分化的分子機制概述*
周麗青1,2趙 丹2吳 宙3吳 磊4楊金龍2①
(1. 中國水產科學研究院黃海水產研究所 農業農村部海洋漁業可持續發展重點實驗室 青島 266071;2. 上海海洋大學 水產種質資源發掘與利用教育部重點實驗室 上海 201306;3. 浙江海洋大學海洋科學與技術學院 舟山 316000;4. 江蘇海洋大學海洋生命與水產學院 連云港 222005)
本文簡要概述了主要經濟雙殼貝類性別分化分子機制研究進展,介紹國內外研究性別分化和性別決定的代表性雙殼貝類物種及主要研究成果,主要涉及牡蠣科(Ostreidae)、扇貝科(Pectinidae)、珍珠貝科(Pteriidae)等常見的經濟物種,分子層面涵蓋了核酸、蛋白質和激素等,通過綜述這些物種相關研究的現狀,展望雙殼貝類性別分化研究的發展趨勢,以期加深對雙殼貝類性別分化和性腺發育的認識,為解析蝦夷扇貝()及其他雙殼貝類性別分化分子機制研究理清思路。
雙殼貝類;性別分化;基因;分子;核酸;激素;蛋白質
貝類繁殖機制與性別分化一直是生物學研究目標之一,因種類繁多、方式各異,目前對軟體動物繁殖的分子機制仍知之甚少(Song, 2017; Zhang, 2014)。海洋軟體動物,尤其雙殼貝類存在雌雄同體現象,但關于雌雄同體形成及性別分化的數據,包括性別分化和性別決定過程的分子數據,還不多見(Teaniniuraitemoana, 2014)。隨著分子生物學研究技術的快速發展,研究者們圍繞雙殼貝類性腺發育、繁殖特性及性別分化和性別決定開展的研究越來越深入。結合作者目前在蝦夷扇貝()性腺發育和性別分化開展的研究工作,本文簡要介紹牡蠣科(Ostreidae)、扇貝科(Pectinidae)、珍珠貝科(Pteriidae)等常見的經濟物種性別分化、性別決定和性腺發育的研究現狀,重點探討雙殼貝類性別分化研究的發展趨勢,以期加深對雙殼貝類性別分化和性腺發育的認識。一般來說,有機體的性別由 2個因素決定:遺傳因素或環境因素。、、Gata型鋅指蛋白I (zglp1)、蛋白ovo(ovo)和基因參與了貝類的遺傳性別決定與分化。激素用量、溫度、污染、養殖條件等因素也影響著貝類的性別決定,有時會引起性別逆轉。雙殼貝類性別分化或變化的分子機制研究綜述如下。
牡蠣()俗稱海蠣子,是世界第一大養殖貝類。除了可食用外,牡蠣也是海洋生態系統的重要成員,對內灣和近海水域藻華的調控有重要作用。牡蠣種類也很多,有些牡蠣有性生殖系統比較神奇,由雌雄異體、性別變化和偶爾的雌雄同體組成,盡管很多研究人員已經對牡蠣進行了大量研究,但對性別決定和分化的分子機制的認識仍然存在很多盲區,關于繁殖調控的分子通路研究也很少。有關牡蠣性腺發育和性別分化相關研究見表1。

表1 牡蠣科性腺發育及性別分化過程中的分子生物學研究

續表1

續表1
相關文獻以品種和報道時間為序排布,從表1可以看出,長牡蠣()因為分布范圍廣泛,對其性腺發育和性別分化的研究開展得最多。從20世紀90年代起,至2008年前后,科研人員嘗試檢測性激素含量和分析促性腺激素釋放激素受體基因表達情況,來闡述性腺發育或性別分化的過程;2012~2013年期間,也有關于長牡蠣GnRH樣肽前體基因的表達位點和生物活性的報道,及性腺轉化生長因子β ()在牡蠣生殖過程中的作用,又如Ni等(2013)用酶聯免疫吸附法研究福建牡蠣雌二醇-17β(E2)和睪酮(Testosterone, T)含量的變化,獲得一個編碼牡蠣雌激素受體(ER),認為ER可能在牡蠣性腺發育中起重要作用;Naimi等(2009)分別觀察了長牡蠣、和基因()在雌雄配子發生周期中的表達特征;同年,Fabioux等(2009)采用RNA干擾技術敲除性腺細胞中的基因,從而證明對牡蠣生殖細胞發育具有重要意義,開啟了一系列性別分化相關基因鑒定及功能的研究。隨著分子生物學和生物信息學分析技術的發展,轉錄組、基因組、蛋白質組和代謝組等組學分析技術和精密檢測設備的研發,使進一步揭示牡蠣性腺發育和性別分化機制終將成為可能,并明確了牡蠣性別分化過程是個多基因參與、環境和遺傳因素相互作用的遺傳通路,這些研究也為扇貝、珠母貝等其他貝類的相關研究奠定了基礎。從最早的激素含量檢測分析,到性別分化相關基因的序列及功能分析,再到組學分析,目標只有一個,就是探討牡蠣性別分化機制,從而實現對牡蠣的性別和繁殖調控,有利于牡蠣的遺傳改良。
櫛孔扇貝()是中國重要的水產養殖品種,然而,頻繁的大規模病害已嚴重影響到產業的發展,遺傳連鎖圖譜對櫛孔扇貝的遺傳改良和選擇性育種有借鑒作用。因此,研究人員構建了櫛孔扇貝性別相關AFLP遺傳連鎖圖譜,其中,有1個性別標記在雌性第19個連鎖組上,重組率為0,LOD為27.3,而對應的雄性中沒有這個標記,雌性中這個特殊的標記(P2f230)一旦得到證實,將來可以分離、克隆、測序和轉化為Sequence characterized amplified region (SCAR),將其定位于染色體上作為性別決定的基因(Li, 2005)。在雙殼貝類雌雄間性狀無明顯差異、尚未見有性染色體的報道及性別決定因子或性別決定機制不清楚的情況下,構建分子標記高密度遺傳連鎖圖譜將為品種改良奠定基礎,多種雙殼貝類遺傳連鎖圖譜構建中均發現,雄性遺傳連鎖圖譜中基因重組率要低于雌性,說明減數分裂時,雌性基因連鎖互換的頻率要高于雄性,櫛孔扇貝(Wang, 2005)和蝦夷扇貝(Chen, 2012)也是如此,與(Liu, 2017)、長牡蠣(Li, 2004)和貽貝() (Lallias, 2007)相似。
蝦夷扇貝是中國和日本重要的養殖貝類。除具有商業價值,還因其養殖群體中一定比例的雌雄同體在性別決定和分化機制研究中的價值而備受關注。為確定蝦夷扇貝分子性別分化的開始,篩選早期性別鑒定的分子標記,對5~13月齡貝的性腺進行組織學檢查,發現10月齡在性腺形態上發生性別分化,8個性別決定或分化候選基因的性腺表達譜顯示,只有2個基因表現出性別二型表達,雌性性腺中含有豐富的FOXL2,雄性性腺中含有大量DMRT1L,研究將有助于更好地理解雙殼類性別分化的分子機制(Li, 2018)。利用Illumina測序技術對成熟期雄性和雌性性腺轉錄組文庫進行配對和末端測序,通過BlastX與Swiss-Prot和NR開放數據庫相比,9354個unigenes與已知的獨特蛋白質顯著匹配。根據注釋信息,至少有30個與性別決定和分化相關的基因,如、、和被篩選和鑒定(Yang, 2016)。也有研究對蝦夷扇貝3個雌性和3個雄性性腺的轉錄組進行測序和分析,研究了先前在脊椎動物中報道的關鍵性別決定基因,并推測存在于雙殼類貝類中,即、、和等。這些基因均具有保守的功能結構域,并在性腺中被檢測到,其中,偏向雌性,和偏向雄性,表明這3個基因可能是扇貝性別決定或分化的關鍵候選基因(Li, 2016)。為進一步研究雙殼類性別決定和分化的分子機制提供了資料。
許多軟體動物常發生性逆轉,性激素可能會參與這一過程。在成體蝦夷扇貝中,促性腺激素釋放激素和17β-雌二醇(E2)參與了雄貝的性成熟過程。成熟期,和分別在扇貝的雌性和雄性性腺中表達。性逆轉期,扇貝性腺器官培養時,性激素處理降低了性逆轉期大部分扇貝性腺的表達。然而,在培養的成熟性腺中,無論是E2還是睪酮(T)作用,和的表達都沒有明顯的變化,提示性激素處理可能影響性逆轉期的性腺發育(Otani, 2017)。促性腺激素釋放激素(GnRH)是控制脊椎動物生殖周期的核心,由于GnRH同源激素也存在于無脊椎動物中,因此,可能在雙殼貝類中的也具有共同的祖先GnRH樣肽。比較蝦夷扇貝GnRH樣肽前體的cDNA轉錄本與其他無脊椎動物和脊椎動物的未加工的和成熟的氨基酸序列,確定了它的表達位點和生物活性。用抗章魚GnRH樣肽免疫細胞化學證明,扇貝神經組織中存在GnRH樣肽,扇貝GnRH樣肽對體外培養的扇貝雄性性腺精原細胞分裂有促進作用,但對體外培養的鵪鶉垂體細胞釋放LH無促進作用(Treen, 2012)。
珍珠貝養殖是近年來備受關注的一種集約化珍珠生產方式,珠母貝是生產珍珠的主要生物。這吸引了專家對珠母貝的生長和繁殖進行研究,研究的目標是通過利用控制繁殖的育種計劃生產有活力的珠母貝種群。在許多動物中,基因同源序列常被用作特定生殖細胞檢測的分子標記。珠母貝()成熟親貝和稚貝基因同源序列(povlg1)原位雜交結果表明,1月齡幼貝中,內臟團兩側對稱分布的一團生殖細胞最初由多個細胞組成。2月齡幼貝,這些細胞遷移到內臟團的腹側邊緣。4月齡幼貝,這些細胞團沿內臟團的外圍遷移,遷移過程中細胞數量和大小不斷增加。這種對未成熟生殖細胞分布和遷移的觀察,將為控制性腺發育和珍珠質量提供有用的信息(Sano, 2015)。馬氏珠母貝()是我國人工培育海水珍珠的最主要珠母貝,在其養殖群體中,有少數雌雄同體個體,并在一定條件下出現性轉化。因此,克隆鑒定馬氏珠母貝的基因既可豐富基因家族的成員,探討基因在貝類中的保守性,也為進一步克隆貝類的性別決定和分化的候選基因及探討貝類性別決定和分化機制提供基礎資料(于非非等, 2007)。
采用第二代測序方法和RNAseq技術,對生產黑珍珠的黑唇珠母貝()不同發育階段的雄性和雌性性腺標本進行了測序,在Illumina測序、組裝和注釋之后,差異表達分析鑒定了1993種不同類型性腺間差異表達的contigs;樣本聚類分析解釋了性腺基因差異表達的大部分變異;對這些contigs的分析揭示了已知的編碼與性別決定和/或分化有關的蛋白質的特異基因的存在,如雄性的和,雌性的和卵黃原蛋白特異性表達基因、和,在不同生殖階段(性別不確定、性反轉和性腺衰退)的表達譜表明這3個基因可能參與了黑唇珠母貝的精卵轉換。這些為研究雌雄同體海洋軟體動物的繁殖提供了一種新的轉錄組學分析方法,鑒定了雄性先熟、雌雄同體黑唇珠母貝的性別分化和潛在的性別決定基因(Teaniniuraitemoana, 2014)。同樣是基于RNAseq數據集,嚴格的表達分析鑒定了1937個在性腺組織學分類中差異表達的contigs;9個候選基因被鑒定為性別通路的標記:7個為雌性通路,2個為雄性通路(Teaniniuraitemoana, 2015)。這些是探究該物種和其他相關物種性別反轉、性別分化和性別決定論的有用工具。
具有家族的典型特征,與簇有顯著的同源性。定量PCR反應測定發現,配子發生過程中性腺中的mRNA在成熟個體中表達量最高;經原位雜交證實,在精子、精細胞、卵母細胞和卵黃原細胞中均有表達;用RNA干擾技術敲除,導致mRNA表達水平下降,注射-dsRNA組為排放期雄性性腺,濾泡破裂,精子釋放。結果表明,的可能參與雄性性腺發育,維持雄性生殖功能(Wang, 2018)。采用RACE-PCR技術,從馬氏珠母貝雄性性腺的SMART cDNA中克隆了基因的全長cDNA序列。同源性比對顯示,編碼的氨基酸序列與海膽()、線蟲()、青鳉()、斑馬魚()、爪蟾()和小鼠()的基因的同源性并不高,但它們的DM結構域是高度保守的。RT-PCR結果認為,基因可能參與了馬氏珠母貝性別發育的調控(于非非等, 2009)。利用RACE-PCR技術從SMART cDNA文庫中克隆到一個基因的cDNA全長,通過熒光定量PCR技術,對該基因在不同組織及發育不同時期性腺中的表達情況進行分析。結果顯示,馬氏珠母貝這個基因與長牡蠣基因的同源性最高,為80%,故命名為;系統進化樹分析也顯示,與長牡蠣基因的親緣關系最近。熒光定量PCR分析組織表達特異性及時序表達圖譜顯示,基因可能在馬氏珠母貝早期神經系統發育和性別發育的調控方面起重要作用(于非非等, 2016)。利用RACE-PCR技術獲得企鵝珍珠貝()基因cDNA的全長序列,通過熒光定量PCR分析基因在各組織中的表達特征,以及在早期雌性性腺、成熟期雌性性腺、早期雄性性腺、成熟期雄性性腺和排放期雄性性腺中的表達變化結果,推測可能與企鵝珍珠貝雄性性腺的發育有關,可能參與了企鵝珍珠貝雄性性別分化和性腺發育的生理過程(潘珍妮等, 2017)。同樣地,企鵝珍珠貝基因與黑蝶真珠蛤()和馬氏珠母貝有高度同源性(>81%);在企鵝珍珠貝各組織中均有表達,在足中表達量最高(<0.05),雄性性腺中其次;在成熟期雄性性腺中檢測到最大表達量(<0.05),在發育早期的雄性性腺、退化期雄性性腺和成熟期雌性性腺中表達量較低,其中,發育早期雌性性腺表達量最低(<0.05)(許開航等, 2018)。
雙殼貝類常有性逆轉現象,從已有的研究報道來看,除環境因素之外,遺傳物質對性別的調控作用是主要因素,性激素可能會參與這一過程。水產養殖業是動物性食物生產增長速度最快的領域,貝類是水產養殖的主要對象之一,采用現代生物技術以滿足人們對水產養殖產品的數量和質量增長的需求日益迫切。然而,主要經濟貝類種類較多,且繁殖特性和性別分化各有特點,盡管開展了大量相關研究,仍有很多未知亟待解答。通過對蝦夷扇貝雌雄2個性別3個不同發育階段的大樣本量性腺轉錄組數據,進行加權基因共表達網絡分析,發現turquoise和green基因模塊的基因與雄性性狀密切相關,coral1和black基因模塊的基因與雌性性狀密切相關,在性別決定和性別分化中起非常重要的作用(Zhou, 2019),目前,我們正在開展、、等基因功能驗證分析。隨著轉錄組、基因組和蛋白質組學分析技術的發展,使得我們能以更開闊的視野探尋雙殼貝類性別分化的分子機制,將來有望對雙殼貝類進行性別和生殖調控,培育高產、抗逆、抗病新品種(系)貝類,保護和增殖瀕危或珍稀貝類資源。
Cavelier P, Cau J, Morin N,. Early gametogenesis in the Pacific oyster: New insights using stem cell and mitotic markers. Journal of Experimental Biology, 2017, 220(21): 3988–3996
Chen M, Chang YQ, Zhang J,. A genetic linkage map of Japanese scallopbased on amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. African Journal of Biotechnology, 2012, 11(46): 10517–10526
Corporeau C, Groisillier A, Jeudy A,. A functional study of transforming growth factor-Beta from the gonad of Pacific oyster. Marine Biotechnology, 2011, 13(5): 971–980
Dheilly NM, Lelong C, Huvet A,. Gametogenesis in the Pacific oyster: A microarrays-based analysisidentifies sex and stage specific genes. PLoS One, 2012, 7(5): e36353
Fabioux C, Corporeau C, Quillien V,.RNA interference in oyster –silencing inhibits germ cell development. FEBS Journal, 2009, 276(9): 2566–2573
Franco A, Jouaux A, Mathieu M,. Proliferating cell nuclear antigen in gonad and associated storage tissue of the Pacific oyster: Seasonal immunodetection and expression in laser microdissected tissues. Cell and Tissue Research, 2010, 340(1): 201–210
Frías-Espericueta MG, Osuna-Lópeza JI, Páez-Osuna F. Gonadal maturation and trace metals in the mangrove oyster: Seasonal variation. Science of the Total Environment, 1999, 231(2–3): 115–123
Guévélou E, Huvet A, Galindo-Sánchez CE,. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster. Biology of Reproduction, 2013, 89(4): 100, 1–15
Huvet A, Béguel JP, Cavaleiro NP,. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oysters. Journal of Experimental Biology, 2015, 218(11): 1740–1747
Huvet A, Fleury E, Corporeau C,. In vivo RNA interference of a gonad-specific transforming growth factor-β in the Pacific oyster. Marine Biotechnology, 2012, 14(4): 402–410
In VV, Ntalamagka N, O’Connor W,. Reproductive neuropeptides that stimulate spawning in the Sydney rock oyster (). Peptides, 2016, 82: 109–119
Lallias D, Lapègue S, Hecquet C,. AFLP-based genetic linkage maps of the blue mussel (). Animal Genetics, 2007, 38(4): 340–349
Li L, Xiang JH, Liu X,. Construction of AFLP-based genetic linkage map for Zhikong scallop,Jones et Preston and mapping of sex-linked markers. Aquaculture, 2005, 245(1–4): 63–73
Li L, Guo XM. AFLP-based genetic linkage maps of the Pacific oysterThunberg. Marine Biotechnology, 2004, 6(1): 26–36
Li RJ, Zhang LL, Li WR,.andare Yin and Yang genes for determining timing of sex differentiation in the bivalve mollusk. Frontiers in Physiology, 2018, 9: 01166
Li Y, Siddiqui G, Wikfors GH.Gmelin using protein profiles of hemolymph by Proteinchip?and SELDI-TOF-MS technology. Aquaculture, 2010, 309: 258– 264
Li YP, Zhang LL, Sun Y,. Transcriptome sequencing and comparative analysis of ovary and testis identifies potential key sex-related genes and pathways in scallop. Marine Biotechnology, 2016, 18(4): 453–465
Li YQ, Siddiqui G, Wikfors GH. Determination of sex and gonadal development of eastern oystersGmlin through protein profiles of hemolymph by SELDI- TOF-MS technology. Abstracts, 103rd Annual Meeting, March 27–31, 2011, 524
Liu B, Teng SS, Shao YQ,. A genetic linkage map of blood clam () based on simple sequence repeat and amplified fragment length polymorphism markers. Journal of Shellfish Research, 2017, 36(1): 31–40
Luo LZ, Zhang QH, Kong X,. Differential effects of zinc exposure on male and female oysters () as revealed by label-free quantitative proteomics. Environmental Toxicology and Chemistry, 2017, 36(10): 2602–2613
Matsumoto T, Osada M, Osawa Y,. Gonadal estrogen profile and immunohistochemical localization of steroidogenic enzymes in the oyster and scallop during sexual maturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1997, 118(4): 811–817
Naimi A, Martinez AS, Specq ML,. Identification and expression of a factor of the DM family in the oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2009, 152(2): 189–196
Naimi A, Martinez AS, Specq ML,. Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenetic cycle in the oyster. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2009, 154(1): 134–142
Ni JB, Zeng Z, Ke CH. Sex steroid levels and expression patterns of estrogen receptor gene in the oysterduring reproductive cycle. Aquaculture, 2013, 376–379: 105–116
Otani A, Nakajima T, Okumura T,. Sex reversal and analyses of possible involvement of sex steroids in scallop gonadal development in newly established organ-culture systems. Zoological Science, 2017, 34(2): 86–92
Pan ZN, Yu XY, Wang MF,. Molecular cloning and expression analysis of Dmrt2 gene from. Marine Sciences, 2017, 41(10): 117–124 [潘珍妮, 余祥勇, 王梅芳, 等. 企鵝珍珠貝Dmrt2基因的克隆及表達分析. 海洋科學, 2017, 41(10): 117–124]
Reis IMM, Mattos JJ, Garcez RC,. Histological responses and localization of the cytochrome P450 (CYP2AU1) inexposed to phenanthrene. Aquatic Toxicology, 2015, 169: 79–89
Rodet F, Lelong C, Dubos MP,. Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochimica et Biophysica Acta, 2005, 1730(3): 187–195
Rodet F, Lelong C, Dubos MP,. Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin- releasing hormone receptor orthologues and their variants in the bivalve mollusc. Gene, 2008, 414(1–2): 1–9
Rodrigues-Silva C, Flores-Nunes F, Vernal JI,. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster. Aquatic Toxicology, 2015, 159: 267–275
Sano N, Kimata S, Obata M,. Distribution and migration of immature germ cells in the pearl oysterwith the expression pattern of the vasa ortholog by in situ hybridization. Journal of Shellfish Research, 2015, 34(3): 803–809
Santerre C, Sourdaine P, Adeline B,. Cg-SoxE and Cg-β- catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2014, 167: 68–76
Santerre C, Sourdaine P, Martinez AS. Expression of a natural antisense transcript of Cg-Foxl2 during the gonadic differentiation of the oyster: First demonstration in the gonads of a lophotrochozoa species. Sexual Development, 2012, 6(4): 210–221
Santerre C, Sourdaine P, Marc N,. Oyster sex determination is influenced by temperature — First clues in spat during first gonadic differentiation and gametogenesis. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 165(1): 61–69
Song SS, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. Invertebrate Reproduction and Development, 2017, 61(2): 97–109
Teaniniuraitemoana V, Huvet A, Levy P,. Gonad transcriptomeanalysis of pearl oyster: Identification of potential sex differentiation and sex determining genes. BMC Genomics, 2014, 15(1): 491
Teaniniuraitemoana V, Huvet A, Levy P,. Molecular signatures discriminating the male and the female sexual pathways in the pearl oyster. PLoS One, 2015, 10(3): e0122819
Treen N, Itoh N, Miura H,. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: A primitive endocrine system controlling reproduction. General and Comparative Endocrinology, 2012, 176(2): 167–172
Wang LL, Song LS, Chang YQ,. A preliminary genetic map of Zhikong scallop (Jones et Preston 1904). Aquaculture Research, 2005, 36(7): 643–653
Wang Q, Shi Y, He MX., a potential factor in sexual development in the pearl oyster. Journal of Oceanology and Limnology, 2018, 36(6): 2337–2350
Wei PY, He PP, Zhang XZ,. Identification and characterization of microRNAs in the gonads ofusing high-throughput sequencing. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics , 2019, 31: 100606
Xu F, Kong LF, Zhang Y,. Complete genome sequencing and functional analysis of oyster. Science and Technology Information, 2016(6): 162–163 [許飛, 孔令鋒, 張揚, 等. 牡蠣全基因組測序與功能解析. 科技資訊, 2016(6): 162–163]
Xu KH, Wang MF, Yu XY,. Molecular cloning and expression analysis of Sox9 gene from. Journal of Guangdong Ocean University, 2018, 38(2): 15–22 [許開航, 王梅芳, 余祥勇, 等. 企鵝珍珠貝Sox9基因的克隆及表達分析. 廣東海洋大學學報, 2018, 38(2): 15–22]
Xu R, Li Q, Yu H,. Oocyte maturation and origin of the germline as revealed by the expression of nanos-like in the Pacific oyster. Gene, 2018, 663: 41–50
Yang D, Yin C, Chang YQ,. Transcriptome analysis of male and female mature gonads of Japanese scallop. Genes and Genomics, 2016, 38(11): 1041–1052
Yu FF, Zhou L, Wang MF,. Cloning and sequence analysis of three DM domain in. Journal of Agricultural Biotechnology, 2007, 15(5): 905–906 [于非非, 周莉, 王梅芳, 等. 馬氏珠母貝() 3個DM結構域的克隆及序列分析. 農業生物技術學報, 2007, 15(5): 905–906]
Yu FF, Gui JF, Zhou L,. Cloning and expression characterization of Dmrt5 in. Acta Hydrobiologica Sinica, 2009, 33(5): 844–850 [于非非, 桂建芳, 周莉, 等. 馬氏珠母貝Dmrt5基因的克隆及時序表達模式分析. 水生生物學報, 2009, 33(5): 844–850]
Yu FF, Wang MF, Gui JF,. Molecular cloning and expression patterns of Sox11 gene in. Acta Hydrobiogica Sinica, 2016, 40(1): 71–75 [于非非, 王梅芳, 桂建芳, 等. 馬氏珠母貝Sox11基因的克隆及時序表達模式分析. 水生生物學報, 2016, 40(1): 71–75]
Yue CY, Li Q, Yu H. Gonad transcriptome analysis of the Pacific oysteridentifies potential genes regulating the sex determination and differentiation process. Marine Biotechnology, 2018, 20(2): 206–219
Zhang N, Xu F, Guo XM. Genomic analysis of the Pacific oyster () reveals possible conservation of vertebrate sex determination in a mollusc. G3(Bethesda), 2014, 4: 2207–2217
Zhang X, Li Q, Kong LF,. DNA methylation frequency and epigenetic variability of the Pacific oysterin relation to the gametogenesis. Fisheries Science, 2018, 84(5): 789–797
Zhong XX, Li Q, Kong LF,. Quantitative trait locus analysis of meat yield and shell shape traits in the Pacific oyster,. Journal of Fishery Sciences of China, 2015, 22(3): 574–579 [仲曉曉, 李琪, 孔令鋒, 等. 長牡蠣出肉率與殼形性狀的QTL定位分析. 中國水產科學, 2015, 22(3): 574–579]
Zhou LQ, Liu ZH, Dong YH,. Transcriptomics analysis revealing candidate genes and networks for sex differentiation of yesso scallop (). BMC Genomics, 2019, 20(1): 671
Zhou ZY, Li Q, Yu H,. Cloning and expression analysis ofgene of Pacific oyster (). Periodical of Ocean University of China, 2018, 48(6): 45–54 [周祖陽, 李琪, 于紅, 等. 長牡蠣基因cDNA克隆和表達分析. 中國海洋大學學報, 2018, 48(6): 45–54]
Review: Molecular Mechanism of Sex Differentiation in Major Economic Bivalves
ZHOU Liqing1,2, ZHAO Dan2, WU Zhou3, WU Lei4, YANG Jinlong2①
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071; 2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 3. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000; 4. College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang 222005)
In this review, we have provided an overview of the current knowledge on the different molecular mechanisms of sex differentiation in major economic bivalves. The representative species of bivalves were introduced to understand the different mechanisms of sex differentiation or sex determination. The review provides a brief summary of the recent discoveries on sex differentiation in oysters, scallops, pearl oysters, and other common economically important bivalve species. The review highlights the various sex differentiation-associated molecular mechanisms by focusing on the involvement of nucleic acids, proteins, hormones, and so on. The current research trends on sex differentiation in bivalves have been discussed, which may help to advance our understanding of the sex differentiation and gonadal development of the Yesso scallop and other bivalves.
Bivalves; Sex differentiation; Genes; Molecule; Nucleic acid; Hormone; Protein
YANG Jinlong, E-mail: jlyang@shou.edu.cn
S917.4
A
2095-9869(2020)05-0023-09
10.19663/j.issn2095-9869.20191213001
http://www.yykxjz.cn/
周麗青, 趙丹, 吳宙, 吳磊, 楊金龍. 主要經濟雙殼貝類性別分化的分子機制概述. 漁業科學進展, 2020, 41(5): 194–202
Zhou LQ, Zhao D, Wu Z, Wu L, Yang JL. Review: Molecular mechanism of sex differentiation in major economic bivalves. Progress in Fishery Sciences, 2020, 41(5): 194–202
* 國家自然科學基金(31672637)、國家重點研發計劃(2018YFD0900800)和浙江重中之重開放基金(KF2018008)共同資助[This work was supported by National Natural Science Foundation of China (31672637), National Key Research and Development Program of China (2018YFD0900800), and Zhejiang Provincial Top Discipline of Bioengineering (Level A) of China (KF2018008)]. 周麗青,E-mail: zhoulq@ysfri.ac.cn
楊金龍,教授,E-mail: jlyang@shou.edu.cn
2019-12-13,
2020-02-08
(編輯 馮小花)