999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

FAST AND SLOW DECAY SOLUTIONS FOR SUPERCRITICAL FRACTIONAL ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS

2020-09-21 13:48:06AOWeiweiLIUChaoWANGLiping
數學雜志 2020年5期

AO Wei-wei,LIU Chao,WANG Li-ping

(1.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

(2.Department of Mathematics;Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,East China Normal University,Shanghai 200241,China)

1 Introduction and Main Results

We construct classic solutions of the following supercritical nonlinear fractional exterior problem

wheres∈(0,1),andB1is the unit ball in RN.As usual,the operator(-Δ)sis the fractional Laplacian,defined at any pointx∈RNas

hereP.V.is a commonly used abbreviation for”in the principal value sense” andC(N,s)is a constant dependent ofNands.We refer to[6–7].

For classical Laplacian,namely,s=1,which is the Lame-Emden-Fowler equation

where Ω is a bounded open set with smooth boundary in RNandp>1 .Davila etc[4]proved(1.2)has in finitely many solutions with slow decayat infinity with eitherN≥4 andand Ω is symmetric with respect toNcoordinate axes.Later,this result was extended toand Ω is a smooth bounded domain by Davila etc[5].For fractional Laplacian,we will prove that this result also holds whens∈(0,1),andB1is the unit ball in RN.For problem(1.1)in general exterior domain,our method not be used to solve it,there exist some obstacles in Remark 1.

Our main results can be stated as follows:

Theorem 1.1For anys∈(0,1)and,there exists a continuum of solutionsuλ,λ>0 ,to problem(1.1)such that

anduλ(x)→0 asλ→0 ,uniformly in.

Theorem 1.2For anys∈(0,1),there exists a number,such that for anyproblem(1.1)has a fast decay solutionup,up(x)=O(|x|2s-N)as|x|→+∞.

In order to prove Theorem 1.1,we will takeωas approximation of(1.1)whereωis a smooth,radially symmetric,entire solution of the following problem

hereβis a positive constant chosen so thatis a singular solution to(-Δ)sω-ωp=0 for which the existence and linear theory has been studied recently in[1]for the fractional case.

The basic idea in the proof of Theorem 1.2 is to consider as an initial approximation the functionλwhere

is the unique positive radial smooth solution of the problem

These scalings will constitute good approximations for smallλifpis sufficiently close toWe prove then adjusting bothξandλ,produces a solution as desired after addition of a lower order term.

By the change of variables

and the maximum principle(see the page 39 of[3]),problem(1.1)is equivalent to

whereλ>0 is a small parameter andB1λ,ξis the shrinking domain

Remark 1To prove Theorem 1.1 and Theorem 1.2,we will construct solutions of the equivalent problem(1.5)with the form=ω+φλ+φand=ω**+φλ+φ.To obtain the decay of,we need to know that the decay ofφλ+φ.Using the Poisson KernelP(x,y)inRNB1,we first obtain the decay ofφλis no more thanO(|x-ξ|2s-N).Secondly,we can derive the decay ofφby the Green functionG(x,y)inRNB1.But for general exterior domain,there is a lack of the explicit formulas and the decay of Poisson Kernel and Green’s function of fractional Laplace operator(-Δ)s.

The proof of Theorem 1.1 and Theorem 1.2 refers to[2]in detail.

主站蜘蛛池模板: 欧美色丁香| 欧美一区二区啪啪| 成人免费一区二区三区| 免费高清自慰一区二区三区| 国产在线观看99| a级毛片免费在线观看| 亚洲精品国产日韩无码AV永久免费网 | 97影院午夜在线观看视频| 亚洲高清无在码在线无弹窗| 婷婷六月激情综合一区| 日本人又色又爽的视频| 免费无码网站| 国产第二十一页| 久久国产乱子| 一级黄色网站在线免费看| 国产电话自拍伊人| 日本不卡免费高清视频| 日韩AV手机在线观看蜜芽| 潮喷在线无码白浆| 四虎国产永久在线观看| 国产福利影院在线观看| 久久免费视频播放| 亚洲人成在线精品| 久久青草热| 亚洲成人一区二区| 国产成人无码久久久久毛片| 欧美精品另类| a级高清毛片| 美女一区二区在线观看| 波多野结衣无码AV在线| 国产主播在线观看| 一级不卡毛片| 亚洲AⅤ无码国产精品| 日韩毛片在线播放| 久久综合婷婷| 亚洲Va中文字幕久久一区| 无码日韩视频| 国产在线精品99一区不卡| 日韩国产另类| 91色国产在线| 91免费观看视频| 久久综合AV免费观看| 色首页AV在线| 日韩欧美国产成人| 成人精品亚洲| 国产在线视频自拍| 中文字幕1区2区| 毛片基地美国正在播放亚洲 | 亚洲成人网在线播放| 亚洲专区一区二区在线观看| 97青草最新免费精品视频| 亚洲国产AV无码综合原创| 人妻一区二区三区无码精品一区| 国内黄色精品| 国产95在线 | 色综合天天综合中文网| 久久国产黑丝袜视频| 亚洲欧美成人综合| 成人毛片免费在线观看| 欧美日韩国产在线人成app| 久久影院一区二区h| 少妇精品久久久一区二区三区| 国产无遮挡猛进猛出免费软件| 久久一色本道亚洲| 在线99视频| 中文无码毛片又爽又刺激| 欧美色丁香| 4虎影视国产在线观看精品| 丰满的少妇人妻无码区| 成人在线观看不卡| 亚洲啪啪网| 久久精品国产精品青草app| 欧美成人怡春院在线激情| 一级毛片不卡片免费观看| 亚洲婷婷在线视频| 手机永久AV在线播放| 色网站免费在线观看| 国产精品专区第1页| 免费一级毛片在线观看| 亚洲全网成人资源在线观看| 国产美女免费| 久久精品人人做人人爽电影蜜月|