999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

BIFURCATION AND POSITIVE SOLUTIONS OF A p-LAPLACIAN PROBLEM

2020-09-21 13:48:14LUOHua
數學雜志 2020年5期

LUO Hua

(1.School of Economics and Finance,Shanghai International Studies University,Shanghai201620,China)

(2.School of Mathematics,Dongbei University of Finance and Economics,Dalian116025,China)

Abstract:This paper studies a p-Laplacian problem with non-asymptotic nonlinearity at zero or infinity.By using the bifurcation and topological methods,the existence/nonexistence and multiplicity of positive solutions are obtained.The previous results of the existence of positive solutions are enriched and generalized.

Keywords: bifurcation;positive solution;p-Laplacian;topological method

1 Introduction

Consider the followingp-Laplacian problem

whereλis a nonnegative parameter,Ω is a bounded domain of RNwith smooth boundary?Ω,p∈(1,+∞)andf:[0,+∞)→[0,+∞)is some given continuous nonlinearity.We also assume thatf(s)>0 fors>0 and there existf0,f∞∈[0,+∞]such that

whereφp(s)=|s|p-2s.

Iff0,f∞∈(0,+∞)withf0/=f∞,it follows from Theorem 5.1–5.2 in[1]that problem(1.1)has at least one positive solution for anyλ∈(min{λ1/f0,λ1/f∞},max{λ1/f0,λ1/f∞}),whereλ1is the first eigenvalue of problem(1.1)withf(s)=φp(s).Here we study the cases off0/∈(0,+∞)orf∞/∈(0,+∞).Iffis superlinear,we also require thatfsatisfies the following subcritical growth condition

for someq∈(p,p*)and positive constantC,where

is the Serrin’s exponent(see[2]).

Our main result is the following theorem.

Theorem 1.1(a)Iff0∈(0,+∞)andf∞=0,problem(1.1)has at least one positive solution for everyλ∈(λ1/f0,+∞).

(b)Iff0∈(0,+∞)andf∞=+∞,problem(1.1)has at least one positive solution for everyλ∈(0,λ1/f0).

(c)Iff0=0 andf∞∈(0,+∞),problem(1.1)has at least one positive solution for everyλ∈(λ1/f∞,+∞).

(d)Iff0=f∞=0,there existsλ*>0 such that problem(1.1)has at least two positive solutions for anyλ∈(λ*,+∞).

(e)Iff0=0 andf∞=+∞,problem(1.1)has at least one positive solution for anyλ∈(0,+∞).

(f)Iff0=+∞andf∞=0,problem(1.1)has at least one positive solution for anyλ∈(0,+∞).

(g)Iff0=+∞andf∞∈(0,+∞),problem(1.1)has at least one positive solution for anyλ∈(0,λ1/f∞).

(h)Iff0=f∞=∞,there existsλ*>0 such that problem(1.1)has at least two positive solutions for anyλ∈(0,λ*).

2 Proof of Theorem 1.1

We first have the following two nonexistence results.

Lemma 2.1Assume that there exists a positive constantρ>0 such that

for anys>0.Then there existsξ*>0 such that problem(1.1)has no positive solution for anyλ∈(ξ*,+∞).

ProofBy contradiction,assume thatun(n=1,2,···)are positive solutions of problem(1.1)withλ=λn(n=1,2,···)such thatλn→+∞asn→+∞.Then we have thatλnf(un)/φp(un)>λ1fornlarge enough.By Theorem 2.6 of[3],we know thatunmust change sign in Ω fornlarge enough,which is a contradiction.

Lemma 2.2Assume that there exists a positive constant?>0 such that

for anys>0.Then there existsη*>0 such that problem(1.1)has no positive solution for anyλ∈(0,η*).

ProofSuppose,on the contrary,that there exists one positive solutionu.Then we have that

which implies thatλ≥λ1/?.

Let

with the usual norm

Set

whereωis the outward pointing normal to?Ω.

Proof of Theorem 1.1(a)From Lemma 5.4 of[1],there exists a continuumCof nontrivial solutions of problem(1.1)emanating from(λ1/f0,0)such thatC?(R×P)∪{(λ1/f0,0)},meets∞in R×E.It suffices to show thatCjoins(λ1/f0,0)to(+∞,+∞).Lemma 2.2 implies thatλ>0 onCandλ=0 is not the blow up point ofC.

We claim thatCis unbounded in the direction ofE.Suppose,by contradiction,thatCis bounded in the direction ofE.So there exist(λn,un)∈Cand a positive constantMsuch thatλn→+∞asn→+∞and‖un‖≤Mfor anyn∈N.It follows thatf(un)/un≥δfor some positive constantδand alln∈N.Lemma 2.1 implies thatun≡0 fornlarge enough,which is a contradiction.Lemma 5.1 of[4]implies that the unique blow up point ofCisλ=+∞.Now the desired conclusion can be got immediately from the global structure ofC.

(b)It is enough to show thatCjoins(λ1/f0,0)to(0,+∞).Lemma 2.1 implies thatCis bounded in the direction ofλ.By virtue of Lemma 5.1 of[4],we know that(0,+∞)is the unique blow up point ofC.

(c)If(λ,u)is any solution of(1.1)with‖u‖0,dividing(1.1)by‖u‖2(p-1)and settingw=u/‖u‖2yield

define

Then(2.1)is equivalent to

By doing some simple calculations,we can show thatApplying the conclusion of(a)and the inversionw→w/‖w‖2=u,we obtain the desired conclusion.

(d)define

and consider the following problem

From Proposition 2 of[4],for each∈>0 there exists anN0such that for everyn>N0,Cn?V∈(C)withV∈(C)denoting the∈-neighborhood ofC.It follows that(nλ1,+∞)?Proj(Cn)?Proj(V∈(C)),where Proj(Cn)denotes the projection ofCnon R.So we have that(nλ1+∈,+∞)?Proj(C)for anyn>N0.Hence,we haveC{∞}/?.

Let

For any fixedn∈N,we claim thatCn∩S1=?.Otherwise,there exists a sequence(λm,um)∈Cnsuch that(λm,um)→(+∞,u*)∈S1with‖u*‖<+∞.It follows that‖um‖ ≤Mnfor some constantMn>0.It implies thatfn(um)/um≥δnfor some positive constantδnand allm∈N.Lemma 2.1 implies thatum≡0 formlarge enough,which contradicts the fact of‖v*‖ >0.It follows thatSinceone has thatC∩S1=?.Furthermore,set

For any fixedn∈N,byf∞=0 and an argument similar to that of(a),we have thatCn∩S2=?.Reasoning as the above,we have thatC∩S2=?.Hence,C∩(S1∪S2)=?.Takingz*=(+∞,0),we haveTherefore,we obtain thatC∩{∞}={z*,z*}.Clearly,is pre-compact.So Lemma 3.1 of[6]implies thatCis connected.By an argument similar to that of Theorem 1.3 of[4],we can show thatC∩([0,+∞)×{0})=?.Now the desired conclusion can be deduced from the global structure ofC.

(e)By an argument similar to that of(d),in view of the conclusion of(b),we can get the desired conclusion.

(f)By an argument similar to that of(c)and the conclusion of(e),we can prove it.

(g)By an argument similar to that of(c)and the conclusion of(b),we can obtain it.

(h)define

主站蜘蛛池模板: 香蕉伊思人视频| 真实国产精品vr专区| 制服丝袜在线视频香蕉| 久久性视频| 亚国产欧美在线人成| 欧美成人亚洲综合精品欧美激情| 欧美va亚洲va香蕉在线| 国外欧美一区另类中文字幕| 国产精品真实对白精彩久久| 久久久国产精品无码专区| 亚洲a级在线观看| 无码专区国产精品一区| 曰韩免费无码AV一区二区| 色综合久久88| 97人人模人人爽人人喊小说| 青草视频久久| 日本影院一区| 亚洲无码A视频在线| 国产成人高清在线精品| 高清免费毛片| 亚洲人免费视频| 成人精品区| 天天操天天噜| 久热精品免费| 一级毛片在线免费视频| av尤物免费在线观看| 全部免费特黄特色大片视频| 久久大香香蕉国产免费网站| 热久久综合这里只有精品电影| 免费 国产 无码久久久| 欧美a在线看| 91无码视频在线观看| 在线观看热码亚洲av每日更新| 免费观看三级毛片| 亚洲中文无码h在线观看| 一本大道视频精品人妻 | 欧美成人亚洲综合精品欧美激情| 四虎在线观看视频高清无码| 又猛又黄又爽无遮挡的视频网站| 在线看AV天堂| 国产在线观看人成激情视频| 亚洲天堂2014| 午夜不卡福利| 欧美成人看片一区二区三区| 久久一色本道亚洲| 久久精品人人做人人综合试看| 亚洲嫩模喷白浆| 亚洲免费三区| 中文字幕2区| 亚洲欧美极品| 免费精品一区二区h| 五月天久久综合| 亚洲综合在线最大成人| 国产欧美精品午夜在线播放| 国产成人精品免费视频大全五级| 欧美伊人色综合久久天天| 国产精品香蕉在线观看不卡| 青青草欧美| 亚洲天堂首页| аv天堂最新中文在线| 久久国产精品77777| 99re精彩视频| 亚洲高清中文字幕| 欧美在线一二区| 亚洲欧洲AV一区二区三区| 国产永久免费视频m3u8| 国产乱人伦AV在线A| 欧美精品成人| 日韩欧美成人高清在线观看| 亚洲天堂视频在线免费观看| 精品无码日韩国产不卡av| 国产成人在线无码免费视频| 久热这里只有精品6| 蜜芽一区二区国产精品| 国产又爽又黄无遮挡免费观看| 五月婷婷伊人网| 久久青青草原亚洲av无码| 国产精品亚洲一区二区在线观看| av一区二区三区高清久久| 四虎影视库国产精品一区| 国产一在线| 一本综合久久|